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Abstract

In this paper, we study the global existence and nonexistence of positive solutions to the

following nonlinear reaction-diffusion system

ut −∆u = W (x)vp + S(x) in Mn × (0,∞),

vt −∆v = F (x)ud + G(x) in Mn × (0,∞),

u(x, 0) = u0(x) in Mn,

v(x, 0) = v0(x) in Mn,

where Mn (n ≥ 3) is a non-compact complete Riemannian manifold, ∆ is the Laplace-Beltrami

operator, and S(x), G(x) are non-negative L1
loc functions. We assume that both u0(x) and

v0(x) are non-negative , smooth and bounded functions, constants p , d > 1. When p = d, there

is an exponent p∗ which is critical in the following sense. when p ∈ (1, p∗], the above problem

has no global positive solution for any non-negative constants S(x), G(x) not identically zero;

when p ∈ [p∗,∞), the problem has a global positive solution for some S(x), G(x) > 0 and

u0(x), v0(x) ≥ 0.
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1 Introduction

In this paper, we study the global existence and nonexistence of positive solutions to the following

nonlinear reaction-diffusion system

ut −∆u = W (x)vp + S(x) in Mn × (0,∞),

vt −∆v = F (x)ud +G(x) in Mn × (0,∞),

u(x, 0) = u0(x) in Mn,

v(x, 0) = v0(x) in Mn,

(1.1)

where Mn (n ≥ 3) is a non-compact complete Riemannian manifold, ∆ is the Laplace-Beltrami

operator, and S(x), G(x) are non-negative L1
loc functions. We assume that both u0(x) and v0(x)

are non-negative , smooth and bounded functions, constants p , d > 1. When p = d, there is an

exponent p∗ which is critical in the following sense. when p ∈ (1, p∗], the above problem has no

global positive solution for any non-negative constants S(x), G(x) not identically zero; when p ∈

[p∗,∞), the problem has a global positive solution for some S(x), G(x) > 0 and u0(x), v0(x) ≥ 0.

As we all know, when the manifold Mn is Euclidean space Rn, (1.1) provide a simple example

of a parabolic system (see[1]). They can be used as a model to describe heat propagation in a

two-component combustible mixture. System (1.1) and its elliptic counterpart arise in such diverse

fields as chemistry, biology and physics (see[2]). In 1966, Fujita (see[3]) proved the following results

for the problem 
ut −∆u = up in Rn × (0,∞),

u(x, 0) = u0(x) in Rn,
(1.2)

(a) When p ∈ (1, 1 + 2
n ), and u0 > 0, problem (1.2) possesses no global positive solution;

(b) When p ∈ (1 + 2
n ,∞) and u0 is smaller than a small Gaussian, then (1.2) has global positive

solutions.

Later Hayakawa (see[4]) showed the value p = 1+ 2
n belongs to the blow-up case when n = 1, 2,

and the case in higher dimensions was established in [5, 6]. We call p = 1 + 2
n the critical exponent

of the semi-linear heat equation (1.2). It plays an important role in the large-time behavior of the

solutions to the semi-linear heat equation (1.2).

In 1991, Escobedo and Herrero generalized Fujita result to the homogeneous coupled systems

(see[7]). In the past couple of years, there are a number of extensions of Fujita results in many

directions(see [8]-[14]). There are only a few results when we investigate existence and non-existence
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of positive solutions to the parabolic system (1.1). It looks more imperative to fill this gap when

we take into account the tremendous literature about the heat kernel of a complete Riemanian

manifold (see[11]-[14]).

In recent years, many authors have undertaken the research on semi-linear elliptic operators

on manifolds, including the well-known Yamabe problem (see[15, 16]). The study of Ricci flows

also leads to semi-linear parabolic problems (see[17]). Not much literature has been done for

their reaction-diffusion system on Riemannian manifold, so we need some new techniques to study

the global existence and nonexistence of solutions to the reaction-diffusion system (1.1). The

method we are using is based on some new inequalities involving the heat kernels. Qi S. Zhang has

undertaken the research on semi-linear parabolic operators on Riemannian manifold, and obtains a

lot of important results in the study of the global existence and blow-up of the following semi-linear

parabolic Cauchy problem (see[11]-[14]): Hu
4
= H0 + up = ∆u−Ru− ut + up = 0 in Mn × (0,∞),

u(x, 0) = u0(x) ≥ 0 in Mn,
(1.3)

where Mn (n ≥ 3) is a non-compact complete Riemannian manifold. ∆ is the Laplace-Beltrami

operator and R = R(x) is a bounded function. The method he uses is rather technical, and

the main tools are fixed point theorems and many estimates, As an expansion, we take similar

approaches to study the reaction-diffusion system and obtain several meaningful results.

Throughout the paper, for a fixed x0 ∈Mn, we make the following assumptions (see[11, 12]):

(i) There are positive constants k, q and C, such that

|B(x, 2r)| ≤ C2q|B(x, r)|, r > 0; Ricci ≥ −k;

(ii) G(x, y, t) is the fundamental solution of the linear operator 4− ∂
∂t , and satisfies

C

|B(x, t
1
2 )|
e−b

d(x,y)2

t ≥ G(x, y, t) ≥ 0, in Mn × (0,∞)

and when t− s ≥ d(x, y)2, G(x, y, t− s) satisfies

G(x, y, t− s) ≥ min

{
C

|B(x, (t− s) 1
2 )|
,

C

|B(y, (t− s) 1
2 )|

}
;

(iii) ∂ log g
1
2

∂r ≤ C
r , when r = d(x, x0) is smooth; here g

1
2 is the volume density of the manifold;

(iiii)There are positive constants α > 2 and m > −2, such that

C−1rα ≤ |Br(x0)| ≤ Crα, when r is large and for all x ∈Mn;
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W (x), F (x) are non-negative L∞loc functions. and for large r = d(x, x0), C−1rm ≤W (x), F (x) ≤

Crm.

Since the above assumptions are satisfied, the following lemmas hold:

Lemma 1.(see[11]) There exists positive constants C and R0, for R ≥ R0 and 1
p + 1

q = 1, such

that ∫
BR(x0)

W−
q
p (x)dx ≤ C lnR+ CR−

qm
p +α,∫

BR(x0)

F−
q
p (x)dx ≤ C lnR+ CR−

qm
p +α.

Lemma 2.(see[12]) There exists a C0 > 0, depending only on n, α and δ > 0, such that

sup
x

∫
Mn

1

d(x, y)α−2[1 + d(y, x0)2+δ]
dy ≤ C0.

Lemma 3. (see[12])There exists a C1 > 0, depending only on n, α and δ > 0, such that∫
Mn

1

d(x, y)α−2[1 + d(y, x0)α+δ]
dy ≤ C1

1 + d(x, x0)α−2
.

Lemma 4. (see[12])Let Γ(x, y) be the Green’ function for the Laplacian, then there exists a

C2 > 0, such that ∫
Mn

Γ(x, y)
1

1 + d(y, x0)α+δ
dy ≤ C2

1 + d(x, x0)α−2
.

Lemma 5.(see[12]) Given δ > 0, there exists a constant C3 > 0, such that

h(x, t)
4
=

∫
Mn

G(x, y, t)

1 + d(y, x0)α+δ
dy ≤ C3

1 + d(x, x0)α
.

Definition 1. (u(x, t), v(x, t)) ∈ L∞Loc(Mn × [0,∞),R2), (x, t) ∈ Mn × (0,∞) is called a solution

of (1.1), if

u(x, t) =

∫
Mn

G(x, y, t)u0(y)dy +

∫ t

0

∫
Mn

G(x, y, t− s) [W (y)vp(y, s) + S(y)] dyds, (1.4)

v(x, t) =

∫
Mn

G(x, y, t)v0(x)dy +

∫ t

0

∫
Mn

G(x, y, t− s)
[
F (y)ud(y, s) +G(y)

]
dyds. (1.5)

Definition 2. (see[18]) On a complete Riemannian manifold, one defines the Green’ function

Γ(x, y)
4
=
∫∞
0
G(x, y, s)ds, if the integral on the right hand side converges.

One checks readily that Γ(x, y) > 0,∆Γ = −δx(y),∫ t

0

G(x, y, t− s)ds =

∫ t

0

G(x, y, ω)dω ≤
∫ ∞
0

G(x, y, ω)dω = Γ(x, y). (1.6)

Our results are as follows:
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Theorem 1.1 . For some x0 ∈ Mn, when p, d ∈ (α+mα−2 ,∞), (1.1) has a global positive solution

whenever 0 < u0(x), v0(x), S(x), G(x) < ε
1+d(x,x0)α+δ for some δ > 0 and some sufficiently small

ε > 0.

Theorem 1.2 . When d = p ∈ (1, α+mα−2 ) and u0(x), v0(x), S(x), G(x) ≥ 0, then (1.1) possesses no

global positive solution unless S(x) ≡ 0, G(x) ≡ 0.

Theorem 1.3 . When d = p = α+m
α−2 and u0(x), v0(x), S(x), G(x) ≥ 0, then (1.1) possesses no

global positive solution unless S(x) ≡ 0, G(x) ≡ 0.

Remark 1.1 . By Theorem 1.1, Theorem 1.2 and Theorem 1.3, it is easy to see that α+m
α−2 is the

critical exponent of the nonlinear reaction-diffusion system (1.1), when p = d.

Theorems 1.1, 1.2 and 1.3 are proved in the sections 2, 3 and 4, respectively.

2 Global existence of solutions

Proof of Theorem 1.1. For (u(x, t), v(x, t)) ∈ L∞Loc(Mn×[0,∞),R2), define the integral operator

(Γ1,Γ2):

Γ1u(x, t) =

∫
Mn

G(x, y, t)u0(y)dy +

∫ t

0

∫
Mn

G(x, y, t− s) [W (y)vp(y, s) + S(y)] dyds, (2.1)

Γ2v(x, t) =

∫
Mn

G(x, y, t)v0(x)dy +

∫ t

0

∫
Mn

G(x, y, t− s)
[
F (y)ud(y, s) +G(y)

]
dyds. (2.2)

For N ∈ (0, 1), the set HN is defined by

HN =

{
(u(x, t), v(x, t)) ∈ C(Mn × (0,∞),R2) | 0 ≤ u(x, t), v(x, t) ≤ N

1 + d(x, x0)α−2

}
. (2.3)

Next, for the operator (Γ1,Γ2), we show that there exists a fixed point.

For ε > 0 and δ > 0 to be chosen later, we select u0(x), S(x) satisfying

0 < u0(x), S(x) <
ε

1 + d(x, x0)α+δ
. (2.4)

By Lemma 4, Lemma 5 and (1.6), we obtain

∫ t
0

∫
Mn G(x, y, t− s)S(y)dyds =

∫
Mn

∫ t

0

G(x, y, t− s)dsS(y)dy

≤
∫
Mn

Γ(x, y)
ε

1 + d(y, x0)α+δ
dy ≤ εC2

1 + d(x, x0)α−2

(2.5)
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and ∫
Mn

G(x, y, t)u0(y)dy ≤ ε
∫
Mn

G(x, y, t)

1 + d(y, x0)α+δ
dy ≤ εC3

1 + d(x, x0)α
≤ εC3C4

1 + d(x, x0)α−2
. (2.6)

By assumption(iiii) and (2.3), it is easy to obtain that∫ t

0

∫
Mn

G(x, y, t− s)W (y)vp(y, s)dyds ≤ CNp

∫ t

0

∫
Mn

G(x, y, t− s) d(y, x0)m

[1 + d(x, x0)α−2]p
dyds. (2.7)

Since p > α+m
α−2 , we can find C5 > 0, and δ > 0, such that

d(y, x0)m

[1 + d(x, x0)α−2]p
≤ C5

1 + d(x, x0)α+δ
. (2.8)

Substituting (2.8) in the right-hand side of (2.7) and by Lemma 4, we obtain∫ t
0

∫
Mn G(x, y, t− s)W (y)vp(y, s)dyds ≤ CNpC5

∫
Mn

Γ(x, y)
1

1 + d(y, x0)α+δ
dy

≤ CC2C5N
p

1 + d(x, x0)α−2
.

(2.9)

Merging (2.1), (2.5), (2.6) and (2.9), it follows that

Γ1u(x, t) ≤ εC3C4

1 + d(x, x0)α−2
+

εC2

1 + d(x, x0)α−2
+

CC2C5N
p

1 + d(x, x0)α−2
. (2.10)

Noticing that p > 1, we have

Γ1u(x, t) ≤ N

1 + d(x, x0)α−2
, (2.11)

when ε and N are sufficiently small. For Γ2v(x, t), we have similar discussions,

Γ2v(x, t) ≤ N

1 + d(x, x0)α−2
. (2.12)

This shows that (Γ1,Γ2)HN ⊂ HN .

To obtain the global existence of positive solutions to (1.1), it is checked that (Γ1,Γ2) is con-

tinuous. Let ui(x, t)(i = 1, 2) ∈ HN , then∫
Mn

G(y, ω, s)v0(ω)dω +

∫ t

0

∫
Mn

G(y, ω, s− z)
[
F (ω)udi (ω, z) +G(ω)

]
dωdz

≤ C3C4ε

1 + d(y, x0)α−2
+

CC2C5N
d

1 + d(y, x0)α−2
+

εC2

1 + d(y, x0)α−2

≤ N

1 + d(y, x0)α−2
.

(2.13)

when ε and N are sufficiently small.

Notice that

| up1(ω, z)− up2(ω, z) |≤ pmax{up−11 (ω, z), up−12 (ω, z)} | u1(ω, z)− u2(ω, z) | . (2.14)
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By (2.14), we have

|Γ1u1(x, t)− Γ1u2(x, t)| =

∣∣∣∣∫ t

0

∫
Mn

G(x, y, t− s) {W (y) [vp1(y, s)− vp2(y, s)]} dyds
∣∣∣∣

≤ p

∫ t

0

∫
Mn

G(x, y, t− s)W (y)

[
N

1 + d(y, x0)α−2

]p−1
×∣∣∣∣∫ s

0

∫
Mn

G(y, ω, s− z)F (ω)
(
ud1(ω, z)− ud2(ω, z)

)
dωdz

∣∣∣∣ dyds.
(2.15)

Denoting || · || = maxx∈Mn, t>0 | · |, we have∣∣∣∣∫ s

0

∫
Mn

G(y, ω, s− z)F (ω)
(
ud1(ω, z)− ud2(ω, z)

)
dωdz

∣∣∣∣
≤

∫ s

0

∫
Mn

G(y, ω, s− z)F (ω) | ud1(ω, z)− ud2(ω, z) | dωdz

≤ d || u1 − u2 ||
∫ s

0

∫
Mn

(G(y, ω, s− z)F (ω) max{ud−11 (ω, z), ud−12 (ω, z)}dωdz

≤ d || u1 − u2 ||
∫ s

0

∫
Mn

(G(y, ω, s− z)F (ω)(
N

1 + d(ω, x0)α−2
)d−1dωdz

≤ dCNd−1 || u1 − u2 ||
∫
Mn

∫ s

0

G(y, ω, s− z)dz d(ω, x0)m

[1 + d(ω, x0)](α−2)(d−1)
dω

≤ dCNd−1 || u1 − u2 ||
∫
Mn

Γ(y, ω)
d(ω, x0)m

[1 + d(ω, x0)](α−2)(d−1)
dω.

(2.16)

Since d > α+m
α−2 , we can select a constant δ > 0, such that (α− 2)(d− 1)−m ≥ 2 + δ. Hence there

is a constant C6 > 0, such that∣∣∣∣∫ s

0

∫
Mn

G(y, ω, s− z)F (ω)
(
ud1(ω, z)− ud2(ω, z)

)
dωdz

∣∣∣∣
≤ dCC6N

d−1 || u1 − u2 ||
∫
Mn

Γ(y, ω)
1

[1 + d(ω, x0)]2+δ
dω.

(2.17)

By [18], there is a nonnegative constant λ > 0 such that Γ(x, y) ∼ 1
d(x,y)α−2 , when d(x, y) ≥ λ, we

have ∣∣∣∣∫ s

0

∫
Mn

G(y, ω, s− z)F (ω)
(
ud1(ω, z)− ud2(ω, z)

)
dωdz

∣∣∣∣
≤ dCC6N

d−1 || u1 − u2 ||
∫
Mn

1

d(y, ω)α−2
1

[1 + d(ω, x0)]2+δ
dω

≤ dCC0C6N
d−1 || u1 − u2 || .

(2.18)
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Combining (2.15) and (2.18), and by Lemma 2, we obtain

|Γ1u1(x, t)− Γ1u2(x, t)|

≤ pdCC0C6N
d−1Np−1 || u1 − u2 ||

∫ t

0

∫
Mn

G(x, y, t− s)W (y)

[
1

1 + d(y, x0)α−2

]p−1
dyds

≤ pdC2C0C6N
d−1Np−1 || u1 − u2 ||

∫
Mn

Γ(x, y)
d(y, x0)m

[1 + d(y, x0)α−2]
p−1 dy

≤ pdC2C0C6C7N
d−1Np−1 || u1 − u2 ||

∫
Mn

Γ(x, y)
1

1 + d(y, x0)2+δ
dy

≤ pdC2C0C6C7N
d−1Np−1 || u1 − u2 || sup

x

∫
Mn

1

[d(x, y)α−2][1 + d(y, x0)2+δ]

≤ pdC2C2
0C6C7N

d+p−2 || u1 − u2 || .

(2.19)

If N is small enough so that pdC2C2
0C6C7N

d+p−2 < 1, so Γ1 is contractive in HN . For Γ2, we have

similar discussions. Hence, (1.1) has a global positive solution.

The proof of Theorem 1.1 is completed. �

3 Global non-existence of solutions

Proof of Theorem 2.2. From now on, C is always a constant that may change from line to line.

Throughout the section, we let ϕ, η ∈ C∞[0,∞) be two functions satisfying



ϕ(r) ∈ [0, 1], if r ∈ [0,∞),

ϕ(r) = 1, if r ∈ [0,
1

2
],

ϕ(r) = 0, if r ∈ [1,∞];

η(t) ∈ [0, 1], if t ∈ [0,∞),

η(t) = 1, if t ∈ [0,
1

4
],

η(t) = 0, if t ∈ [1,∞];

−C ≤ ϕ(r)′ ≤ 0; |ϕ(r)′′| ≤ C; −C ≤ η(t)′ ≤ 0.

(3.1)

For R > 0, we define QR = BR(x0)× [0, R2]. We also need a cut-off function

ψR = ϕR[d(x, x0)]ηR(t), (3.2)
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where ϕR(r) = ϕ( rR ) and ηR(t) = η( t
R2 ). Clearly,

∂ϕR
∂r
∈ [−C

R
, 0];

∂2ϕR
∂r2

∈ [− C

R2
,
C

R2
];

∂ηR
∂t
∈ [− C

R2
, 0]. (3.3)

We use the method of contradiction. Suppose that (u(x, t), v(x, t)) is a global positive solution of

(1.1). since p = d, For R > 0, we set

IR
4
=

∫
QR

W (x)vp(x, t)ψqR(x, t)dxdt (3.4)

and

JR
4
=

∫
QR

F (x)up(x, t)ψqR(x, t)dxdt, (3.5)

where 1
p + 1

q = 1.

Since (u(x, t), v(x, t)) is a solution of (1.1), we have

IR =

∫
QR

[ut(x, t)−∆u(x, t)− S(x)]ψqR(x, t)dxdt (3.6)

and

JR =

∫
QR

[vt(x, t)−∆v(x, t)−G(x)]ψqR(x, t)dxdt. (3.7)

Since non-negative constants S(x), G(x) are not identically zero, notice that when (x, t) ∈ QR
2
, ψ(x, t) =

1. there exists a C0 > 0, such that∫
QR

S(x)ψqR(x, t)dxdt,

∫
QR

G(x)ψqR(x, t)dxdt ≥ C0R
2 (3.8)

Note that ψR(x, t) ≥ 0, (3.6) and (3.7) yield

IR + C0R
2 ≤

∫
QR

ut(x, t)ψ
q
R(x, t)dxdt−

∫
QR

∆u(x, t)ψqR(x, t)dxdt (3.9)

and

JR + C0R
2 ≤

∫
QR

vt(x, t)ψ
q
R(x, t)dxdt−

∫
QR

∆v(x, t)ψqR(x, t)dxdt. (3.10)

By the Stokes formula and note that ψR = 0 on ∂BR(x0), we have

IR + C0R
2 ≤

∫
QR

ut(x, t)ψ
q
R(x, t)dxdt−

∫ R2

0

∫
∂BR(x0)

∂u(x, t)

∂n
ψqR(x, t)dSxdt+

∫
QR

∇u(x, t) · ∇ψqR(x, t)dxdt

≤
∫
QR

ut(x, t)ψ
q
R(x, t)dxdt+

∫
QR

∇u(x, t) · ∇ψqR(x, t)dxdt

(3.11)

and

JR + C0R
2 ≤

∫
QR

vt(x, t)ψ
q
R(x, t)dxdt−

∫ R2

0

∫
∂BR(x0)

∂v(x, t)

∂n
ψqR(x, t)dSxdt+

∫
QR

∇v(x, t) · ∇ψqR(x, t)dxdt

≤
∫
QR

vt(x, t)ψ
q
R(x, t)dxdt+

∫
QR

∇v(x, t) · ∇ψqR(x, t)dxdt,

(3.12)
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which imply, via integration by parts,

IR + C0R
2 ≤

∫
BR(x0)

u(x,R2)ψqR(x,R2)dx−
∫
BR(x0)

u(x, 0)ψqR(x, 0)dx−

q

∫
QR

u(x, t)ϕqR(x)ηq−1R (t)η′R(t)dxdt+

∫ R2

0

∫
∂BR(x0)

u(x, t)
∂ϕqR
∂n

ηqR(t)dSxdt−∫
QR

u(x, t)∆ϕqR(x)ηqR(t)dxdt

(3.13)

and

JR + C0R
2 ≤

∫
BR(x0)

v(x,R2)ψqR(x,R2)dx−
∫
BR(x0)

v(x, 0)ψqR(x, 0)dx−

q

∫
QR

v(x, t)ϕqR(x)ηq−1R (t)η′R(t)dxdt+

∫ R2

0

∫
∂BR(x0)

v(x, t)
∂ϕqR
∂n

ηqR(t)dSxdt−∫
QR

v(x, t)∆ϕqR(x)ηqR(t)dxdt.

(3.14)

We observe that ψqR(x,R2) = 0; u(x, 0), v(x, 0) ≥ 0 and
∂ϕqR
∂n = qϕq−1R ϕ′R( ∂r∂n ) ≤ 0 on ∂BR(x0), so

we obtain

IR + C0R
2 ≤ −q

∫
QR

u(x, t)ϕqR(x)ηq−1R (t)η′R(t)dxdt−
∫
QR

u(x, t)∆ϕqR(x)ηqR(t)dxdt (3.15)

and

JR + C0R
2 ≤ −q

∫
QR

v(x, t)ϕqR(x)ηq−1R (t)η′R(t)dxdt−
∫
QR

v(x, t)∆ϕqR(x)ηqR(t)dxdt. (3.16)

Since ∆ϕqR(x) = qϕq−1R (x)∆ϕR(x) + q(q − 1)ϕq−2R (x)|∇ϕR(x)|2, (3.15) and (3.16) yield

IR + C0R
2 ≤ −q

∫
QR

u(x, t)ϕqR(x)ηq−1R (t)η′R(t)dxdt− q
∫
QR

u(x, t)ϕq−1R (x)∆ϕR(x)ηqR(t)dxdt

(3.17)

and

JR + C0R
2 ≤ −q

∫
QR

v(x, t)ϕqR(x)ηq−1R (t)η′R(t)dxdt− q
∫
QR

v(x, t)ϕq−1R (x)∆ϕR(x)ηqR(t)dxdt.

(3.18)

Recalling the supports of ϕR(x) and ηR(t), that is,
ηR(t) = 1, η′R(t) = 0, if t ∈ [0,

R2

4
],

ϕR(x) = 1,∆ϕR(x) = 0, if r ∈ [0,
R

2
],

(3.19)
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we can reduce (3.17) and (3.18) to

IR + C0R
2 ≤ −q

∫ R2

R2

4

∫
BR(x0)

u(x, t)ϕqR(x)ηq−1R (t)η′R(t)dxdt−

q

∫ R2

0

∫
BR(x0)\BR

2
(x0)

u(x, t)ϕq−1R (x)∆ϕR(x)ηqR(t)dxdt

(3.20)

and

JR + C0R
2 ≤ −q

∫ R2

R2

4

∫
BR(x0)

v(x, t)ϕqR(x)ηq−1R (t)η′R(t)dxdt−

q

∫ R2

0

∫
BR(x0)\BR

2
(x0)

v(x, t)ϕq−1R (x)∆ϕR(x)ηqR(t)dxdt.

(3.21)

Since ϕR is radial, we have

∆ϕR = ϕ′′R +

[
n− 1

r
+
∂ log g

1
2

∂r

]
ϕ′R. (3.22)

Taking R sufficiently large, by assumption (iii), that is, ∂ log g
1
2

∂r ≤ C
r , we obtain

∆ϕR ≥ −
C

R2
, (3.23)

when x ∈ BR(x0)\BR
2

(x0). Merging (3.20), (3.21), (3.23) and (3.3), we know

IR + C0R
2 ≤ Cq

R2

∫ R2

R2

4

∫
BR(x0)

u(x, t)ϕqR(x)ηq−1R (t)dxdt+

Cq

R2

∫ R2

0

∫
BR(x0)\BR

2
(x0)

u(x, t)ϕq−1R (x)ηqR(t)dxdt

(3.24)

and

JR + C0R
2 ≤ Cq

R2

∫ R2

R2

4

∫
BR(x0)

v(x, t)ϕqR(x)ηq−1R (t)dxdt+

Cq

R2

∫ R2

0

∫
BR(x0)\BR

2
(x0)

v(x, t)ϕq−1R (x)ηqR(t)dxdt.

(3.25)

Therefore, as ϕR, ηR ≤ 1,

IR + C0R
2 ≤ Cq

R2

∫ R2

R2

4

∫
BR(x0)

u(x, t)ψq−1R (x, t)dxdt+

Cq

R2

∫ R2

0

∫
BR(x0)\BR

2
(x0)

u(x, t)ψq−1R (x, t)dxdt

=
Cq

R2

∫ R2

R2

4

∫
BR(x0)

F
1
p (x)u(x, t)ψq−1R (x, t)F−

1
p (x)dxdt+

Cq

R2

∫ R2

0

∫
BR(x0)\BR

2
(x0)

F
1
p (x)u(x, t)ψq−1R (x, t)F−

1
p (x)dxdt

(3.26)
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and

JR + C0R
2 ≤ Cq

R2

∫ R2

R2

4

∫
BR(x0)

v(x, t)ψq−1R (x, t)dxdt+

Cq

R2

∫ R2

0

∫
BR(x0)\BR

2
(x0)

v(x, t)ψq−1R (x, t)dxdt

=
Cq

R2

∫ R2

R2

4

∫
BR(x0)

W
1
p (x)v(x, t)ψq−1R (x, t)W−

1
p (x)dxdt+

Cq

R2

∫ R2

0

∫
BR(x0)\BR

2
(x0)

W
1
p (x)v(x, t)ψq−1R (x, t)W−

1
p (x)dxdt.

(3.27)

By the Hö lder inequality and notice 1
p + 1

q = 1, we have

IR + C0R
2 ≤ Cq

R2

[∫ R2

R2

4

∫
BR(x0)

F (x)up(x, t)ψqR(x, t)dxdt

] 1
p

×

[∫ R2

R2

4

∫
BR(x0)

F−
q
p (x)dxdt

] 1
q

+

Cq

R2

∫ R2

0

∫
BR(x0)\BR

2
(x0)

F (x)up(x, t)ψqR(x, t)dxdt

 1
p

×

∫ R2

0

∫
BR(x0)\BR

2
(x0)

F−
q
p (x)dxdt

 1
q

≤ Cq

R2
[JR]

1
p ×

[∫ R2

R2

4

∫
BR(x0)

F−
q
p (x)dxdt

] 1
q

+

Cq

R2
[JR]

1
p ×

∫ R2

0

∫
BR(x0)\BR

2
(x0)

F−
q
p (x)dxdt

 1
q

(3.28)

and

JR + C0R
2 ≤ Cq

R2

[∫ R2

R2

4

∫
BR(x0)

W (x)vp(x, t)ψqR(x, t)dxdt

] 1
p

×

[∫ R2

R2

4

∫
BR(x0)

W−
q
p (x)dxdt

] 1
q

+

Cq

R2

∫ R2

0

∫
BR(x0)\BR

2
(x0)

W (x)vp(x, t)ψqR(x, t)dxdt

 1
p

×

∫ R2

0

∫
BR(x0)\BR

2
(x0)

W−
q
p (x)dxdt

 1
q

≤ Cq

R2
[IR]

1
p ×

[∫ R2

R2

4

∫
BR(x0)

W−
q
p (x)dxdt

] 1
q

+

Cq

R2
[IR]

1
p ×

∫ R2

0

∫
BR(x0)\BR

2
(x0)

W−
q
p (x)dxdt

 1
q

.

(3.29)
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From Lemma 1, we obtain

[∫ R2

R2

4

∫
BR(x0)

F−
q
p (x)dxdt

] 1
q

≤

{∫ R2

R2

4

[
C lnR+ CR−

qm
p +α

]
dt

} 1
q

≤ CR
2
q lnR+ CR−

m
p + 2+α

q

(3.30)

and [∫ R2

R2

4

∫
BR(x0)

W−
q
p (x)dxdt

] 1
q

≤

{∫ R2

R2

4

[
C lnR+ CR−

qm
p +α

]
dt

} 1
q

≤ CR
2
q lnR+ CR−

m
p + 2+α

q .

(3.31)

Hence,

IR + C0R
2 ≤ Cq

R2
[JR]

1
p ×

[
CR

2
q lnR+ CR−

m
p + 2+α

q

]
+
Cq

R2
[JR]

1
p ×

[
CR−

m
p + 2+α

q

]
≤ Cq

R2
[JR]

1
p ×

[
CR

2
q lnR+ CR−

m
p + 2+α

q

]
≤ Cq [JR]

1
p ×

[
CR

2
q−2 lnR+ CRk

] (3.32)

and

JR + C0R
2 ≤ Cq

R2
[IR]

1
p ×

[
CR

2
q lnR+ CR−

m
p + 2+α

q

]
+
Cq

R2
[IR]

1
p ×

[
CR−

m
p + 2+α

q

]
≤ Cq

R2
[IR]

1
p ×

[
CR

2
q lnR+ CR−

m
p + 2+α

q

]
≤ Cq [IR]

1
p ×

[
CR

2
q−2 lnR+ CRk

]
,

(3.33)

where k
4
= −mp + 2+α

q − 2.

If JR ≤ 1, then Cq [JR]
1
p R

2
q−2 lnR ≤ C0R

2

2 for large R;

If JR > 1, then [JR]
1
p ≤ JR, and hence, Cq [JR]

1
p R

2
q−2 lnR ≤ CqJRR

2
q−2 lnR ≤ 1

2IR for large R .

In either case, we can find suitable positive constants C1 and C2, such that

IR + C1R
2 ≤ C2 [JR]

1
p Rk. (3.34)

Similarly, we we can find suitable positive constants C3 and C4, such that

JR + C3R
2 ≤ C4 [IR]

1
p Rk. (3.35)

Substitute (3.35) into the right-hand of (3.34), we obtain

IR + C1R
2 ≤ C2

[
C4 [IR]

1
p Rk − C3R

2
] 1
p

Rk

≤ C2C4 [IR]
1
p2 Rk(1+

1
p ).

(3.36)
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Hence,

C1R
2 ≤ C2C4 [IR]

1
p2 Rk(1+

1
p ) (3.37)

and

IR ≤ C2C4 [IR]
1
p2 Rk(1+

1
p ). (3.38)

We can reduce (3.37) to

IR ≥
{

C1

C2C4

}p2
R(2−h)p2 , (3.39)

where h
4
= k(1 + 1

p ).

By substituting (3.39) in the left-hand side of (3.38) and simplifying, we obtain

IR ≥
C

(p2)2

1

(C2C4)(p2)2+p2
R[2(p2)2−h((p2)2+p2)]. (3.40)

For any integer j > 1, iterations give

IR ≥
C

(p2)j

1

(C2C4)p2+(p2)2+···+(p2)j
R{2(p

2)j−h[p2+(p2)2+···+(p2)j ]}. (3.41)

Next we observe that

2(p2)j − h[p2 + (p2)2 + · · ·+ (p2)j ] = 2(p2)j − h
{

(p2)j+1 − 1

p2 − 1

}
+ h

= (p2)j
{

2− hp2

p2 − 1

}
+

h

p2 − 1
+ h.

(3.42)

Therefore, (3.41) and (3.42) show that there is a positive constant C5, such that

IR ≥ C(p2)j

5 R

[
(p2)j

{
2− hp2

p2−1

}]
R

[
h

p2−1
+h

]
. (3.43)

Since p ∈ (1, α+mα−2 ), by direct calculation, we know that

2− hp2

p2−1 = 2− k(1 +
1

p
)

p2

p2 − 1

= 2− k p

p− 1

= 2−
[
−m
p

+
2 + α

q
− 2

]
p

p− 1

=
(m+ α)− (α− 2)p

p− 1
> 0.

(3.44)

Therefore, if R is so large that C6
4
= C5R

{
2− hp2

p2−1

}
> 1, then (3.43) implies

IR ≥ C(p2)j

6 R

[
h

p2−1
+h

]
. (3.45)
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Let j −→∞, we have

IR =

∫
QR

W (x)vp(x, t)ψqR(x, t)dxdt =∞, (3.46)

which means that v(x, t) has to blow-up when t ≤ R2. This is a contradiction.

Thus, the proof of Theorem 1.2 is completed. �

4 Critical exponent of Fujita type

Proof of Theorem 1.3. Now d = p = α+m
α−2 . In this section, C is always a constant that may

change from line to line. Obviously all the arguments remain valid if we shift the parabolic cube

QR = BR(x0) × [0, R2] to QR = BR(x0) × [R2, 2R2] and shift ηR(t) = η( t
R2 ) to ηR(t) = η( t−R

2

R2 ).

To save symbols, the latter is still called QR, ηR(t). In this part,

IR
4
=

∫ 2R2

R2

∫
BR(x0)

W (x)vp(x, t)ψqR(x, t)dxdt (4.1)

and

JR
4
=

∫ 2R2

R2

∫
BR(x0)

F (x)up(x, t)ψqR(x, t)dxdt, (4.2)

where 1
p + 1

q = 1.

Just like (3.38), for large R, we now have

IR ≤ C2C4 [IR]
1
p2 Rk(1+

1
p ), (4.3)

where k
4
= −mp + 2+α

q − 2.

It follows that

I
1− 1

p2

R ≤ C2C4R
k(1+ 1

p ). (4.4)

Since k
(

1− 1
p2

)−1 (
1 + 1

p

)
= 2, there exists a C > 0, such that

∫ 5R2

4

R2

∫
BR

2
(x0)

W (x)vp(x, t)dxdt ≤ IR ≤ CR2 (4.5)

for all large R > 0.

From (4.5) the mean-value theorem shows

inf
R2≤t≤ 5R2

4

∫
BR

2
(x0)

W (x)vp(x, t)dxdt ≤ C. (4.6)

Hence, there exists a sequence Rj and tj ∈ [R2
j , 2R

2
j ], such that lim

j→∞
Rj =∞, and∫

BRj (x0)

W (x)vp(x, tj)dxdt ≤ C. (4.7)
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Because G(x) is not identically zero, we can find a compactly supported G(x)0 being positive

somewhere and 0 ≤ G(x)0 ≤ G(x). Since v(x, t) is a global solution of (1.1), we have

v(x, t) ≥
∫ t

0

∫
Mn

G(x, y, t− s)G(y)dyds ≥
∫ t

0

∫
Mn

G(x, y, t− s)G0(y)dyds
4
= L(x, t). (4.8)

From (4.7), we have ∫
BRj (x0)

W (x)Lp(x, tj)dx ≤ C. (4.9)

By a change of the time variable, (4.8) yields

L(x, t) =

∫ t

0

∫
Mn

G(x, y, t−s)G0(y)dyds =

∫
Mn

∫ t

0

G(x, y, t−s)dsG0(y)dy =

∫
Mn

∫ t

0

G(x, y, s)dsG0(y)dy.

(4.10)

Hence, we have the monotone convergence

lim
t→∞

L(x, t) =

∫
Mn

Γ(x, y)G0(y)dy
4
= L∞(x). (4.11)

Combining (4.9) and (4.11), we have∫
BR(x0)

W (x)Lp∞(x)dx ≤ lim
t→∞

sup

∫
BRj (x0)

W (x)Lp(x, tj)dx ≤ C (4.12)

for any large R > 0.

By [18], Γ(x, y) ∼ 1
d(x,y)α−2 for large d(x, y); it is easy to see that L∞(x) ≥ C

d(x,x0)α−2 when

r = d(x, x0) is large. Using the assumption (iiii): C−1rm ≤W (x) ≤ Crm, we can find an R0 > 0,

such that ∫
BR(x0)\BR0

(x0)

d(x, x0)m

d(x, x0)(α−2)p
≤ C

∫
BR(x0)

W (x)Lp∞(x)dx ≤ C. (4.13)

Recalling that p = α+m
α−2 , we obtain∫

BR(x0)\BR0
(x0)

1

d(x, x0)α
dx ≤ C. (4.14)

By the assumption (iiii): |BR(x0)| ≥ CRα, (4.14) leads to a contradiction since the left-hand side

of (4.14) goes to ∞ when R −→∞.

Thus, the proof of Theorem 1.3 is completed. �
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