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Abstract

In this paper we introduce a new geometric flow with rotational invariance and prove that,
under this kind of flow, an arbitrary smooth closed contractible hypersurface in the Euclidean
space R™*! (n > 1) converges to S™ in the C*°-topology as t goes to the infinity. This result
covers the well-known theorem of Gage and Hamilton in [4] for the curvature flow of plane
curves and the famous result of Huisken in [5] on the flow by mean curvature of convex surfaces,

respectively.
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1 Introduction

Since the last quarter of twentieth century, using partial differential equations to formulate and
solve geometric problems has become a trend and a dominating force. A new area called geometric
analysis was born. When looking back at the history of geometric analysis, one could see numerous
success stories of utilizing differential equations to tackle important problems in geometry, topology
and physics. Typical and important examples would include Yau’s solution to the Calabi conjec-
ture using the complex Monge-Ampere equation (see Yau [16]), Schoen’s solution of the Yamabe
conjecture (see Schoen [13]), Schoen-Yau’s proof of the positive mass conjecture (see Schoen-Yau
[14]), Donaldson’s work on 4-dimensional smooth manifolds using the Yang-Mills equation (see
Donaldson [3]), and recently, Perelman’s solution to the century-old Poincaré conjecture using
Hamilton’s beautiful theory on the Ricci flow, which is just a nonlinear version of the classical heat
equation (see [10]-[12]). However, despite all these success, the equations studied and utilized in
geometry so far are almost exclusively of elliptic or parabolic type. With few exceptions, hyper-
bolic equations have not yet found their way into the study of geometric or topological problems.
More recently, Kong et al introduced the hyperbolic geometric flow which is a fresh start of an
attempt to introduce hyperbolic partial differential equations into the realm of geometry (see [6]
or [7]). The kind of flow is a very natural tool to understand the wave character of metrics, the
wave phenomenon of curvatures, the evolution of manifolds and their structures (see [2], [8]-]9]).
In this paper, we introduce a new geometric flow with rotational invariance. This flow is de-
scribed by, formally a system of parabolic partial differential equations, essentially a coupled system
of hyperbolic-parabolic partial differential equations with rotational invariance. More precisely, let

%, be a family of hypersurfaces in the (n + 1)-dimensional Euclidean space R™*! with coordinates

(1, ,Tpt1), without loss of generality, we may assume that the family of hypersurfaces .7 is
given by

x=x(t,01, - ,0n), (1.1)
where 2 = (1, ,2n41)7 is a vector-valued smooth function of t and § = (0y,--- ,6,), the new

flow considered here is given by the following evolution equation

0r  —~0(fi(lz)z) =
— — - = —A 1.2
g1+ 2 M = el (12)
n a9
where f;(v) (i = 1,--- ,n) are n given smooth functions, A = Z 930 is the Laplacian operator,
i=1 0

and | e | stands for the norm of the vector e in R"*!. Tt is easy to verify that the equation (1.2)



possesses the rotational invariance which plays an important role in the present paper.

We are interested in the deformation of a smooth closed contractible hypersurface z = x (61, - ,0)
under the flow (1.2), that is, we consider how the hypersurface z( is smoothly deformed, say, em-
bedded into a smooth family of hypersurfaces depending on a time parameter. This can be reduced

to solve the Cauchy problem for (1.2) with the initial data
t=0: z=x0(01, - ,0,). (1.3)

Obviously, in the present situation, zg = xo(f1,- - ,0,) is a vector-valued periodic function, say,

defined on [0, 1]”. In Section 2, we shall prove

Theorem 1.1 If f € O, 2y € L>®and |zo(01,--- ,0,)| > 0, then the Cauchy problem (1.2), (1.3)

admits a unique global smooth solution on [0,00) x R™.
In particular, the following theorem will be proved in Section 3.

Theorem 1.2 Suppose that f;(v) are all constants, i.e., f;(v) =c¢; (i=1,---,n), suppose further-
more that xo = xo(61, -+ ,0,) is a smooth vector-valued periodic function with the period [0,1]",
and satisfies

‘130(91,“' ,Hn)| >0, V ((91,"' ,Hn) S [0,1]”. (14)

Then the Cauchy problem (1.2)-(1.3) has a global smooth solution x = x(t,01,---,0,), and the

solution satisfies

(¢, 00, ,6,) —%é/

|xo(01, -+ ,0,)|dO; - --db, as t /" oo. (1.5)
[071]7:,

Moreover, if the hypersurfaces undergo suitable homotheties, then the normalized hypersurfaces

converge to a sphere in the C*°-topology as t goes to the infinity.

Remark 1.1 The geometric meaning of the result in Theorem 1.2 can be shown in the following

figure:
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Figure 1: Deformation of an ellipse

Remark 1.2 In the case n = 1, Theorem 1.1 covers the well-known theorem of Gage and Hamilton
in [4] for the curvature flow of plane curves; while for the case of general n, Theorem 1.1 covers
the famous result of Huisken in [5] on the flow by mean curvature of convex surfaces into spheres.
In particular, we would like to point out that, in Theorem 1.1, we do NOT require the assumption

that the hypersurface is conver.

The paper is organized as follows. In Section 2 we prove the global existence and uniqueness
of smooth solutions for the Cauchy problem (1.2), (1.3); Sections 3 is devoted to the proof of
Theorem 1.2; In Section 4, we state conclusions obtained in the present paper and give some open
problems. In Appendix, we investigate the time-asymptotic behavior of global smooth solutions

for the equation (1.2).

2 Global existence and uniqueness of smooth solutions

This section is devoted to the global existence and uniqueness of smooth solution of the following

equation
dr = O(fil|lx)z) @
oz N 2.1
ot ; 06; Find 2.1)
where = (x1,--- ,2,)7 is the unknown vector-valued function, f(v) = (fi(v), -+, fm(¥))T is a
m_ g2
given smooth vector-valed function, A = Z 202 is the Laplacian operator, and | e | stands for the
i=1 ¢

norm of the vector e in R™.



Let

z=rP, r=|z|, P=(p1, - ,pn)GS”’l. (2.2)

Then it is easy to verify that the equation (2.1) can be rewritten as

or - Ofi(r)r)

a + - 7891 — A’]" (2.104)
and
OP 0P
E + o (9761]2(7’) =0 (21b)

for smooth solutions.
We now consider the Cauchy problem for the equation (2.1), equivalently, the system (2.1a)-
(2.1b) with initial data

t=0: r=ro(0), P=PF), (2.3)

where 7¢(0) is a given scalar function of 8, and Py () is a given vector-valued function of 6. In what
follows, we first investigate the local existence of smooth solution of the above Cauchy problem.

As the standard way, let K(¢,0) be the fundamental solution associated with the operator

% — A. That is to say,

K(t,0) = (47t) "% exp {—ZL} . (2.4)

Then the solution r = r(t,0) of the Cauchy problem

or - Ofilr)r)

—+ ——2 2 = Ar,
t 0;
0 i=1 0 (2.5)
t=0: r=ry(0)
has the following integral representation
mo
r(t,0) = K(t,0) xro(0) + Z/ Ko, (t —s,0) % (fi(r(s,0))r(s,0))ds, (2.6)

j=1"0

where * denotes the convolution with the space variables. We have

Lemma 2.1 Assume that

f € Cl? o € LOO’ (27)

then there exists a positive constant T such that the Cauchy problem (2.5) admits a unique smooth

solution = r(t,0) on the strip

Iy = {(t,@) |t € [OaT]a b€ Rm}a (28)



where

M 1 2 1 2

T2 T2

T = mi 2.
i < 2H> ) <4Hm> ) (2.9)

in which
0
M = |ro(0)lz=, H= max sup [gi(r(t, 0))l; sup | =o=gi(r(t,0)) ¢,
Bi=lesm | < (mt1) M rl<(m+1)M |99
(2.10)
here g5 = Tf](r) (.7 = la e 7m)'
Proof. Set
Gr={r:[0,T] x R™ — L=®R™) |||Ir(t, )lzee < (m+1)M for t€[0,T]} (2.11)
and let 7 be the following integral operator
mooat
Tr(t,0) = K(t,0)  ro(6) + Z/ Ko, (t — 5,0) * (;(r(s, 0))r(s, 0))ds. (2.12)
j=1"0
The solution 7 = r(t,6) can be obtained as the L>-limit of the sequence {r*} defined by
r0(t,0) = K(t,0) xro(0), r*T1=7r% (n=0,1---). (2.13)
To prove the above statement, we first claim that, for any ¢ € [0, T}, it holds that
[r*(t, 0|~ < (m+1)M, Yke{0,1,2,---}. (2.14)
In what follows, we prove (2.14) by the method of induction.
When k& = 0, we have
(¢, 0) || e = || K (2. 0) % 70(0) | - (2.15)
By Young’s inequality, we obtain
I (t, 0)l| e < K (8 0) L2 ro(O) Lo = llro(O)llz~ = M < (m + 1)M. (2.16)
Now we assume that ||7*(¢,0)||L~ < (m +1)M (k € N) holds. We next prove
¥4 (¢, 0)[| L < (m+ 1) M. (2.17)
In fact,
I Ol = (I Tr*(E, 0)l|
mo et
< () @l + 3 [ I (= 5.0) 5 (5,0 5.0) s
j=1"0
mo et
< M+Z/ 16, (= 5,0) |1 [|(f3 (" (5, 0))r" (s,0)) || = ds.
j=1"0

(2.18)



Notice that

Joom [ Ko, (t — 5,0)[d0) = /m lr(t — )% Q(tgi 5o {‘4(]59125) } do
= [n(t-s)"% /Rm,l {exp{—4(t9%S)}+--~+exp{—4(9§15)}+
exp{—4(iﬂ2'fs)}+---+exp{—&}}d91...d9j1d9j+1-.-d9mx
Lo {_4@9—)} dgj
ferl-ta e (o))
Lol )
_ [47r(ts)]é/RZ(t91 5 exp{él(teizs)}daj

L i i
= [n(t—9) [2/ P{Axu_)}d<4<t—>>]

N

= n(t— s F {[4<t )

[N

= [n(t—1s)"2.
(2.19)
It follows from (2.18) that
mo .t
[P, 0) || < M+ Z/O 1Ko, (t — 5,0) || 2 [|(f5(r* (s5,0))r* (5, 0))|| Lo ds

j=1

m 1 t 1
< M3 w00 (5, 0) 1 ds

j=1 0 (2.20)
< M—l—mﬂ_%H/t(t - s)_%ds

0

= M+2ma 7Ht? < M+2mr *HT? < (m+1)M.

This is the desired estimate (2.14). Thus, the proof of (2.14) is completed.
In what follows, we prove that {r¥(¢,6)} is uniformly convergent in the strip (0,7] x R™. To

do so, it suffices to show that
oo
Z [Tk+1(ta 9) - ’rk (tv 6)}
k=1

is uniformly convergent in the strip (0,7] x R™.



In fact, it holds that

[+t =Pl < Z/ 1K, (¢ « [(f5(r"(5,0))r"(5,0)) = (£, (5,0)r" 1 (5,0))] | 2~ ds
< Z/ 1Ko, (t = 5,0)1 2 | [(f5 (" (5,0))r" (5,0)) — (£ (r" " (5,0))r" "1 (5,0))] [l L~ ds
< Z/ 16, (t = 5,0) 122119 (r* (5, 0)) — g; (r*7" (5,0)) [ L~ ds
< Z/ 156, (t = ,0) 122 [1Vg; (Bi) | o 7" (5,0) = "7 (5, 0) || Lo ds
< mHmax {|r*(s,0) — r* (s, 9)\}/0 | Ko, (t — 5,0)|L1ds
< 27 imHt? max {|r¥(s,0) — ¥ (s,0)|}
< 2r *mHT? max {[r*(s,0) — "1 (s,0)|}
< (Qﬂ_%mHT%) max {|[r*"1(s,0) — r"2(s,0)|}
<
< (Qw_%mHT%)kmaX {Ir'(s,0) —r%(s,0)|},

(2.21)
where
Bk € [min{rk(s,3:),rk71(s,x)},max{rk(s,z),rkil(s,x)}] .
Noting
[ (s,0) — rO(s,0)|| L= < 27~ 2mHT?, (2.22)
we obtain from (2.21) that
[rE Y | e < (271' 2mHT2>k+1. (2.23)
By (2.9), we have .
+1
[r* = M| < (;) : (2.24)

which implies that Z [rF1(¢,0) — r¥(¢,0)] is uniformly convergent in the strip (0, 7] xR™. There-
k=1
fore, klim 77(t,0) gives the unique local solution of the Cauchy problem (2.5). Thus, the proof

Lemma 2.1 is completed. O

Lemma 2.2 Suppose that
fe Cl, rog € L™



and let M 2 lrollLee . Suppose furthermore that r(t,0) is the solution of Cauchy problem (2.5) on

the strip Il7, then it holds that

llr(t, )|l Lo 11,y < M. (2.25)
Proof. It follows from the proof of Lemma 2.1 that
A
7,0l mpy < (m+ 1M =K. (2.26)
Introduce
K
w(t,0) =r(t,0) — M — — (|9|2 +CLe"), (2.27)
where C' and L are positive constants to be determined. By (2.27),
K 2Km
Tt = Wt —+ Tet, AT’ = A’UJ + ? (228)
On the other hand,
m m m m 2K
S (i), = (gi(r)e, =D g5(r) Zgj (wj + 73 9j) : (2.29)
j=1 j=1 j=1
Thus,
- - CK , 2Km
we + g (r)we, + T > ()85 + e = T = Aw (2.30)
j=1 j=1
Choose sufficiently large C' such that
w(0,8) = r(8) — M — 7(|9|2 +CL) <0, YOecR™, (2.31)
and
w(t,£L, 05, ,0p,) =7(t,£L, 05, -+ ,0,,)M — & [(L* + 63 + - -+ 62) + CLe!] <0,
w(t, 01, =L, ,0p,) =7(t,01,£L, -+ ,0,,) — M — £ [(03 + L> + -+ 62)) + CLe!] <0,
w(t, 01, ,0m_1, iL) = r(t,&l, e O, iL) - M — % [(92 -+ 91%171 + |L|2) + C’Let] <0
(2.32)
for all ¢t € [0, 7).
In what follows, we prove that, for any (¢,6) € (0,T) x (=L, L)™, it holds that
w(t, ) <0 (2.33)
In fact, if (2.33) is not true, then we can define ¢ by
t= inf {¢t|w(t,0)=0 forsome 0 € (—L,L)"}. (2.34)

te(0,T]



It is easy to see that there exists a point, denoted by § € (—L, L)™, such that
’LU( 59_) = 07 we, ({7 0_) = 07 Tty we,,, (tj 9_) =0 (235)

and

wa,p, (£,0) <0, Vie{l,--- ,m}. (2.36)

By (2.35)-(2.36), it follows from (2.30) that

o 2K _ .- CK ; 2Km
j=1
Noting
lgj(®)ze < oo and (£,6;) € (0,T] x (=L, L), (2.38)
we can choose a sufficiently large C' such that
=~ CK i 2Km
Combining (2.37) and (2.39)
wy(t,0) < 0. (2.40)
On the other hand, by the definition of (Z,) it holds that
- w(t, ) —w(t — At,0)
= > .
we(t,0) AI?EO iy >0, (2.41)
which is a contradiction. This proves (2.33).
Noting (2.27) and (2.33) and letting L — oo gives
r(t,0) < M, ¥ (t,0) €Iy (2.42)
Similarly, letting
K
w(t, ) =r(t,0) + M + 73 5 (16]* + CLe") (2.43)
we can prove
r(t,0) > —M, V(t,0)€lly. (2.44)
Combining (2.42) and (2.44) leads to
()l Loe (1) < M (2.45)

Thus, the proof of Lemma 2.2 is completed. O

By Lemma 2.1 and Lemma 2.2, we have

10



Theorem 2.1 If f € C' and ro € L™, then the Cauchy problem (2.5) admits a unique global

smooth solution on [0,00) x R™.
Now we turn to consider the Cauchy problem (2.1) (i.e., (2.1a)-(2.1b)), (2.3). We have

Theorem 2.2 Under the assumptions of Theorem 1.1, the Cauchy problem (2.1), (2.3) admits a

unique global smooth solution on [0,00) x R™.

Proof. Noting (1.4), by maximum principle we obtain that, on the existence domain of smooth
solution, it holds that

r(t,0) > 0. (2.46)

On the one hand, we observe that, under the condition (2.46), the equation (2.1) can be reduced
to the system (2.1a)-(2.1b); on the other hand, we notice that, once r = (¢, 0) is solved from the
Cauchy problem (A.17), then the equation (2.1b) becomes linear. Therefore, Theorem 2.2 follows
Theorem 2.1 directly. (]

Obviously, Theorem 1.1 follows Theorem 2.2 directly.

3 Time-asymptotic behavior of smooth solutions — Proof
of Theorem 1.2

In this section, we first investigate the time-asymptotic behavior of solution of the Cauchy problem
(1.2), (1.3) in the case that f;(v) = ¢;, and then based on this, we prove Theorem 1.2.

Notice that, in the present situation, the equation (2.1a) can be rewritten as

Let

T:t, mz@ifcit,

then

9 _00t ¥ iaei_ﬁ+i 9
or ~ oor T <=6 or ot &0

Therefore, without loss of generality, we turn to consider the time-asymptotic behavior of solution

of the Cauchy problem

uy —Au =10 in (0,00) x R™,
(3.1)
u(z,0) = up(x) in R™,

11



where u = u(t, x) is the unknown function, the initial data ug(xz) € C(T™) is a periodic function

with period, say, T" = {& = (z1, -+ ,xn) | =l < x; <1}
Theorem 3.1 If the initial data ug(x) satisfies Dirichlet conditions, then it holds that
u(t,x) — wg as t /" oo,

where g stands for the mean value of ug(x), which is defined by

_ 1
0= Sol{T"} Jpn uo(x)dx.

(3.2)

(3.3)

Proof. Recall Dirichlet conditions: if the periodic function ug(x) satisfies Dirichlet conditions,

then
e up(x) has a finite number of extrema in any given interval;
e up(x) has a finite number of discontinuities in any given interval;
e up(x) is absolutely integrable over a period;

e ug(z) is bounded.

By the theory of Fourier series, under Dirichlet conditions, ug(z) is equal to the sum of its Fourier

series at each point where ug(z) is continuous; moreover, the behavior of the Fourier series at

points of discontinuity is determined as well. Therefore, it holds that

oo oo
0 mym mpym
up(z) = E e E Ay om,, €OS j %1 cos l—anr
m1=0 my=0 1 n

1=1 \m1=0 m;=1 m, =0

n—1 n 00 0o o] o)
2
=1 j=i+1 | m1=0 m;=1 m;=1 my,=0
1<j
myTm . myT . mym mym
COS ——I1 * + - SIn ;- S1n Zj---COS Tn + -
Iy I; l; In
&S] [eS)
. A" n
my---m,, S I T sSin l Tp,

myp=1 my=1 n

12

n o0 00 oo
Z Z Z 1 mym .oy My,
.. .. Aml”."li”'m‘n’ COS l Il .. Sln T:rl DRI COS T
i n

i
xn}Jr

(3.4)



where A?, ... (j =0,1,2---n) stand for the Fourier coefficients which are given by

1
A,

ATL

in which

0
A0

my---

my-e.

TG M My

Mn

Amym, h In mim s
—_—n uo(x) cos ——x1 - - - €08 ——Xpdxy -+ - ATy,
byl )y, _1, l1 ln
Amy-my, L L tn
e —— .« .. ... uo(x)x
R A N A
17 .oy My, T
cos Tq---Sin ——x; - - - COS Tpdxy - -dx; - dT,,
ll li ln
l I I; ln
A"nl""’nn ! ’
—_— .« .. ... o e uo(x)x
ll T Z'n -1l —1; —lj —ln
mym . mT .My My T
Cos Z1---sin ——x; - -sin ——x; - - - cos ——xpdry - dTy - -
1 l; l; ln
5t ln
Amym, Lo . om,T
—n ug(x) sin ——x1 - - - sin ——a,dxy - - - dxy,
byl )y, _1, l1 ln
1
ma = o if mp=mg=---=m, =0,
1
My, — on 10 if mi;, = Mi, = =m;, 4 07 m;, 7é 0:
m, =1, if mi=mo=---=m,#0

13

dz;---dx,,

(3.5)

(3.6)



It is easy to see that

ug(r) = 2"11 / / x)dzy - dmn+Z{ZAO s Ocos l }+

m;=1
s - m;m m;m
L ) J )
E g E A e ---0 COS —— i CO8 —— 1 +
i=1 | j=i+1 | mi=1m =1 v J
1<J
n—2 n—1 n
DRI OR BV DD DI I
i=1 | j=i+1 | k=j+1 | mi=lm;=1 my=1
i<y i<j<k
m;m m;T Mg
cos X; COS T COoS T + -+
l; 1 I
ad ad mim My, T
2 : 2 : 0 . 1 n
“e. Aml"""ln l 1'1 -+ COS l xn_i'_
— — 1 n
mi=1 my=1
n (oo} oo (oo}
A mam .oy myT
E E E my--m.,, COS ] T1---sin Txi -+ COo8 l—x" +
i=1 \m1=0 m;=1 my,=0 1 v n
n—1 n oo [e) 00 oo
Am1~~-mn><
i=1 | j=i+1 | m1=0 m;=1 mj=1 mp=0
i<j
i m;m My,
COS xl sin X; sin Tj coS T +
ll lz lj ln
n—2 n—1

i=1 | j=i+1 | k=j+1 | m1=0  m;=1 m;=1 me=1 mn=0

i<j i<j<k
mym . MmyT . MmyT Mg My T
cos €1 - Sin T 8IN ——T; -sin —— X - - - COS —— Ty, + -+
I l; ; I In
n
g g An _sin / Ty ---sin ; Tn
mi=1 mp=1 n

Noting that, for the fundament solution K = K (¢, x), it holds that

K(t x)dx—/ = %ex —@ de =1 (3.8)
R ~ Jre \ Ant P 4t 7 '

14



we obtain

w = () X

Fl 2
- / wo(z — ) (4;) exp {'it} dé

In n )

_ln

+) A
=1

n—1 n

Z ZZZAOM,MJWLKOX

J=i+l | k=j+1 | mi=1m;=1 m,=
i<j z<]<k

(3.9)

/ exp{_ %‘F'Zl't'-i-«fi} Cosnﬂ;fﬂ(ggi—gi)cosﬂ;j'ﬂ( fg)cosn;:W(xk—gk)}}}+...
n i J

1 3 > i §2+... +€2
—_ § § A0 _51 T Ton
(47Tt> 1 e /Rn P { 4t %
mi=

mp=1

mm(xl &)+ cos My T
Iy ln

(xn - En)dgl e dgna

cos

zon
i=1 \m1=0 mi;=1 my=0

mym .My My T
7 (v — &) -sin ——(x; — &) - - cos ——
1

cos
l; "

15

3 G+ t8
{Z Z Z Am1 My, /RneXp{lzlt}x

(@ — &n)dEy - - - d

(3.10)

(3.11)



7 mqum
ll ( 61) Sln l (xl é"L) S lJ (xj 5]) COS l (xn - £n>d€1 e dé‘n}} bl
% J n
(3.12)
A3 B 1 Fn—2 n—1 n
- (L) XIT iy Z Y A
i=1 | j=i+1 | k=5+1 | m1=0 m;=1 mp=1 m,=0
1<j i<j<k
2 .
/ exp 751 G osmlﬂ(xl751)~~Sinmm(xif§i)~~
n 4t ll ll

sin mT(x] —&)---sin leﬂ- (zp — &) - - - cos n;"ﬁ (Xp — Ep)dEq - - - dfn} }}

(3.13)
and so on, particularly,
A= Z Z An opl GG
47Tt T g 4t
m1=1 mp=1

. Cmgm |

sin li (xl - §1) ...sin ] (xn — fn)d& o déy,. (3 14)
n

16



On the one hand,
1\2 y? nm
— —L L cos L (a — y)d
(47rt> /Rexp{ 4ﬁ}cos i (z —y)dy
! EL/e v [cosmr cos + si O sin 28 }d
— Xp{ ——— — X COS — in —xsin —
) SO\ w ] Y T B
1gcomr/e yQComrd+ 1g'mT/e v
— S — Xp{ ——— s — — sin — Xp§ —-——
At TP U T T ) TP U e
L e { 2} 4+ exp { )] i+
. At P ly P ll/ Y
1L 2"sinmrgr;/ex —y—z [ex {T i}—ex {—H ZHCZ
i \ant [ BTN (B R W P T
' 2
nw y*  onm o
-+ —vyiod
/R { 4t+ lyz} Y+

I
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On the other hand,
/ exp {—(ay® +2by + ¢) } dy
R

= /Rexp{—i [(ay+b)2+ac—b2]}dy
= eXp{b2;ac}/Rexp{—i(aerb)Q}dy
= (3)ée><p{b2 ;ac} /OOO exp(—y®)dy

3 2 _
(W>zexp{b ac} (a >0, ac—b* > 0).

a a
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3 2 2
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and so on, in particular,
% oo 1 3 12 "
A" = ce A - —22 L — d&, - -
Zl Zl my-Mp (47.(_t> /Rexp{ 4t}81n ll (l‘l fl) 51
my= mp=
1 % 52
. om,T
(471’15) . €Xp {_42} Sin l; (77 — &n)dEn
(3.23)

Noting

exp{— [(ﬂzﬂ>2+...+ (ml:ﬂ')Q] t} —0 as t— o0, (3.24)
we obtain the desired (3.2) from (3.9) and (3.19)-(3.24) immediately. Thus, the proof of Theorem
3.1 is completed. [

We now prove Theorem 1.2.
Proof of Theorem 1.2. By Theorem 1.1, the Cauchy problem (1.2)-(1.3) admits a global smooth
solution x = x(t,01,--- ,0,), and then by Theorem 3.1, the solution x = x(t, ) satisfies (1.5). (1.5)
implies that hypersurfaces converge to a sphere with radius 7 in the C*°-topology as ¢ goes to the

infinity. Thus, the proof of Theorem 1.2 is completed. [
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4 Conclusions and open problems

In this paper we introduce a new geometric flow with rotational invariance. This flow is described
by, formally a system of hyperbolic partial differential equations with viscosity, essentially a cou-
pled system of hyperbolic-parabolic partial differential equations with rotational invariance, which
possesses very interesting geometric properties and dynamical behavior. We prove that, under
this kind of new flow, an arbitrary smooth closed contractible hypersurface in the Euclidean space
R+ (n > 1) converges to S™ in the C*°-topology as t goes to the infinity. As mentioned before,
this result covers the well-known theorem of Gage and Hamilton in [4] for the curvature flow of
plane curves and the famous result of Huisken in [5] on the flow by mean curvature of convex
surfaces, respectively. In fact, more applications of this flow to differential geometry and physics
can be expected.

In the present paper, we only investigate the evolution of closed contractible hypersurfaces in
the Euclidean space R™ (n > 2) under the flow equation (1.2), there are some fundamental and
interesting problems. In particular, the following open problems seems to us more interesting and
important: (i) use the flow equation (2.1) to investigate the deformation of a closed m-dimensional
sub-manifold g = (61, ,0m); (ii) find a suitable way to extend the results presented in this
paper to the case of Riemannian manifolds in stead of the Euclidean space R™; (iii) introduce the
theory of viscous shock waves to investigate geometric problems. These problems are worthy to

study in the future.

Appendix

In this appendix, we investigate the time-asymptotic behavior of solution of the following

Cauchy problem

n

8“+ZM:AU in (0, 00) x R",

at 0
o = 9 (A.1)
u(0,0) = ug(0) in R™,
where u is the unknown scalar function, f;(u) (i =1,--- ,n) are smooth functions, ug is a periodic
function which stands for the initial data.
Lemma A.1 If ug(0) is a smooth periodic function with period T" = {0 = (61,02,------ 0.) |

—1; <0; <I;}, then u(t,x) is also periodic with period T™ for any t.
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Proof. Since ug(f) = u(0,0) is periodic with period T", it holds that
u(0,0) = uo(0) = uo(0 +T") = u(0,6 + T™). (A.2)
Taking into account the property of the uniqueness of the solution u(t,0), gives
u(t,0) = u(t, 0 +T"). (A.3)

This proves Lemma A.1. 0O

Let © be a smooth domain in R™ and consider the parabolic operator

Lu= zn: aii(t I)ﬁ +Zn:b«(t 0)2% 4 c(t, o) (A.4)
7i’j:1 13\" 89169j — 1\" 891 i .

with smooth and bounded coefficients and a nondegenerate matrix (a;;).

Lemma A.2 (Harnack’s inequality) Suppose that u(t,0) € C%((0,T) x Q) is a solution of
%l; —Lu>0in (0,T) x Q, suppose furthermore that u(t,0) > 0 in (0,T) x Q. Then for any given
compact subset D of Q and each 7 € (0,T), there exists a positive constant C depending only on

D, 7 and the coefficients of L, such that
supu(t — 7,60) < Cyinf u(t, 6). (A.5)
K K

Lemma A.3 Suppose that u(t,0) is a periodic solution of the following equation

du | N~ O(fi(w)u)

— ———r - =A t,0 o0) x R™ A.

at+i§:1 o, u, ¥ (t,0) € (0,00) x (A.6)
with a period, say, T" = {0 = (01,09, ----- 0n) | =l; < 0; <U;}, where f; € L (i € N). Then

there exists a positive constant Coy depending only on T" 7 and f;, such that

l[w(t =7, 0)|| oo (vny < Collult, O)] L1 (). (A7)

Proof. The proof will be divided into two cases.

Case I: u(t,0) >0

By Harnack inequality, i.e., Lemma A.2, there exists a positive constant C3 depending only on
T", 7 and f; such that

supu(t —7,0) < Oiﬂl}f u(t, 0). (A.8)
T,’L n

By the mean-value theorem, there exists a point 6y € T™ such that

A 1

M0 T e

1
u(t,)d = mrﬂ‘”m(t, 6o) > iTllnfu(t, 0), (A.9)
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Therefore, using (A.8), we have

Al Ol = w(t.0) > infult,0)
1 ] (A.10)
Z G s%pu(t -7,0)> 6||U(t = 7,0) ||l Lo ().
So
lu(t — 7.6)]| oy < Callult, 0) |2 ony. (A.11)
where C3 = %.
Case II: General case
Let
u(t,0)t = max {u(t,0),0}, wu(t,0)” = —min{u(t,0),0}. (A.12)
Then
u(t,0) = u(t,0)" —u(t,0)” (A.13)
and
u(0,0) = u(0,0)" —u(0,0)". (A.14)

By Theorem 2.1, it is easy to see that the solution u(¢, ) is unique. Substituting (A.13) into (A.6)

gives

dut = A(fi(wu™) du” | - O(fi(wu”) -{_
at+;60i_mﬁ_{ o +; 30, + Au }_ . (A.15)

We turn to investigate the following Cauchy problems

+ n . +
O SRR o )
ot 90;
2 (A.16)
and n
ou Y ofiWuT) _ A~ (0,00) x R™,
ot _ 00;
2 (A.17)

By making use of the method of the proof of Theorem 2.1, we can easily prove the Cauchy

problems (A.16) and (A.17) admit the unique non-negative solution, respectively. Noticing (A.11),

we have
supu(t —7,0) < suput(t —7,0) < C’g/ ut(t,0)do (A.18)
T T n
and
infu(t —7,0) > —supu (1~ 7.0) > ~Cj / = (t, 0)do. (A.19)
n Tn n
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Consequently,

Jult = 7.0y < Ca [ (at (2,0) +um(t.0)ds
! (A.20)
< 03/ [u(t, 0)]d6 < Cs[u(t, 0) | (zmy-
’H"n.
This is the desired estimate (A.7). Thus, the proof of Lemma A.3 is completed. O
Let us recall some notions which will be used later. Let Cpg, (T™) be the space of T"-periodic

functions in C*°(R"), and

whee (R x T™) {u(t,0) | u(t,0) € WL2(R¥™™) and u(t,0) is T" — periodic in 6},

per,loc
Hy, (T") = qult,0) | u(t,0) € Coe (T (VHY (T, el o= el
per ) ’ per ? H;ST(T”) Hl(jrn).
(A.21)
Noticing (2.10) (i.e., g;(u) = fi(u)u), we can rewrite (A.6) as
Ju .
5 + diveg(u) = Au. (A.22)

In a manner similar to [1], we can prove the following result on stationary solutions of (A.22).
Proposition A.1 Let

g(U(t, 9)) S I/Vl’OO (R X T”)n, le@g(U(t,e)) c L?;JC(Rl-i-n).

per,loc

Suppose that there exist real numbers Co > 0,m > 0 and [ € [0, Z—fg) forn >3, such that

lgi(v(£,0)) < Co(1 + [o[™) (A.23)

and

|diveg(v(t,0))] < Co(1 + [v]') (A.24)

for all (t,0) € R x T™. Suppose furthermore that the couple (m,l) satisfies at least one of the

following conditions

m =0, (A.25)
1e0,1), (A.26)
. fn+2 . . n
[ < min {n,Q} and there exists to € R such that diveg(v(te,0)) =0 for all § € T".
(A.27)

Then for any fized p € R, there exists a unique solution v = v(p,e) € H;ET(T”) of the problem
—A’U(p, 9) + dngg('U(p7 9)) = Oa ’U(p7 .) =D- (A28)
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Moweover, v(p,e) satisfies the growth property: if p > q, then
v(p,0) > v(g,0), ¥V 0T (A.29)
Remark A.1 Usually, the problem (A.28) is called “cell problem”.

We now state the main result in this section.

Theorem A.1 Suppose that ug(0) € L2, (T"),

u=u(t,0) € C([0,00), L' (T")) [V L([0,00) x T") (") Lie ([0, 00), Hpe, (TT))

be the unique solution of the Cauchy problem

du

Fy + diveg(u) = Au  in (0,00) x T,

(A.30)
u(6,0) = up(0) in T™,

and v(ug,0) € H}

per

(T™) is the solution of the associated cell problem (A.28), where

A 1
0:

—_— dz.
ol (T} Jy, tol®)d
Suppose furthermore that g(v(t,0)) € W;ijloc(]R x T™)", Og,g5(u(t,0)) € L{S.(R x T™) and the
assumptions of Proposition A.1 are satisfied. Suppose finally that there exist constants B1, 32 € R

such that
v(B1,6) < up(f) < v(f2,0). (A.31)

Then it holds that

lu(t,0) — v(tg, 0)|| Lo (rny — 0 as t — oo. (A.32)

Before proving Theorem A.1, we introduce the following notations:

M(t,0) 2 supu(r, 0), (A.33)
P(t) £ inf{p | v(p,0) > M(t,0) for 6 € T"} (A.34)

and
N(p,t) £ {0 € T" | v(p,0) < M(t,0)}. (A.35)

By maximum principle, we can find that if v = u(¢,0) is a solution of (A.22) with the initial data

satisfying (A.30), then
v(61,0) <u(t,0) <v(B2,0), V(t0)€[0,00)xT".
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Moreover, it is easy to show that P(t) is a bounded non-increasing function of ¢. Therefore, we

may set

P £ lim P(t).

t—oo

In order to prove Theorem A.1, we need the following lemma.

Lemma A.4 Suppose that u = u(t,0) is a solution of

du = O(fi(wu) _
5% + 2 26, = Au (A.36)

and v(q, 0) is the solution of the associated cell problem (A.28). Then for any given positive constant
g, there exist to € R and sequences {t,} and {7} satisfying 7, > t,, > to and lim t, = oo, and
n—oo

0, € N(t1,t,), such that
|wn(0,0,)] <e, (A.37)

where

wa(t,0) 2 0(P(tn),0) — u(ra +1,0) (te(0,1],0 € T™). (A.38)

Proof. Since v(t,0) is a continuous function of ¢, for any given positive constant £ > 0, there

exists a positive constant ¢ such that

1
[v(t,0) = v(P,0)[Loo (1) < 35 (A.39)

provided that [t — P| < é. Choose ¢y € R such that

P—P@t)| <8 for t>t. (A.40)
By (A.39), we have
[0(P,6) — (P(0), Ol (o) < 52 (A41)
Let t1 € R satisfy
[t; —P| <46 for t; <P. (A.42)
By (A.39) again, we get
[o(t1,6) ~ o(P,0) 1oy < 3 (A.43)

Combining (A.41) and (A.43) gives

[v(t1,0) — v(P(t),0)] Lo (Tn)

IN

[0(t1,6) = v(P,0)|| oo (1m) + [[0(P, 8) — v(P(2), )| oo (1m)
1

2
< §€+§€:§€.

(A.44)
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Hence, for ¢t > to and 6 € N(¢y,¢), it holds that
2
U(P(t)70) - §€ < v(tla 0) < M(ta 0) < U(P(t)76) (A45)
Let {t,} be a sequence and satisfy

lim ¢, = oo.
n—oo

For 0,, € N(t1,t,), there exists 7, (> t,,) such that
1
|u(T, 0n) — M(tn, 0,)] < 3¢ (A.46)
Consequently, for large n we have t,, > to, and then we obtain from (A.45) that
2
v(P(tn),0,) — 3¢ <w(t,0,) < M(t,0,) <v(P(t,),0,). (A.47)
Combining (A.46) and (A.47) yields
wr(0,0,) = [v(P(t,), 0n) — u(th, 0,)| < e. (A.48)

This proves the desired (A.37). O

We now prove Theorem A.1 .

Proof of Theorem A.1. Without loss of generality, we may choose 7,, and t,,, with 7, > t,, it
follows that w,, is a non-negative function. By (A.28) and (A.31), wy, is a non-negative solution of

the following equation

% + dive {/0 g mo(P(tn),0) + (1 — Tu(r, + t, 9)]drwn} = Aw, in (0,00) x T". (A.49)

Since v(t,0) is a solution of the associated cell problem (A.28), we can choose K > 0 such that
—K <w(t1,0) <wv(te,0) < K. (A.50)
So we have

According to Lemma A.2, there exists a constant C' only depending on T™ and ||0ug|| Lo (- &, K] xT")

< 'l oo (=, K] xTm) - (A.51)

1
/ GTro(P(t), 0) + (1 — Tyu(r, + £, 0)|dr
0 Lo ([0,1]xT™)

such that
sup wp (—a, 8) < Ci%lfcun(o7 0). (A.52)
Tn "
It follows from Lemma A.4 that
0 <ov(P(tn),0) — u(ty, — a,0) < Ce. (A.53)
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Thus, there exists a sequence 7,, such that
|w(,0) = v(P,0)||poo(rny — 0 as n — oo. (A.54)
On the one hand, integrating equation (A.31) over all T™ leads to

/ u(t,6)d0 = / u(0,6)dé, (A.55)

which implies that the total mass of solutions is conserved for all time. On the other hand, letting

n — oo and combining (A.28) and (A.54) gives
ug = P. (A.56)

If uy,uo are solutions of (A.36), we can obtain the L' contraction property by similar method in
[15],

lu1(t) — w2 ()| prerny < llua(s) —ua(s)|prrny for 0<s <t (A.57)

Because v(tg, 0) is a stationary solution of (A.31), we choose u1 = u, uy = v(Ug, 0), s = N, t > Ny,
and then we have

lu(t,8) — v(uo, 0)||L1(rny — 0 as t — oo. (A.58)

By Lemma A.3 and (A.58), we obtain
lu(t,8) — v(wo, 0)|| Lo (rny — 0 as t — oo. (A.59)

Thus, the proof of Theorem A.1 is completed. [
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