A RVR-based Method for Bias Field Estimation in Brain Magnetic Resonance
Images Segmentation

Jinwei Wang! and Dexing Kong?

I Center of Mathematical Sciences, Zhejiang University, Hangzhou, 310027, China
2 Department of Mathematics, Zhejiang University, Hangzhou, 310027, China

Abstract— This paper presents a relevance vector regression
(RVR) based parametric approach to the bias field estimation in
brain magnetic resonance (MR) image segmentation. Segmen-
tation is a very important and challenging task in brain anal-
ysis, while the bias field existed in the images can significantly
deteriorate the performance. Most of current parametric bias
field correction techniques use a pre-set linear combination of
low degree basis functions, the coefficients and the basis func-
tion types of which completely determine the field. The proposed
RVR method can automatically determine the best combination
for the bias field, resulting in a good segmentation in the pres-
ence of noise by combining with spatial constrained fuzzy C-
means (SCFCM) segmentation. Experiments on simulated T1
images show the efficiency.
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I. INTRODUCTION

Correctly segmenting brain images into gray matter (GM),
whiter matter (WM) and cerebrospinal fluid (CSF) plays an
important role in brain magnetic resonance (MR) image anal-
ysis. In the presence of bias field, we will get a poor segmen-
tation with intensity based methods. In general, bias field,
also known as gain field or intensity inhomogeneities, man-
ifests as a slow varying multiplicative field across the whole
image. How to properly model the bias field and then correct
it to get a pleasant segmentation remains a challenging task
up to now.

Various methods have been proposed to solve this prob-
lem. They are usually categorized into two groups: prospec-
tive methods and retrospective methods. Prospective methods
treat intensity corruption as a systematic error of the MRI ac-
quisition process that can either be minimized by acquiring
additional images of a uniform phantom, or by devising spe-
cial image sequences and so on, but they don’t take patient
movement into account. Retrospective methods are relatively
general. These methods mainly rely on the information of the
acquired image in which useful anatomical information and

information on the intensity inhomogeneity are integrated. In
which, filtering methods assume the intensity inhomogeneity
is a low-frequency artifact that can be eliminated by low-pass
filtering [1], but the assumption fails for most MR images.
Histogram based methods operate directly on image inten-
sity histograms, such methods are based on constrained min-
imization of image information [2]. But it requires several in-
put parameters and a tissue model . Typically, parametric sur-
face fitting methods attracted many authors’ attention. These
methods fit a parametric surface to a set of image features that
contain information on intensity inhomogeneity, and merge
with segmentation [3] to get a pleasant result. Some studies
modeled the bias field as a polynomial field [4], a stack of
B-spline surfaces with constraints [5], a mixture of legendre
polynomials [6] and so on. These methods are often done by
determining the order of the functions in advance, setting the
parameters according to the order and then optimizing them.
Their main drawback lies in that we do not know the exact
order or how many basis functions we should choose to ap-
proximate the objective bias field.

With the relevance vector regression (RVR), we can over-
come the drawback to get a reasonable bias field and a pleas-
ant segmentation at the same time. RVR was firstly pro-
posed by M. Tipping [7]. It is a general Bayesian frame-
work [8] for obtaining sparse solutions to regression task,
and it provides us with the best parameters automatically un-
der the given kernel form. Specially we use Gaussian func-
tion as the kernel in this paper. Together with spatial con-
strained fuzzy C-means (SCFCM) segmentation [9], which
takes neighborhood as regularization and leads the solution
toward piecewise-homogeneous labeling, we integrate the
goals into an energy function, then update the bias field and
centroids alternatively. And finally we get a reasonable bias
field and a pleasant segmentation.

The reminder of the paper is organized as follows. The
proposed model and methods are presented in Section II. Sec-
tion III is denoted to the applications of our proposed method
to brain MR image segmentation. The conclusions are given
in Section IV.
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II. MODEL AND METHODS

The observed magnetic resonance imaging (MRI) signal
often can be formulated as

Yi=X;xB;+NO;, Vi €{l1,2,--- N}, (1)
where Y;, X;, B; and NO; stand for the observed, true intensi-
ties, the bias field and the noise at the ith voxel, respectively.
And N is the total number of voxels in the MRI. Denoising
the image, by a logarithm transform of (1) we get
vicxi+b;, Vi 6{1,2,"',]\7} 2)

with y; = log(Y;), x; = log(X;) and b; = log(B;). It may be
problematic to estlmate either x or b without the knowledge
of the other. Also we can see that if (x,b) is a solution to
the estimation, so does (x4 cM,b — cM) with any constant
c. Here, M is the matrix with all entries equal to one. In this
paper, the basic assumptions are that b is a slowly varying
field across the whole image with mean zero and x can be ap-
proximated by a piecewise-constant image. Under these as-
sumptions, we can estimate both x and b by using an iterative
algorithm based on RVR and fuzzy logic.

A fuzzy C-means (FCM) based energy function is adopted
to achieve the goal in this paper. The energy function can be
expressed as
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where u;; denotes the probability the kth intensity belonging
to the ith cluster with ): u;r = 1, v; is the ith cluster value,

c is the number of clusters N is the number of intensities,
p € [1,0) is the fuzzy index, .44 is the neighborhood cen-
tered at y;, Ng is the number of .4#; and the effect of the
neighbor term is controlled by « (big for low-SNR images).
Our goal is to minimize J, with respect to {u;}, {vi}, {bx},
with the bias field modeled as a linear summation of Gaus-
sian kernels. With o0 = 0, we get the standard FCM objective
function. Such function is minimized when high membership
values are assigned to voxels whose intensities are close to
the centroid of the its particular class, and low membership
values are assigned when the voxel data is far from the cen-
troid. When o > 0, we allow the labeling of a voxel to be
influenced by the labels in its immediate neighborhood [10].

Minimization of the method proposed in this paper con-
sists of four steps.
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First of all, the cerebrums of the images gotten from the
BrainWeb [11] are removed using a histogram-based method.
We set intensities below some pre-set value to be the back-
ground value, and then apply morphological operators to re-
move the skull, leaving the region compose of GM, WM and
CSF. In the following steps, we focus on this region.

In the second step, we calculate the histogram of the re-
gion of interest (ROI) which is smoothed by a Gaussian fil-
ter. Then we use a RVR method to fit the resulting curve,
and get the local maximums as the initial centroids which are
also transformed into the log-space. Usually we get more cen-
troids than needed, because the intensities have a wide range
below the intensity of gray matter. With the centroids, we use
a C-means method to get a piecewise constant image ECI
with clusters v. By the way, RVR is very convenient for im-
plementation, as its Matlab toolbox can be downloaded from
[12].

The third step is the main step. We model the bias field as
a linear combination of Gaussian functions. We can choose
many points as the kernel centers and their corresponding
values as the inputs, for example, 1 x 103 points uniformly
distributed in the ROI, and then RVR is used to get an es-
timated bias field which is a best combination of much less
kernel functions. We integrate the bias field to the objective
energy function, and then update alternatively with the fuzzy
partition matrix and cluster prototypes by SCFCM.

More specifically, letting Dy = ||yx — by — v||> and %, =
Yy en lyr—br—vi ||?, we repeat the followings until conver-
gence:

1. BF =y—ECI, filter BF with a pre-set window and then
perform RVR for bias field approximation to get an estimated
bias field EBF.

2. CI =y — EBF, perform SCFCM to get new partition
matrix and cluster prototypes. We do it in a general way: Tak-
ing the first derivatives of J, with respect to u;; and v;, then
setting them to zero, we get:

1

*
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j=1 D.ik+%yj
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with the partition matrix we can get the new ECL.

3. Check the stopping criterion. The convergence rule usu-
ally is that the norm of difference between the new prototypes
and the latest one is less than a pre-set small constant €,

||Vnew_Vo/d|| <E. (5)
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Fig. 1: The image with 9% noise and 40% intensity non-uniformity is
shown on the upper left. Its corresponding histogram is shown on the upper
right. The smoothed image and its RVR fitting are shown on the down row.

The regress function is shown in red and the relevance vectors in blue.

Refine the centroids if necessary. If the difference of two cen-
troids after exponential transform is less than some threshold
7N, then merge one centroid to the other, and change the ECI
accordingly.

At last, we change ECI and EBF to the original space with
exponential transform. Post-processing ECI to get the final
desired image.

III. RESULTS AND DISCUSSIONS

In this section, we test the proposed method on simulated
brain MR images. The MR images simulate the appearance
and image characteristics of the T1-weighted images. We can
validate our segmentation method by using simulated images
so that we can have prior knowledge of the true tissue types
and control the image parameters like mean intensity values,
noise and intensity inhomogeneities. All of images used in
this paper are downloaded from [13]. We got T1 weighted
volumetric MR scans, 181 x 217 x 181 voxels, sized 1 x 1 x 1
mm. In all examples, we set the parameter & to be 0.85, p =2,
a 3 x 3 window centered at each pixel for image intensities
averaging, 5 x 5 for bias field values averaging, € = 0.001
and 1 = 1. For high SNR images, we set &c = 0.7.

Fig.1 shows the original image with 9% noise and 40%
intensity non-uniformity. Apparently, RVR does a good fit-
ting of the histogram with just a few relevance vectors, and
we can easily determine local maximums as initial centroids.
In Fig.2, the piecewise constant image and the estimation of
the multiplicative bias field resulting with the presented al-
gorithm are shown on the upper row. These images were ob-
tained by scaling the values to a suitable range. Three classes
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of the brain image corresponding to CSF, GM and WM get-
ting from the piecewise constant image are shown in the mid-
dle row and the corresponding standard maps from BrainWeb
are shown on the down row. From comparison of the second
row and third row of Fig.2, we can see that we have gotten a
reasonable and pleasant result.

Fig. 2: The original image is shown on the top left followed by the
piecewise constant image and estimated bias field on the top row. The
respective CSF, GM and WM of the image are presented in the middle row,
while the corresponding ground trues are shown in the down row.

In order to show a quantitative comparison between the re-
sults getting from the method proposed in this paper and the
ground true classes, we detailed the segmentation accuracy
with different conditions of noise and bias field in Table 1.
With the method in step one, we can not guarantee to remove
all irrelevant structures, and it mainly affect the segment re-
sult of CSF. So we do not consider the accuracy of CSF. The
GM and WM segmentation accuracies are measured by using
an average overlap metric (AOM)[14], which is a quantita-
tive evaluation of performance. Overlap metric is defined for
a given voxel class assignment as the sum of the number of
voxels that both have the class assignment in each segmenta-
tion divided by the sum of voxels where either segmentation
has the class assignment. This is the same as the Tanimoto
coefficient. The AOM can be expressed as follow:

N(INJ)
AOM = ——= x 100% 6
Ny < ©)
where N(INJ) denotes the number of voxels that both im-
ages I and J have the class assignment, N(I UJ) denotes the
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Thable 1: Segmentation results on T1-weighted data under different
conditions of noise and bias field.

Noise | Bias | WM | GM | Overall
3% | 20% | 0.908 | 0.793 | 0.851
5% | 20% | 0.905 | 0.789 | 0.847
7% | 20% | 0.905 | 0.796 | 0.850
9% | 20% | 0.894 | 0.770 | 0.832
3% | 40% | 0.898 | 0.792 | 0.845
5% | 40% | 0.891 | 0.781 | 0.836
7% | 40% | 0.891 | 0.773 | 0.832
9% | 40% | 0.886 | 0.763 | 0.824

number of voxels where either segmentation has the class as-
signment. This metric approaches a value of 1.0 for results
that are very similar and near 0.0 when they share no simi-
larly classified voxels.

According to Zijdenbos statement [15] that AOM indicates
excellent agreement when it is above 0.7, from the above re-
sults we can see that the proposed method is feasible and ro-
bust to bias field and noise. Though the accuracy decreases
when noise and bias increase, the accuracy stays above 0.7.

From the experiments, we find that: when the algorithm
comes to convergence, the bias field can be approximated by
a linear combination of about three to five kernel functions in
general.

IV. CONCLUSIONS

In this paper, we have demonstrated a RVR based paramet-
ric approach to the bias field estimation in brain MR images
segmentation. It aims to correctly model the bias field and
segment the brain image more accuracy. The experiments in
different situations were implemented on the simulated T1
images and we got pleasant results. Especially for GM, we
got an accuracy around 0.9. In the future, we will utilize ba-
sis functions other than gauss function to model the bias field,
generalize the method from 2D to 3D images and combine
with other modalities to improve the segmentation accuracy.
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