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ANOMALY CANCELLATION AND MODULARITY

FEI HAN, KEFENG LIU, AND WEIPING ZHANG

ABSTRACT. It has been shown that the Alvarez-Gaumé-Witten miraculous anomaly cancellation
formula in type IIB superstring theory and its various generalizations can be derived from modu-
larity of certain characteristic forms. In this paper, we show that the Green-Schwarz formula and
the Schwarz-Witten formula in type I superstring theory can also be derived from the modularity of
those characteristic forms and thus unify the Alvarez-Gaumé-Witten formula, the Green-Schwarz
formula as well as the Schwarz-Witten formula in the same framework. Various generalizations of
these remarkable formulas are also established.

INTRODUCTION

Let Z — X — B be a fiber bundle with fiber Z being 10 dimensional. Let T'Z be the vertical
tangent bundle equipped with a metric g7% and an associated Levi-Civita connection V7% (cf.
[3, Proposition 10.2]). Let RT% = (V14)2 be the curvature of V'4. Let TcZ be the complexi-
fication of TZ with the induced Hermitian connection V7¢Z. Let fAl(TZ, vT2), L(TZ,V1%) and
ch(TcZ,VTe?) be the Hirzebruch A-form, the Hirzebruch L-form and the Chern character form
respectively (cf. [3] and [I§]).

The Alvarez-Gaumé-Witten “miraculous anomaly cancellation formula” [1] in type IIB super-
string theory asserts that

(0.1) {L(TZ, V")) _8{A(TZ, V%) ch(Tc 2,V e?)} 12 L 16{A(TZ,vT%)}(12) =,

which assures that the corresponding theory is anomaly-free.

On the other hand, Green and Schwarz ([5], see also [16]) discovered that the anomaly in type
I superstring theory with gauge group SO(32) cancels. They found that when the gauge group is
S0O(32), the anomaly factorizes so that there is a Chern-Simons counterterm making the anomaly
cancelled. More precisely, let F' be a 32 dimensional Euclidean vector bundle over X with Euclidean
connection V¥ and F¢ the complexfication of F' with the induced Hermitian connection V¥, then
the Green-Schwarz formula reads as followsﬂ

{A(TZ)ch(A2F)Y 2 + {A(TZ)ch(TeZ) Y1) — 2{A(TZ)}(12)

0.2 -
0 =<p1<TZ>—p1<F>)-§< 3p1<TZ>28+4p2<TZ)

~ 2 (F + 4palF) + g (T2 ()
where p;(TZ), p;(F),1 < i < 2, are the Pontryagin forms of (I'Z, V%), (F, V) respectively.

The above formulas of Alvarez-Gaumé-Witten and Green-Schwarz have played crucial roles in
the early development of superstring theory.

More recently, Schwarz and Witten [17] analyzed the anomaly in type I theory with additional
spacetime-filling D-branes and anti-D-branes pairs and found a similar factorization. More precisely,
let F; be an m dimensional Euclidean vector bundle over X equipped with a Euclidean connection
VI and F, be an n dimensional Euclidean vector bundle over X equipped with a Euclidean

1n what follows, we will write characteristic forms without specifying the connections when there is no confusion.
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connection V2, when m = n + 32, one has

(0.3)
{A(TZ)ch(NFic) Y + {A(T Z)ch(S? Fac) Y2 — {A(T Z)ch(Fic @ Fac)}
+{A(TZ)ch(Tc2)}1? — 2{A(T2)}*?

=(P1(TZ) — p1(F1) + p1(F2))

1 (=3pU(TZ)* + 4p2(TZ)
24 8

—2p1(F1)? + 4dpa(Fy) + 2p1 (Fo)? — 4pa(Fy) + %pl(TZ)(pl(Fl) - pl(Fz))> :

Therefore, similarly, there is a Chern-Simons counterterm to make the anomaly cancelled.

In [12],[6], it is shown that the Alvarez-Gaumé-Witten “miraculous anomaly cancellation formula”
can be derived from the modularity of certain characteristic forms. In fact, let V' be a FKuclidean
vector bundle equipped with a Euclidean connection over X, one can construct two characteristic
forms Py (TZ,V,7) and Po(TZ,V,T) such that when p1(TZ) = p1(V), PL(TZ,V,7) and Po,(TZ,V,T)
are level 2 modular forms over I'g(2) and I'’(2) respectively. Moreover they are modularly related
and form what we call a modular pair (see page 9 for more details). The Alvarez-Gaumé-Witten
formula can then be deduced from this modular pair (P, (TZ,V, 1), P2(T'Z,V,7)) if onesets V =TZ.
This construction is further generalized in [§] to the case where a complex line bundle is involved,
in dealing with the Ochanine congruence [15] on spin® manifolds.

In a recent article [7], in using the Eisenstein series Es(7), we constructed a pair of mod-
ularly related characteristic forms (P (T'Z,V.&,7),P2(TZ,V,§, 7)) without assuming pi(TZ) =
p1(V). When pi(TZ) = pi1(V) and & is trivial, (Pi(TZ,V,&,7),P2(TZ,V,&, 7)) degenerates to
(P(TZ,V,T),P,(TZ,V,T)).

In the current paper, we will show that the formulas due to Green-Schwarz (0.3) and Schwarz-
Witten (0.4) can also be deduced from the modularity of the pair (P (T'Z,V,&, 1), Po(TZ,V, &, 7)).
Actually, we need only to make use of the modularity of Po(TZ,V,&, ) by replacing V' by a super
vector bundle F; — F5. Our method also generates many generalizations of the Green-Schwarz and
Schwarz-Witten formulas. See Theorem 1.1 and its corollaries for more details.

It is quite amazing that all of the three anomaly cancellation formulas due to Alvarez-Gaumé-
Witten, Green-Schwarz, as well as Schwarz-Witten, can be unified through a single modular pair
(PL(TZ,V,&,7),Po(TZ,V,&,7)). Tt illustrates one of the deep implications of modularity in physics.

In the rest of this paper, we will first present the Green-Schwarz type factorization formulas in
Section 1 and then show how to derive them from modularity in Section 2.

1. GREEN-SCHWARZ TYPE FACTORIZATION FORMULAS

The purpose of this section is to present various generalizations of the Green-Schwarz formula
and the Schwarz-Witten formula.

Let Z — X — B be a fiber bundle with fiber Z being 10 dimensional. Let T'Z be the vertical
tangent bundle equipped with a metric g’# and an associated Levi-Civita connection V77 (cf. [3]
Proposition 10.2]). Let RT? = (V1%)? be the curvature of V7Z. Let TcZ be the complexification
of TZ with the induced Hermitian connection V7¢Z,

Let F} be an m dimensional Euclidean vector bundle over X equipped with a Euclidean connec-
tion V1 and Fy be an n dimensional Euclidean vector bundle over X equipped with a Euclidean
connection V2,

Let £ be a rank two real oriented Euclidean vector bundle over X carrying a Euclidean connection
VE. Let ¢ = e(£, V¢) be the Euler form canonically associated to V<.

If E is a real (resp. complex) vector bundle over X, set E = E—dim E € KO(X) (resp. K(X)).

If w is a differential form, denote the degree j-component of w by w@).
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Theorem 1.1. The following identity holds,

{A(TZ)ezch(A?*Fio)}?) + {A(TZ)ezch (52 Foc) Y — {A(TZ)ezch(Fic @ Foc)}?
(m—n—32)(m —n—31)
2

— (m—n—32){A(TZ)ezch(F,c — Foc)}?

AT Z)e5eh(To2)} 12 + ( - 2> {A(TZ)e2}1?

Ly 5{A(TZ)e3ch(éc @ €)Y + 3{A(TZ)ezch((m — n — 31 — Fig + o) ® £¢) 12
=p1(TZ) — p1(F1) + p1(F2))
L 01(TZ)—p1(F)+p1(F2)) _ ®
e24 1~ c 1 ~ c
L= A(TZ)e2ch() + ez PLT2)=p1(F)+n1(F2)) A(T 7)e2 ,
{ p1(TZ) — p1(F1) + p1(F) T2) &) (T2)
where

—n—32 —n—31
(12) QlZ/\2F10+52FQC—F10®FQC+T(3Z+(m n )2(m n )

—(m—n—32)(Fic — Fac) +5éc @ éc + 3(m —n — 31 — Fic + Foc) ® £¢;
if £ is trivial, the following identity holds,

{A(TZ)ch(\2Fio)} ) 4+ {A(TZ)ch(5? Fog)} 1P — {A(TZ)ch(Fig © Fac)}1?

-2

+{A(TZ)ch(TcZ)} 1) + <(m —n- 32)2(7” —n—-31) _ 2) (AT 2)}02
(1.3) — (m —n—32){A(TZ)ch(F\c — Fac)}?

=(p1(TZ) — p1(Fy) + p1(F2))
{ eﬁ(l’l(TZ)—Pl(Fﬁ)-l-pl(Fg)) -1

(8)
~ 1 ~
_ AT Z)h(B) + ez P1(T2)=p1(F1)+p1(F2) A(T 7 7
p1(TZ) — p1(F1) + p1(F2) (TZ)ch(®) T2)

where

-2

(1.4) B =N’ Fic+ S°Fc — Fic® Foo +TcZ + (m—n— 32)2(m —n—31)
—(m—n—32)(Fic — Fao)-
Putting m = n + 32 in Theorem 1, we get
Corollary 1. If dim F; — dim Fy, = 32, the following identity holds,
{A(TZ)ezch(AN?Fy o)} 12 + {A(TZ)ezch(S?Foc) Y12 — {A(TZ)ezch(Fic ® Foc)}1?)
+ {A(TZ)ezch(TcZ)}Y 1P — 2{ A(TZ)ez} (02

4 5{A(TZ)e ch(Ee @ €)1 4 3{A(TZ)eSch((1 — Fig + Fac) ® £6)} 12

(1.5)
=p1(TZ) — p1(F1) + p1(F2))
Lp1(T2)—pr(F)+p1(F2) _ | | ®)
€24 -~ c 1 ~ c
_ A(TZ)ez2ch(€) + e2a®1(TZ)=p1(F1)+p1(E2)) A(T 7)e3 7
{ p1(TZ) — p1(F1) + p1(F2) z2) © T2)
where
(1L6) C=NFic+S’Fc—Fic® Fe+TcZ—2

+5Ec @ Ec +3(1— Fig + Fog) ® Ec;
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if € 1is trivial, we obtain the Schwarz- Witten formula (0.4),
[AT2)h(\2F )12 + {A(TZ)eh($2Fc)} 1 — (AT Z)ch(Fi ® Fac)}0?
+ {A(TZ)ch(TcZ)} P — 2{A(TZ)}(1?

(1.7)  =01(TZ) — p1(F1) + p1(F2))

21 (p1(TZ)—p1 (F1)+p1(F2)) _ (8)
e24 1 —~ 1 .

_ ATZ)ch(D) + ez P1(TZ)=p1(F1)+p1(F2)) A(T 7 7
{ p1(TZ) — p1(F1) + p1(F2) (TZ)ch(D) (12)

where
(1.8) D=NFic+S*Fhc—Fic®Fc+TcZ—2.
Remark 1.1. It can be checked by direct computation that when m = n + 32, one indeed has

(1.9)
1 <—3p1(TZ)2 +4p2(T2)

24 8
{ eﬁ(m(TZ)—p1(F1)+p1(F2)) -1

—2p1(F1)? + 4pa(FY1) + 2p1 (F2)? — 4pa(Fy) + %pl(TZ)(pl(Fl) - pl(F2)>

- p(TZ) = pi(Fr) + pi(F)

If we set n = 0 in Theorem 1, we get

(®)
A(TZ)ch(D) + eﬁ(m(TZ)—pl(F1)+p1(F2))j(TZ)} )

Corollary 2. If dim F' = m, then the following identity holds,
(1.10)
{A(T2)e2ch(AFo) ') + {A(TZ)e2 ch(Tc2)} 1) + <<m —32)(m —31)

2

- 2) {A(TZ)e2}(1?)

~ (m — 32){A(TZ)ei ch(Fc)}'?
+5{A(TZ)ezch(éc © £c)}1?) + 3{A(TZ)ez ch((m — 31 — Fo) ® &c)} 12
= (TZ) — p1(F))

25 (p1(TZ)—p1(F)) _ (8)
€24 1~ c 1 ~ c
- A(TZ)e2ch(€) + 21T Z2)=P1(F) A(T 7)ez )
{ P T2 i) AN (r2)

where

(1.11) ¢ =N Fic+TcZ + (m—32)2(m_31)
— (m — 32)(F¢) 4 5éc ® ¢ + 3(m — 31 — Fo) ® £¢;

if € is trivial, the following identity holds,

-2

(AT Z)ch(A2Fe)}1?) 1 {A(TZ)eh(Te2)0? + <(m - 32)2(m -31) 2> (A2
(112)  — (m=3{A(TZ)ch(Fe)}

5 @1(TZ)—p1(F)) _ 1 N (®)
=(p1(TZ) — pi(F)) {‘624 “A(TZ)eh(3) + eﬁ(“(TZ)—m(F’)A(TZ)} :

pi(TZ) — pi(F)
where
(m — 32)(m — 31)
2
4

(1.13) F=A2Fc+TcZ+

—2— (m-—32)Fc.



Putting m = 32 in the above corollary, we get
Corollary 3. If dim F' = 32, the following identity holds,
{A(TZ)e2ch(A*Fe)}1? + {A(TZ)eich(TcZ) Y — 2{A(T Z)ez }(1?)
+5{A(TZ)esch(¢c @ €)1 + B{A(TZ)eEeh((1 - Fo) @ &)}
(1.14) =(p1(TZ) — ;1 (F))

21 (P1(TZ2)=p1(F)) _ (8)
e2i 1~ . ) R )

A A(TZ)e2ch(®) + e2i P T2)=pi(F) A(T7)e2 ,
{ p(TZ) = pi(F) (TZ)ezch(®) (T2)

where

(1.15) 6 = A’ Fo +ToZ — 2+ 560 ® éc + 3(1 — Fo) ® &c;
if € 1is trivial, we obtain the Green-Schwarz formula (0.3),

(1.16)

{A(TZ)ch(N*Fe)Y P 4+ {A(TZ)ch(Tc 2}y — 2{A(TZ)}1?)

5 (p1(TZ)—p1(F)) _ (8)
_ N _ e 12 2 N LG (T2)~pr(F)) §

2. DERIVATION OF THE GREEN-SCHWARZ TYPE FACTORIZATIONS FROM MODULARITY

In this section, we will derive the Green-Schwarz type factorization formulas presented in Section
1 via the modularity of Po(TZ, F1 — F5,&, 7).

2.1. Preliminaries. In this subsection, we recall some basic knowledge about the Jacobi theta
functions, modular forms and Eisenstein series. Although we will not use all the things recalled
here, we still put them in this subsection for completeness.

Let SLy(Z) = {< Z Z >

S = ( (1) _01 >, T = < (1) 1 > be the two generators of SLs(Z). Their actions on H are given

byS:T—>—%, T:7—7+1.
The four Jacobi theta functions are defined as follows (cf. [4]):

(v, 7) = 2¢"/® sin(7v) H [ 1—¢)(1 - 62”\/__1”qj)(1 — e‘zﬂﬁ”qj)} ,

J=1

a,b,ce,d €Z, ad — bc = 1} as usual be the modular group. Let

01 (v, T)_2q/8COS7T1) H[l_qj 1_|_e27r\/7v )(14_6—2#\/7@ )}7
7j=1

ﬁ [ 1— qy e2wx/jlvqj—1/2)(1 _ e—zmﬁvqg’—nz)} 7

03(v,7) = [T [0 = @)1+ 27VTT0gim1/2) (1 4 72V Togi=1r2) |
j=1
They are all holomorphic functions for (v,7) € C x H, where C is the complex plane and H is the

upper half plane.
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When acted by S and T, the theta functions obey the following transformation laws (cf. [4]),

/=1 1 T 1/2 m/—1Tv2 .
(2.1) Ov,7+1)=e 7 O(v,7), 9(1),—1/7'):\/—__1<\/__1> VT (ru, 1)

_ 1/2
(2.2) O1(v,7+1) = 6#91(?},7'), 01 (v,—1/7) = < T > e”mmz@Q(T?),T) ;

5

T 1/2 2

(2.3) Os(v, 7+ 1) = 3(v,7), 6 (v,—1/7) = (\/__1> V0, (ru, 7)
T 1/2 2

(24) 93(’0,7’ + 1) = 92(’0,7’), 03 (’U, —1/’7’) = (\/—__1> 67"\/—_17'1; 93(7_,0’7_) )

Definition 2.1. Let I be a subgroup of SLo(Z). A modular form over I is a holomorphic function

f(r) on HU{oo} such that for any g = < CCL Z e I', the following property holds,
L at + b . l
flam) = 1 (2557) = xta)er + ')
where x : I' = C* is a character of I and [ is called the weight of f.
Let
(2.5) Eop=1— ﬁ i Zd%—l q"
Bay, £~ o

be the Eisenstein series, where By, is the 2k-th Bernoulli number.
When k > 1, Fy is a modular form of weight 2k over SLy(Z). However, unlike other Eisenstein

series, Fo(1) =1—24>"27, (Zd) q" =1 —24q — 72¢> — 96¢> — - - - is not a modular form over
din
SL(2,Z), instead it is a quasimodular form over SL(2,Z) satisfying

By <Z:is> = (e7 + d)*Ea(r) — —6\/__167(TCT d)

(2.6)

In particular, we have

(2.7) Ea (T +1) = Ex(7),
(2.8) Es <—%> = 72Ey(1) — 6\/?7.

For the precise definition of quasimodular forms, see [11].
a b

Let T(2) = { ( - ) € SLo(Z)| ¢ =0 (mod 2)},r0(2) - {( © > E SL2(Z)‘bEO (mod 2)}

be the two modular subgroups of SLy(Z). It is known that the generators of I'g(2) are T, ST?ST
and the generators of I'°(2) are ST'S, T?STS (cf. [4]).
Consider the g-series:

1 - n_l 2
(2.9) 51(7)_Z+6n§::1dqu = H00+60" 4+,
d odd
6



(2.10) +ZZ dd3n:i_q+7q2+...,

n=1 d|n 16
(2.11) 5 :___32 S gt = - 32— 3g— .
n=1 d|n
d odd
(212) 5‘2(7') :Z Z d3qn/2 :q1/2+8q+
n=1 dn
n/d odd

Simply writing 6; = 6;(0,7), 1 < j < 3, then we have (cf. [10] and [13]),
1 1
61(7) = g(eg +63), el(r)= EO%Q% ;

1 1
Ba(r) = —5 (01 +08), exlr) = 010
If I' is a modular subgroup, let Mg (I") denote the ring of modular forms over I' with real Fourier

coefficients.

Lemma 2.1 (cf. [12]). One has that 01(7) (resp. €1(7)) is a modular form of weight 2 (resp. 4)
over Tg(2), 02(T) (resp. e2(7)) is a modular form of weight 2 (resp. 4) over I'°(2) and moreover
MRr(I'°(2)) = R[62(7), e2(7)]. Moreover, we have transformation laws

(2.13) 5o <—%> =726, (7), €9 <—%> =7t (7).

2.2. The modular form Py(TZ, Fy, — F5,&,7). Let F (resp. G) be a Hermitian vector bundle
over X equipped with a Hermitian connection V' (resp. V). For any complex number ¢, let
A(F) = Clx +tF +*A*(F) +---, Sy(F)=C|x +tF +t*S*(F) +

denote respectively the total exterior and symmetric powers of F, which live in K(X)][[¢]]. The
following relations between these two operations hold (cf. [2, Chap. 3]),

1 Ay(F )
2.14 Si(F) = , MF-G)=
The connections V¥, V& naturally induce connections on Ay(F), S;(F) etc. Moreover, if {w;},

{w,’} are formal Chern roots for the Hermitian vector bundles F', G respectively, then (cf. [9, Chap.

1])7
(2.15) ch (At(F), vAt<F>) = [T + ety

and we have the following formulas for Chern character forms,

1 1
2.16 h (Sy(F), Vo)) = = :
( ) C ( t( ) > ch (A_t(F)’VA,t(F)) H(l—e“it)

%

ch (At(F),VAt(F)) H(l —|—ewit)

7

ch (At(G), VAt(G)) [T(1 +evi't)
j

(2.17) ch (At(F e vAt(F—G)> _

Let ¢ = 2™V =17 with 7 € H, the upper half complex plane.
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Set

0(TcZ, Fic — Fac.éc) =@ Sy (TcZ) @ QA -y (Fic — Fac — 2c)
(2.18) v

which is an element in K(X)[[q%]]
Clearly, ©2(TcZ, Fic — Fac,éc) admits a formal Fourier expansion in ql/2 as
(2.19) ©2(TcZ, Fic — Fac.éc) = Bo+ Bi¢"/? + Bagq -+,

where the Bj’s are elements in the semi-group formally generated by complex vector bundles over
X. Moreover, they carry canonically induced connections denoted by V5 and let V2 be the

induced connections with ¢'/2-coefficients on ©s.
Set
PQ(TZ, F1 — FQ,&,T)
(2.20)

N (12)

= {G%wapl(TZ)—p1(F1>+m<F2>>A(TZ) cosh (;) ch (02(Tc Z, Fic — Fac, gc))} .
Proposition 2.1. Py(TZ, F| — F»,&,7) is a modular form of weight 6 over T'°(2).

Proof. Let {2m/— Ty} (resp. {£2mv/—12x}, {£2mv/—1z;}) be the formal Chern roots for (F} g, V1¢)

(resp. (Fyg, VI20), (TZc,VT%42)). Let ¢ = 2my/—1u. By the Chern root algorithm, we have
PQ(TZ7 Fy - F27§7T)

~ 12
= {ei&m(m(TZ)_pl(F1)+p1(F2))A(TZ) cosh (%) ch (02(TcZ, Fic — F2c7§c))}( )
5 , (%]
_ ) oA B 01 (T2)—p1 (F)+p1(F2) ( 0'(0,7) > 02(y;: 7)
=< e24 X
(2.21) (jHl 79(xj,7) El 02(0,7)

(12)

Then we can apply the transformation laws (2.1)-(2.4) for theta functions as well as the trans-
formation laws (2.7), (2.8) to (2.21) to get the desired results. O

In addition to the above modular form, we have also constructed in [7] the modular form
PUTZ,V,E,7) = {eiEzwxpl(Tm—pl(v»

(2.22) ﬁ(TZ)detl/2 (2 cosh (%va
' cosh? (£)

(12)

ch (01(TcZ, Ve, ¢c)) ’

where
01(TcZ, Ve, &c) =X S (Tc Z) ® R) Ag» (Ve — 26c)
(2.23) ot =t
® Q) Agr1/2(€c) @ QYA _yo12(£c)-
r=1 s=1

8



We showed in [7] that P1(TZ,V,&,7) is a modular form of weight 6 over I'g(2) while P2(TZ,V, €, T)
is a modular form of weight 6 over I'’(2) and moreover they are modularly related in the sense that

dimV

Pl (TZ, Vvvé.v _%> = 2[T}T6P2(TZ7 V7£7T)'

We call such a pair of modular forms a modular pair (see [7] for the cases of general dimensions).

One can use this modular pair (Py(TZ,V,&,7),Po(TZ,V,£,7)) to derive the Alvarez-Gaumé-
Witten miraculous anomaly cancellation formula by setting V = TZ, £ = C and obtain its various
generalizations (see [12], 13| [8, [6] 7, [14] for details).

In the following subsection, we will use the modularity of Po(TZ, Fy — F5,&,7) to derive the
Green-Schwarz type factorization formulas. It’s amazing to see that all these anomaly cancellations
due to Alvarez-Gaumé-Witten, Green-Schwarz as well as Schwarz-Witten can be derived from the
modular pair (P1(TZ,V,&,7),P2(TZ,V,E,1)).

2.3. Derivation of Green-Schwarz type factorizations from modularity. From Proposition
2.1, we see that Po(TZ, Fy — F, &, 7) is a modular form of weight 6 over I'°(2). Therefore, by Lemma
2.1, there exist hy, hy € Q2(X) such that

(2.24) Po(TZ, Fy — Fy,&,7) = ho(862)> + h1(803)es.

Therefore

{ei<1—24q+~~ Yp(TZ2)=p1(FO)+p1(F2)) A(T Z) cosh (g) ch (Bo + B1q? + Bog + - ) }(12)
(2.25) =1 (865)° + hi(80,)es
—ho(—1—24q2 —24q — -+ ® + hy(—1 — 24¢% — 24q — - )(q% + 8¢ + - -).

Comparing the coefficients of 1, q% and ¢ in both sides of (2.25), we have

(2.26) {ei(pl(TZ)—pl(F1)+p1(F2))E(TZ) cosh (%) ch(BO)}(12) = —ho,

o~ 12
(2.27) {eﬁ@l(”)—m<F1>+P1<F2>)A(TZ) cosh (g) ch(Bl)}( " by — 79,

{eﬁ(p1(TZ)—p1(F1)+p1(F2))(_(pl(TZ) +p1(Fy) — pl(FQ)))g(TZ) cosh (%) ch(By)

(2.28) _i_eﬁ(Pl(TZ)—pl(Fl)-l-pl(FQ))A\(TZ) cosh (%) Ch(B2)}(12)
= — 32h; — 1800hy.
By (2.26)-(2.28), we see that

~ c
{en @D ESED () (T2) + p1(F) — p1 () A(T Z) cosh (3 ) ch(Bo)
~ 12
(2.29) +eﬁ(Pl(TZ)—pl(Fl)-l-pl(FQ))A(Tz) cosh <§> Ch(Bg)}( )
- {eﬁ<m<TZ>—p1<F1>+P1<F2>>2(TZ) cosh (%) ch(32B; — 50430)}
9
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In the following, let’s expand ©q(TcZ, Fic — Fac,éc) to find By, By, Bs. In fact, we have

(2.30)
@2(TCZ Fic— F2c, £c)

® ®Aqr,%(§é) ® (X)Aqs(fc)
r=1 s=1
- ®Sq“ (CZ/;(;E)
u=1
@A, 1(Fic)
v=1
1
® —
QA3 (7o)
® —— —
®(A_, ) (E0)”
® gAqT; (éc)

=1+ (TcZ — 10)g + O(q?))

[SI[oY

® <1 +(m — Fio)g? + <A2Flc —mFic+ w> q+0(q ))
® <1+ Fyc —n)g? + <52F2C—HF20+7( 2_ 1)>Q+O( 3))
(1 + 2002 + (3§c ®éc +4§c) q+O(q %))

(HEEqE —2§éq+0(q%))

(1+&cq+0(d)

:1+(m_F1C+Fgc—n+3gé)q%

&
&
&

(m —n)*+ (m —n)

+ </\2F1c: + S’ Foc — Fic ® Foc +TcZ + =10 — (m — n)(Fic — Fac)

l\?\v?

+56c @ éc +3(m — Fic + Fac —n+1) @ €c) 4+ O(¢
10

)-



Therefore, we have

(2.31)
By =1,

B, :m—Flc—l—Fgc—n—l—?)E(/;,

(m —n)?+ (m —n)

5 —10 — (m —n)(Fic — Fac)

By = A2 Fic+ SzFQC —Fic®Fhc+TcZ +

+56c®Ec+3(m— Fig+ Fhac —n+1)® &c
From (2.29), we see that
~ (12)
{A(TZ) cosh <§> ch(Bs — 32B; + 50430)}

=p1(TZ) — p1(F1) + p1(F2))

(2.32) ACADEIN DD 1 soB)
Q- ezc — +
p1(TZ) — p1(F1) + p1(F2) 2 ! 0

+eﬁ(p1(TZ)—p1(F1)+:D1(Fz))A\(TZ)eé ch(By) }

(8)

However, from (2.31), we have
By — 32B1 + 5048y

(m—mn—32)(m —n —31)
2
—(m—n—32)(Fic— o) +5éc ®Ec+3(m —n—31— Fig + Fag) ® &c.

Theorem 1.1 follows from (2.32) and (2.33).

-2

(2.33) =N’ Fig+ S*Foc — Fic ® Foc + TcZ +
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