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MODULAR FORMS AND GENERALIZED ANOMALY
CANCELLATION FORMULAS

FEI HAN, KEFENG LIU, AND WEIPING ZHANG

ABSTRACT. In this paper, we generalize the anomaly cancellation for-
mulas in [T, 12} [7] to the cases that an auxiliary bundle W as well as
a complex line bundle £ are involved with no conditions on the first
Pontryagin forms being assumed.

INTRODUCTION

In [I], gravitational anomaly cancellation formulas are derived from di-
rect computations. In particular, in dimension 12, the Alvarez-Gaumé and
Witten “miraculous cancellation” formula can be written as
(0.1)
{L(TX,vT¥)102) = (8A(TX, VI X )eh(Te X, VIeX)} 12 32 A(T X, vTX)}(12),

where X is a 12 dimensional Riemannian manifold, VX is the associated
Levi-Civita connection, TcX is the complexification of TX (with the in-
duced Hermitian connection VZeX) and L(TX, VTX), A(TX,VTX) are the
Hirzebruch characteristic forms (see (1.1)).

In [12], Liu generalizes (0.1) to general 8m + 4 dimension by developing
modular invariance properties of characteristic forms. Actually, in [12], Liu
obtains a more general cancellation formula by including an auxiliary bundle
W. More precisely, assume X to be 8m + 4 dimensional and W be a rank
2! Euclidean vector bundle over X with a Euclidean connection V" and
curvature RV = VW2 if p (T X, VTX) = p(W, VW), then the following
identity holds,

— (8m-+4)
{A(TX, VT X)det'/? (2 cosh <—”413W>> }

7

R 8m+-4
ol+2m-+1—6r {A(TX, VI eh(b (T X, WC,C2))}( ) 7
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where b,.(TcX, Wg, C?)’s are virtual complex vector bundles with connec-
tions over X canonically determined by (TX,V¥) and (W,VW"). In di-
mension 12, by direct computation, (0.2) becomes,

(0.3)
{X(TX’ VTX)det1/2 <2 cosh <%RW>> }(12)

(12)

—~ —~ 12
:21—3{A(TX,VTX)ch(WC,vWC)} —21—2(1—4){A(TX,VTX)}( g

When (TX, VX)) = (W, VW), (0.2) gives,

1

. {E(TX, vIX )}(8m+4)

(04) m . 8m—+4
:226’”_67’ {A(TX, V¥ eh(b, (Te X, Te X, CZ))}( )-
r=0

As an application ([11]), by the Atiyah-Hirzebruch divisibility [3], (0.4) im-
plies the Ochanine divisibility [15], which asserts that the signature of an
8k + 4-dimensional smooth closed spin manifold is divisible by 16.

To study higher dimensional Rokhlin congruence, Han and Zhang ([0l [7])
extend the “miraculous cancellation” formulas of Alvarez-Gaumé, Witten
and Liu to a twisted version where an extra complex line bundle (or equiv-
alently a rank 2 real oriented vector bundle) is involved. More precisely,
if £ is a rank 2 real oriented Euclidean vector bundle equipped with a Eu-
clidean connection V¢ and ¢ = e(£, V&) is the associated Euler form, when
p1(TX,VTX) = p (W, VW), the following identity holds,

(0.5)
A(TX,VTX)det/? (2 cosh (%RW»
cosh? (%)

(8m—+4)

= Y o TR T, (T X, Wo o)) cosh (5)
r=0

where b,.(Tc X, We,&c)’s are virtual complex vector bundles with connec-
tions over X canonically determined by (TX,VZX), (W,VW) and (¢, V¢).
Obviously, when ¢ is trivial and ¢ = 0, (0.5) reduces to (0.2).

When dimX = 12 and (TX, VX)) = (W, VW), (0.5) gives,

prx,vrx) "
cosh? (%)
{ [&Z(TX, vIX)ch(We, Vo) — 32A(T X, vTX)

2 A(TX, VXY (e +e~¢ — 2)] cosh (%) }(12) ,
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which extends the Alvarez-Gaumé and Witten “miraculous cancellation”
formula (0.1) in dimension 12.

Note that (0.2) and (0.5) only hold under the condition p;(7X,VI¥X) =
p1(W,VW). In this paper, we study what if we remove this condition. We
find that the difference between the left hand sides and the right hand sides
in (0.2) and (0.5) can actually be written in the form

(P (TX, V") = p (W, VY)) - R,

where R is some characteristic forms canonically determined by (T'X, VX)),
(W, VW) and (&, V¢). For example, we find that in dimension 12, the fol-
lowing identity holds (for simplicity, we drop the connections),

(0.7)
{E(TX)detl/ 2 (2 cosh <%RW>> }(12)

g3 {E(TX)ch(WC)}m) + 221 — 4) {E(TX)}(H)
=(p1(TX) — p1(W))
e21 (1 (TX)=p1(W)) _ 1
‘ { p1(TX) = pr(W)

~ N Ve (®)
: [A(TX) <2l_3ch(WC) — 92— 4)) — A(TX)det/? (2 cosh <?RW>>] } .
We will give similar general results for 8m + 4 and 8m dimensions in The-
orem 1.1 and discuss various special cases in Corollaries 1.2-1.5. We obtain
our generalized anomaly cancellation formulas still by developing modular
invariance of characteristic forms.

To obtain our cancellation formulas, we were also inspired by the Green-
Schwarz mechanism. In [5], Green and Schwarz discovered that the anomaly
in type I string theory with the gauge group SO(32) cancels because of an
extra ”classical” contribution from a 2-form field. One key step is that when
the gauge group is 496 dimensional, the anomaly I;2 can be written as (c.f.

[16])
(0.8) Iy = (p1(2) — p1(F))Is.

Our cancellation formulas in Theorem 1.1 and its corollaries are of same
pattern. We hope they can find applications in physics.

1. RESULTS

The purpose of this section is to state our main results. We first recall
the definitions of some characteristic forms to be used in Section 1.1 and
then present our generalized anomaly cancellation formulas in Section 1.2.
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1.1. Some characteristic forms. Let X be a 4k dimensional Riemannian
manifold. Let V7¥ be the associated Levi-Civita connection and RTX =
VTX 2 be the curvature of VI, Let A(TX,VTX) and L(TX,VTX) be the
Hirzebruch characteristic forms defined respectively by (cf. [18]):

VI1 X
sinh (Y= RTY)
JZ1RTX
tanh (%RTX >

A(TX,VTX) = det!/?

L(TX,VTX) = det'/?

Let F,G be two Hermitian vector bundles over X carrying Hermitian
connections V', V& respectively. Let R = V2 (resp. R® = V& 2) be
the curvature of V¥ (resp. V). If we set the formal difference H = F — G,
then H carries an induced Hermitian connection V¥ in an obvious sense.
We define the associated Chern character form as (cf. [18])

(1.2) ch(H,VH) = tr [exp <—_1RF>] —tr [exp <—_1RG>] .
27 27
For any complex number ¢, let
A(F) =Clx +tF +t*A*(F) +---, Sy(F) = Clx +tF +t*S*(F) + - --

denote respectively the total exterior and symmetric powers of F', which
live in K (X)[[t]]. The following relations between these two operations ([2],
Chap. 3) hold,

1 _M(F)
i M9 =Ker

(1.3) Si(F) =

The connections V¥, V& naturally induce connections on A.F, S, F etc.
Moreover, if {w;}, {w;’} are formal Chern roots for Hermitian vector bundles
F, G respectively, then [[8], Chap. 1]

(1.4) ch (At(F), VMF)) =[] + ).

We have the following formulas for Chern character forms,

t R 1 P 1
(15) e (S(F), VD) = - (A (F),vAD) ~ T[(0—e=it)

(2

(P ch (Ay(F), VA«(F) I;I(l"‘ewit)
(1:6) ch (Au(F = @), VD) = — EAt(G),VAt@% I+ et

J
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1.2. Statement of results. We make the same assumptions and use the
same notations as in Section 1.1.

Let W be a rank 2] real Euclidean vector bundle over X carrying a Eu-
clidean connection VW. Let R = VW2 be the curvature of VWV. If W
is spin, let A(W) = ST (W) & S~ (W) be the spinor bundle of W with the
induced connection VAW), 1t’s not hard to see that

ch(A(W), VAW)) = det!/? (2 cosh <%RW>> :

Let py (T X, VX) and py (W, VW) be the first Pontryagin forms of (T'X, V7 X)
and (W, VW) respectively.

Let £ be a rank two real oriented Euclidean vector bundle over X carrying
a Eucledean connection V¢. Let ¢ = e(&, V) be the Euler form canonically
associated to V¢,

For simplicity, from now on, when there is no ambiguity, we will write
characteristic forms without specifying the connections.

In the following, we will define some virtual bundles with connections and
some differential forms on X associated to (TX, VIX), (W, VW) and (¢, V¢).

If E is a vector bundle (real or complex) over X, set E = E — dimFE in
KO(X) or K(X).

If F is a real Euclidean vector bundle over X carrying a Euclidean connec-
tion V¥, then its complexification Fc = E ® C is a complex vector bundle
over X carrying a canonically induced Hermitian metric from that of E, as
well as a Hermitian connection V¢ induced from V.

If w is a differential form, denote the degree j-component of w by w@).

Let ¢ = 2™V~=17 with 7 € H, the upper half complex plane. Let Tc X be
the complexification of T'X.

Set

02(Tc X, We, éc) ®S (TcX) ®®A o1 (We — 2€¢)

®Ar y (6c) ®®A (€c),

which is an element in K(X)[[qi]]
Clearly, ©5(Tc X, Wc, £c) admits formal Fourier expansion in ¢'/? as

(1.7)

(1.8) Ox(TcX, We,éc) = Bo(TeX, We, éc)+Bi(TcX, We, éc)g >+ -+

where the B;’s are elements in the semi-group formally generated by complex
vector bundles over X. Moreover, they carry canonically induced connec-
tions denoted by V5 and let V©2 be the induced connections with ¢!/2-
coefficients on Os from the V5i.

Consider the ¢-series:
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1 o ,
(1.9) di(r) =7 +6) > dg" =7 +60+6¢"+ -,

110) el =t SV = gt T

1 1
(1.11) 52(7):—5—32 qun/2:_§_3q1/2_3q_...,

(1.12) ea(r) =) Y PP =q" 8¢+,

n=1 djn
n/d odd

and the Eisenstein series

o
By(r)=1-24> > d|q" =1-24g—T2¢* — 96¢° —
n=1 \ d|n

Remark 1.1. §; and &1 will only be used later in the proof of our results.
We list them here for completeness.

Now we define the virtual bundles with connections and the differential
forms on X associated to (T'X,VTX), (W, VW) and (£,V¢). This will be
done in two cases respectively.

Case 1: dim X = 8m + 4.

Define virtual complex vector bundles b,.(Tc X, W¢,éc) on X, 0 < r < m,

via the equality

m

(1.13) ©5(TcX, We,éc) = Y b,(802)2" =) mod ¢*F - K (X)[[g
r=0

=

Il

It’s not hard to see that each b,,0 < r < m, is a canonical integral linear
combination of B;(TcX,Wc,&c),0 < j < r. These b,’s carry canonically
induced metrics and connections. It’s easy to calculate that

(1.14) bg = —C, by = Wg — 3&c + C48m—2l+30‘
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Define degree 8m differential forms 3,(VZX, VW V&) on X, 0 <r < m,
via the equality
(1.15)
{6214}32(7)(171 (TX)—p1(W)) _

(8m)
1~ c
T = i) ALK cosh (3) ch (€a(TeX, Wc,sc»}

m—+1

= B85 7eh mod g% - Q7 (X)[[g2]).
r=0

It’s not hard to see that each 3,,0 < r <m,isa canOIAlical linear combina-
tion of degree 8m forms of the type c(p (T'X)—p1 (W))*A(TX) cosh (§) ch(B;),0 <
7 < r. It’s easy to calculate that

(1.16)

2 (Pp1(TX)—p1(W)) _ (8m)
e24 1 ~ c
= - A(TX h{-=
% { P TX) —pa(w)TX) cos <2>} !

eﬁ(pl(TX)—pl(W)) -1
L=
p1(TX) —p1 (W)
We would like to point out that although

2 (p1(TX)—p1(W)) _ (8m)
e2d 1 ~ c

= A(TX)cosh (=) ch(b
% { n@X) gy AEX) (5) <0>}

(8m)
A(TX) cosh (%) (ch(We — 3¢c) + 48m — 21 + 30)} .

and

2P (TX)—p1(W)) _ (8m)
e 1~ c

= A(TX)cosh (=) ch(b ,
g { p1(TX) = p1(W) (TX) (2) ( 1)}

generally,

021 (PL(TX)=p1(W)) _1ETX () e (8m)
o P (TX) — prw) ) cos ()t 7>z

Case 2: dim X = 8m.
Define virtual complex vector bundles z,(Tc X, W¢,éc) on X, 0 < r < m,
via the equality

m
m+1

(1.17) ©(Tc X, Wc,éc) = er(852)2m_27’65 mod ¢"2 - K(M)[[q2]].
r=0

Similarly each z.(Tc X, Wc,&c),0 < r < m, is a canonical integral linear
combination of B;(TcX,Wc,&éc),0 < j < r. These z,’s carry canonically
induced metrics and connections. It’s easy to calculate that

(1.18) 20 = C7 z1 = _WC + 350 _ C48m—2l+6‘
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Define degree 8m—4 differential forms ¢,.(V7X, VWV V&) on X,0 < r < m,
via the equality

1.19)
624E2(T pl(TX pl(W)) 1
pi(W)

(8m—4)
A(TX) cosh (g) ch (O(TcX, Wc,éc))}

=3¢ (862)*" ey mod ¢"F - Q¥ (X)[[g7]).
r=0

It’s not hard to see that each (.,0 <r < m, isa canonicgl linear combina-
tion of degree 8m—4 forms of the type ¢(p1 (T'X)—p1(W))*A(TX) cosh (§) ch(B;),0 <
7 < r. It’s easy to calculate that

(1.20)

L (TX)=p1(W)) _ 1 (8m—4)
o= {624 1A(TX) cosh (%)} ,

pi(TX) — pr(W)

e31 (1 (TX)—p1(W)) _ | . (8m—4)
G= =\ T gy AT X)cosh (5) (ch(We — 3&c) + 48m — 21 +6) ,

Similar to 3, generally,

¢ eﬁ(pl(TX)_pl(W)) . 1j(TX) . (c) h( | (8m—4) .,
T cosh ( = ) ch(z, 7 )
p1(TX) = p1(W) 2

We can now state our main theorem as follows.

Theorem 1.1. (1)When dim X = 8m + 4, one has

A(TX)det!/? <2 cosh (%RW» (8m-+4)
cosh? (%) }

(1.21) -
22”2’”“ o L AT X )eh(by (To X, Wc,gc))cosh<2)}(8 .

=(p1(TX) —p1(W)) - BV, VW, V),



MODULAR FORMS AND GENERALIZED ANOMALY CANCELLATION FORMULAS 9

where

(1.22)
BVIX YW V)

Z l+2m+1 6T5T VTX vW vf)
r=0

~ (8m)
e (P1(TX)=p1(W)) _ 1 A(TX)det!/? (2 cosh (%RW))
- p1(TX) —p1(W) . cosh? (%)

(2) When dim X = 8m, one has

{‘Z(TX)de'ﬂl/2 (2 cosh (%RW)) }(gm)

cosh? (%)
1) Zzl+2m o L AT X)eh(z (To X, Wo. £c)) cosh ( )}(Sm)
’ 2
=<p1<TX> —p(W)) - 3(VIH, VW, V9,
where
(1.24)

S(VTX VW VS)
i +2m— GT’CT VTX VW Vf)
r=0

(8m—4)

A TX)pw) g A(TX)det'/? (2cosh (YLRW))
N pi(TX) —pr(W) ' cosh? (%)

We immediately obtain that

Corollary 1.2 (Han-Zhang, [7]) If p1(TX,VTX) = pi (W, VW), then
(1)when dim X = 8m + 4, the following identity holds,

{ fz[(TX)de’Gl/2 <2 cosh <§RW>> }(8m+4)
(1.25)

cosh? ( % )

=SS (X )b (To X, W o) cosh (5) }
r=0
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(2)when dim X = 8m, the following identity holds,

{‘Z(TX)detl/z (2 cosh (%Rw» }(gm)
(1.26)

cosh? (% )

S (8m)
EZ:O gh+am= GT{ (TX)ch(z(Tc X, We,&c)) cosh (2)} ° .

In Corollary 1.2, when dim X = 8m +4 and (W, VW) = (T'X, VTX) | one
has

1{ E(TX) }(8m+4)
2 (c
(1.27) 8 | cosh (5)

—Z26m o LA(TX)eh(br(To X, To X, £c)) cosh (g)}(8m+4).

This formula is used in [7] to study higher dimensional Rokhlin type con-
gruences.

When (¢, V¢) = (R?,d), from Theorem 1.1, we obtain that

Corollary 1.3 (1)When dim X = 8m + 4, one has

{E(TX)detl/2 (2 cosh <§RW>> }(8m+4)

m

(1.28) = oS LT X )eh(b, (To X, We, c2))}(8m+4)
r=0
=(p1(TX) — p(W)) - BV, VW, d),
where
(1.29)
BVIX VW a)

zm:2l+2m+l 67’5 VTX VW d)

r=0
1 (8m)
eE @ TX) (W) _ | ) Wy
. /2 VYT RW
{ ol (W) A(TX)det <2 cosh < pp R >> .
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(2) When dim X = 8m, one has

{E(TX)detl/2 (2 cosh <§RW>> }(gm)

m

(1.30) =2t L AT X ez (Te X, W, 02))}(8m)
r=0
:(pl(TX) - pl(W)) : B(VTX7 VW) d)7

where
(1.31)

3V, VW d)
— Z 2l+2m_6rCT’(VTX7 VW, d)

r=0

33 (1 (TX)=p1 (W) _ — (8m—4)
e24 1 ~ \/_1
- - A(TX)det'/? ( 2cosh | ~—RY ,
{ P @X) ) AT < <47T R ))}

It’s interesting to notice that the above anomaly cancellation formulas
also imply some integrality results. From Corollary 1.3, we can see that if
X is an 8m + 4 dimensional closed spin manifold and W is a 2] dimensional
spin vector bundle over X, then when [ > 4m — 1,

(132 [ 03 = pa(9)) - (VT 9.0

is an integer. Moreover, if X is string, then

(1.33) /Xpl(W) BV YW a)

is an integer. Similarly, we can see that if X is an 8m dimensional closed

spin manifold and W is a 2] dimensional spin vector bundle over X, then
when [ > 4m,

(134 [ (@) = (W) - 3975, 9%, a)
X
is an integer. Moreover, if X is string, then
(1.35) / p(W) - 3(V7%, ¥V, )
X

is an integer.
From Corollary 1.3, we immediately obtain that

Corollary 1.4 (Liu, [12]) If p1(TX,VTX) = py (W, VW), then
(1)When dim X = 8m + 4, the following identity holds,
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— (8m-—+4)
{A(TX)detl/2 <2 cosh <F1RW>> }
(8m+4)

ol-+2m+1—6r {E(TX)ch(br(Tch We, Cz))} ;

(1.36)

NE

i
o

T

(2) When dim X = 8m, one has

{E(TX)detl/2 (2 cosh <§RW>> }(gm)

(1.37) (8m)
ol+2m—6r {X(TX)ch(Zr(TC)Q We, C2))} .

M-

~x
Il
o

In Corollary 1.4, when dimX = 8m +4 and (W, V") = (TX,VT¥) , one
has ([12], [11])

é {E(TX) } (8m-—+4)

(1.38) n
Z 9bm— Gr{ (TX)ch(b(Tc X, Tc X, C?))
r=0

} (8m-+4)

This formula implies the Ochanine divisibility [I5], which asserts that the
signature of an 8k + 4-dimensional smooth closed spin manifold is divisible
by 16.

As examples, we give the explicit formulas when the dimension of X is 4,
8 and 12. Using (1.14), (1.16), (1.18) and (1.20), by direct computations,
we have,

Corollary 1.5 (1) when dim X = 4, the following identities hold,

(1.39)
A(TX)det!/? (2 cosh (%RW))
{ cosh? (%)

©
} + 2+l {A\(TX) cosh (g) }(4)

= — 23 (py(TX) — pr(W)),

{E(TX)detW <2 cosh (i—__lRW>> }(4) + 2! {X(TX)}(4)

7

(1.40)
— 273 (p(TX) — pr(W));
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(2) when dim X =8, the following identities hold,

(1.41)

A(TX)det!/? (2 cosh (% RW>) (8)
{ cosh? (%) }

- { [_2l—4E(TX)ch(Wc) +273 (1 + 8)A(TX) +3- 27 A(TX) (e +e7¢ — 2)} cosh (E> }(8)

2
=(p1(TX) —p1(W))
62_14(pl(TX)_pl(W)) -1
p1(TX) — p1(W)

- [E(TX) cosh (g) (—21—4ch(wc) + B4 8) 43 2 (e e — 2))

}(4)

A(TX)det!/? (2cosh (YLRW ) )
cosh? (%)

(1.42)

{X(TX)detl/ 2 (2 cosh <%RW>> }(8)

P {E(TX)ch(Wc)}(S) — 2731+ 8) {E(TX)}@)
=(p1(TX) — p1(W))
ez (P1(TX)=p1(W)) _
' { p1(TX) — pi (W)

: [g(TX) (_2l—4ch(Wc) +273(1 + 8)) — A(TX)det*/? (2 cosh (gRW>>} }(4) ;
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(8) when dim X = 12, the following identities hold,

(1.43)
{E(TX)detl/2 (2 cosh (%RW» }

(12)

cosh? (% )

~{ [P ATR ) - 2720 - HATX) 3 2PATX 4 e~ D] comn (5

=p1(TX) —p1(W))
{eﬁ(pl(TX)—pl(W)) -1

p1(TX) —p1 (W)

: [E(TX) cosh (g) (2l—3ch(WC) () 3. 2B o0 — 2))
A(TX)det!/? (2 cosh (%RW» ®

. cosh” (§) } ’

(1.44)

{E(TX)detl/2 (2 cosh <%RW>> }(12)

(12) (12)

_9l-3 {E(TX)ch(WC)}

=p1(TX) —p1(W))
{eﬁ(pl(TX)—pl(W)) -1

+2172(1 — 4) {E(TX)}

p1(TX) —p1(W)

. [E(TX) (21—3ch(Wc) —272(1 - 4)) — A(TX)det/? <2 cosh (%RW»} }(8) .

Remark 1.2. It’s not hard to see that (1.41)-(1.44) are respectively equiv-
alent to the following identites,

(1.45)
{eim(m)—mw»

[A\(TX)detl/z <2 cosh (gRW»

cosh? ( % )

_A(TX) cosh (g) (—2l_4ch(Wc) + 231 +8) +3- 24 (e + e — 2))]} =

(12)
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(1.46)
{eﬁ(pl(TX)—pl(W))

: [E(TX)detW (2 cosh <§RW>> — A(TX) <—2l—4ch(Wc) + 2731 + 8))} }(8) = 0;

(1.47)
{eml(m)—mw»

A(TX)det!/? (2 cosh (gRW))

cosh? (%)

_A(TX) cosh (g) (21—3ch(wc) () 3. 2B o0 — 2))] }(12) —0,

(1.48)
{eﬁm(m)—pl(w»

: [E(TX)detW (2 cosh <§RW>> — ATX) (21—3ch(wc) — 92— 4))] }(12) = 0.

These formulas are simply in a form of the multiplication ofei(pl(TX)_pl(W))
to the original anomaly cancellation formulas in dimension 8 and 12 holding
under the condition p1(X) = p1(W).

However as pointed out on page 7 and page 8 about the patterns of B,
and ¢, for r > 2, we know that the higher (> 12) dimensional anomaly
cancellation formulas are mot as simple as the above lower anomaly can-
cellation formulas, i.e. they are mot simply in a form of the multiplication
of 21 (PLTX)=P1(W)) 44 the original anomaly cancellation formulas holding
under the condition p1(X) = p1(W).

2. PROOFS

In this section, we give the proof of Theorem 1.1. To prepare for the proof
in Section 2.2, we will first recall some basic knowledge about the Jacobi
theta functions, modular forms and Eisenstein series in Section 2.1.

2.1. Preliminaries. Let

- {(1 1)

as usual be the modular group. Let

(8 =

a,b,c,d € Z, ad—bc:l}

)

1
0
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be the two generators of SLs(Z). Their actions on H are given by

1
S:tr——, T:7T—>717+1
T

The four Jacobi theta functions are defined as follows (cf. [4]):

(v, 7) = 24" sin(ro) [T |(1 = )1 = Y1) (1 = 27V 10gd)
j=1

01(v,7) = 20" cos(rv) [T [(1 = @) (1 + 2V 7T0g) (1 4 727700 |
j=1

92(?),7’) =

)

—

[(1 — ) (1 = 2TV Togi=1/2) (1 - e—znmqu—l/z)}

<
Il
-

03(v,7) =[] [(1 — @) A+ Vg2 (1 e_z”m”qj‘l/z)} :
7j=1

They are all holomorphic functions for (v,7) € C x H, where C is the
complex plane and H is the upper half plane.

If we act theta-functions by S and T, the theta functions obey the fol-
lowing transformation laws (cf. [4]),

(2.1)
O(v, 7+1) = e 0(0, 1), 0 (v, —1/7) = \/%—1 <\/T__1>1/2 VIR (1 1)
(2.2)
O1(v,7+1) = e~ 01 (v,7), 6 (v,—1/7) = <\/T__1>1/2 eI, (v, 7)
(2.3) o

Oy(v, 7+ 1) = O3(v,7), 05 (v,—1/7) = (\/T__J eI, (ru, 7Y
(2.4) o

O3(v, 7 +1) = Os(v,7), O3 (v,—1/7) = (\/T__J eV =10 (ro, 7).

Definition 2.1. Let T be a subgroup of SLy(Z). A modular form over T' is
a holomorphic function f(1) on HU {co} such that for any

a b
g_<cd>er7

the following property holds
at +b

o) = 1 (25

)zx@mv+®vv»
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where x : I' = C* is a character of I and [ is called the weight of f.
Let

4k & ) .
(2.5) Bap=1- 35— D) g
2% 221\

be the Eisenstein series, where By is the 2k-th Bernoulli number.

When k > 1, Ey is a modular form of weight 2k over SLo(Z). However,
unlike other Eisenstein theories, Eo(7) is not a modular form over SL(2,Z),
instead Fs(7) is a quasimodular form over SL(2,Z), satisfying:

at +b\ 9 6y —1le(er + d)
(2.6) E2 <CT—|—d> = (CT+d) EQ(T) . .
In particular, we have
(2.7) EQ(T + 1) = EQ(T),
1 6v/—1
(2.8) Es <—;> =T By(r) - = T

For the precise definition of quasimodular forms, see [10].
In the following, let’s review some level 2 modular forms.
Let

a b

e ={( & })esm@

rO(z):{(Z 2) ESLQ(Z)‘bEO (mod 2)}

be the two modular subgroups of SLy(Z). It is known that the generators of
[o(2) are T, ST?ST and the generators of I'°(2) are ST'S, T2STS.(cf. [4]).
Writing simply 6; = 6;(0,7), 1 < j <3, we have (cf. [9] and [14]),

¢c=0 (mod 2)},

1 1
() = (O3 +08),  eu(r) = 10304

!

Bar) = 501 +08),  exlr) =1

16
If T is a modular subgroup, let Mgr(I") denote the ring of modular forms
over I with real Fourier coefficients.

0105 .

Lemma 2.1 (cf. [12]). One has that 61(7) (resp. e1(7)) is a modular form
of weight 2 (resp. 4) over I'4(2), d2(T) (resp. e2(7)) is a modular form of
weight 2 (resp. 4) over I'%(2) and moreover Mg (I'°(2)) = R[d2(7),e2(7)].
Moreover, we have transformation laws

(2.9) 5 <—%> — 25,(7), - <—%> — ey (7).



18 FEI HAN, KEFENG LIU, AND WEIPING ZHANG

2.2. Proof of Theorem 1.1. Set

u=1 v=1
(2.10) . )
® ®Aq7"*1/2 (gc) ® ®A_qs—1/2 (gc)
r=1 s=1

01(Tc X, W, &c) admits formal Fourier expansion in q'/? as
(2.11)

01(Tc X, We, éc) = Ao(Te X, We, éc) + A(Te X, We, &)g/2 + -,

where the A;’s are elements in the semi-group formally generated by com-
plex vector bundles over X. Moreover, they carry canonically induced con-
nections denoted by V47, and let V©! be the induced connections with
¢'/2-coefficients on ©; from the V4.

To prove part 1 of Theorem 1.1 (8m + 4-dimensional case), set

(2.12)
Pi(r) 1= { P 0@ ) 21(1)

R 8m—+4
A(TX)detl/2 (2 cosh (%RW)) ( )
. 57 C ch (@l(TCX7 WCaéC))
cosh (5)
R (8m-—+4)
(2.13) Py(7) := {A(TX) cosh (g) ch (©2(TcX, WC,£C))}
and
=08) e B2(T) (01 (TX)=—p1(W)) _ 1
Eo(T) =
(2.14) 2 p1(TX) —p1 (W)
~ (8m)
- A(TX) cosh (%) ch (02(Tc X, WC;SC))} :
We have

Proposition 2.1. Pi(7) is a modular form of weight 4m + 2 over I'y(2)
while Py(1) + (p1(TX) — p1(W))Z2(7) is a modular form of weight 4m + 2
over I'°(2). Moreover, the following identity holds,

(215 P (—1> — o2 (Py(r) 4 (pu(TX) — 1 (W))Ea(r).

T

Proof. Let {£2mv/—1yi} (resp. {£2my/—1z;}) be the formal Chern roots
for (Wg, V) (resp. (I'Mg, VTMe)). Let ¢ = 2nv/—1u.
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By the Chern root algorithm, we have

(2.16)
) 4m+-2 9,( l 1
Pu(r) = 2! d e B0 (TX)-pr (W) ]1;[1 <$J9 ) (U - >
02(0,7) 03(u, 7) Oz (u, 7) }(8’””*4’
0%(“7 ) 93(077—) 02(07T) ’
and
(2.17)

Po(7) + (pr(TX) = pr(W))Z2(7)
{624E2(T)(P1(TX (W) A(T X)) cosh ) (©2(Tc X, We, o))

4m+2 9
624E2(T) (P (TX)—p1(W)) 0 H 2 yja
e 02(0,7)

63(0,7) 0s m) e
03 (u,7) 0 ( ) ( ,T) '
Then we can apply the transformation laws (2.1)-(2.4) for theta functions

as well as the transformation laws (2.7)-(2.8) to (2.16) and (2.17) to get the
desired results. 0

} (8m-+4)

We can now proceed to prove part 1 of Theorem 1.1 as follows.
Combining Lemma 2.1 and Proposition 2.1, we can write

Py(7) + (p1(TX) — p1(W))Z2(7)

2.18
(2.18) —=ho(802)2™ T 4 hy(882)* ™ teg + -+ hyp (852

where h, € Q¥4(X) 0 <r < m.

By the definitions of b,(Tc X, Wc, &c) and B,.(VTX, VW, V9), it’s easy to
see that for 0 < r < m,
(2.19)

~

c

hr = {A(TX) cosh (5 ) eh(br(To X, We, 60))} ™4 (pi (TX)=py (W), (VT VW, V).
Therefore (simply denote b,(TcX, Wg,&c) and B.(VIX, VW, VE) by b,

and f3,),

(2.20)
Py(1)

2

r=0

(PL(TX) = p1(W))Za(7)

N
{ (TX) cosh( ) ch(b, }(8m+4)

T (p(TX) —p1(W))5r> (86,17,
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By (2.9) and (2.15), we have

(2.21)
Pl(T)

ez [P (1) + ) - oy (1)
<{X(TX) cosh (g) Ch(bo)}(8m+4) + (P (TX) —Pl(W)Wo) (862 <—%>>2m+1

2l
~ rAm+2

+
+ ({A\(TX) cosh (g) Ch(bm)}(8m+4)

s (=) (2(=2)) |
=2 [({Ax)con (§) awan)} "+ () — )} ) 5517

+ <{A\(TX) cosh <g> ch(bm)}

- (pu(TX) — pl(W))ﬁm>

S L (T —pl(W))5m> <851>ea“] |

Comparing the constant terms of both sides of (2.21), one has

(2.22)
A(TX)det!/? <2 cosh (%RW»
cosh? (%)

= zm: olt2m+1-6r <{E(TX) cosh (%) ch(br)}(8m+4) + (M (TX) - pl(W))ﬁr) :
r=0

ei(m(TX)—m(W))

So we have

A(TX)det'/? <2 cosh (%RVV)) (8m-+4)
cosh? (%)

(2.23) ” ) m

— ;} ol+2m+1-6r {A(TX)Ch(br(TcX7 We, &c)) cosh <g) }(8 +4)

=(p1(TX) —pr(W)) - BV, VWV, V4,
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where

BVIX VW V)

Z l+2m+1 67‘5 VTX vW vﬁ)
r=0

. (8m)
e P (TX) (W) _ 1 A(TX)det!/? (2 cosh <§RW))
pi(TX) —p1(W) cosh? (£)
To prove part 2 of Theorem 1.1 (8m-dimensional case), set
(2.24)
Q:(7) == {624E2(T)(P1(TX) p1(W))
-~ (8m)
A(TX)det/? <2 cosh <§RW>>
. — ch (01(Tc X, We,&c)) ;
cosh (5)
~ c (8m)
(2.25) Qa(7) == {A(TX) cosh (5) ch (©2(TcX, WC,fC))}
and
e21E2(N)(p1(TX)—p1(W)) _
alr) = %)~ ()
(2.26) b n
N c (8m—4)
- A(TX) cosh (5) ch (02(TcX, WC7§C))} :

Similar to the 8m + 4 dimensional case, one has

Proposition 2.2. Q1(7) is a modular form of weight 4m over T'g(2) while
Q2(7)+ (p1(TX) —p1t (W))IIa(7) is a modular form of weight 4m over I'Y(2).
Moreover, the following identity holds,

e Qi (-1) =2 @) + (1 (TX) - (W)r)

Then one can prove part 2 of Theorem 1.1 by adopting similar idea as in
the above proof of part 1 of Theorem 1.1.
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