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A. We introduce the concept of degree to classify the periods in the sense of Kont-
sevich and Zagier. Some properties of degree are proved. Using this notion we give some
new understanding of some problems in transcendental number theory. The zeta function
of a period is defined and some its interesting properties are given.

1. I

In the wonderful exposition [2], Kontsevich and Zagier defined the concept of period:
integral of a rational function over a domain bounded by polynomial inequalities with
rational coefficients. By its definition the set of periods is countable and includes all alge-
braic numbers. Moreover, it is a ring, the sum and product of two periods are still periods.
Many important transcendental numbers arising from modular forms, L-functions, hyper-
geometric functions, etc are periods. On the other hand, from the point of view of algebraic
geometry, periods are integrals of closed algebraic differential forms over relative algebraic
chains (cf.[1] and [2]).

The Galois theory plays a fundamental role in algebraic number theory. What can we do
something for transcendental number theory? From Grothendieck’s motive point of view,
period is a suitable category for building a Galois theory (called motive Galois group) ( cf.
[1]).

The periods are also intended to bridge the gap between the algebraic numbers and
the transcendental numbers. They are natural objects whether from the point of view of
number theory or algebraic geometry.

The main purpose of the paper is to try to classify these periods under suitable category.
The main tool is the concept of degree introduced by the author. We find that this concept
can give some theoretic solutions to some problems in transcendental number theory. For
example, we prove that the sum of two transcendental periods with different degrees is
a transcendental number. We also define the zeta function for a period and prove some
interesting properties.

2.    

Let us recall the definition of a period [2].

Definition 2.1. A period is a complex number whose real and imaginary parts are abso-
lutely convergent multiple integrals ∫

Σ

R
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where Σ is a domain in Rn given by polynomial inequalities with rational coefficients and
R is a rational function with rational coefficients.

In above definition one can replace ”rational coefficients” by ”algebraic coefficients” by
introducing more variables. Because the integral of any real function is equal to the area
under its graph, any period can be written as the volume of a domain defined by polynomial
inequalities with rational coefficients. So we can rewrite the definition as

Definition 2.2. A period is a complex number whose real and imaginary parts are abso-
lutely convergent multiple integrals ∫

Σ

dx1...dxn

where Σ is a domain in Rn given by polynomial inequalities with algebraic coefficients.

For simplicity, in what follows we always use definition 2.2 as the definition of a period.
The set of periods is clearly countable. It is a ring and includes all algebraic numbers.

For instance, let p be an algebraic number, then

p =
∫

0≤x≤p
dx.

Many interesting transcendental numbers also are periods.

Example 2.3. (1)

π =

"
x2+y2≤1

dxdy.

(2)

log(q) =
"

1≤x≤q,xy≤1,y≥0
dxdy,

where q is a positive algebraic number.
(3) All ζ(s) (s is positive integers) are periods [2]. ζ(s) is Riemann zeta function

ζ(s) =
+∞∑
n=1

1
ns .

Recall that (cf. [3]) ζ(2k) = 22k−1

(2k)! Bkπ
2k where Bk is the Bernoulli number.

(4) Some values of the gamma function

Γ(s) =
∫ ∞

0
ts−1e−tdt

at rational values, Γ(p/q)q (p, q ∈ N) are periods [2].
(5) Let

Ek(z) =
1
2

∑
m,n∈Z;(m,n)=1

1
(mz + n)k

be the Eisenstein series of weight k. If z0 ∈ Q, then πkEk(z0) is a period [2].

Though there are numerous non-period transcendental numbers, we have not a simple
criterion for testing them. So the first essential problem is to find one concrete transcen-
dental number which is not a period.

It seems that (conjecturally in [2]) the Euler constant

γ =
∑
n→∞

(1 +
1
2
+ ... +

1
n
− log n) = 0.5772156...
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and basis of natural logarithms

e =
∑
n→∞

(1 +
1
n

)n = 2.7182818...

are not periods.

3.    

Since so many transcendental numbers are periods. How to differentiate them? To deal
with this problem, we introduce the following concept.

Definition 3.1. If p is a real period, we define the degree of p as the minimal dimension
of the domain Σ such that

p =
∫
Σ

1

where Σ is a domain in Euclid space given by polynomial inequalities with algebraic coef-
ficients.

For any complex period p = p1 + ip2, we define deg(p) = max(deg(p1), deg(p2)).

If p is not a period, we may define the deg(p) = ∞. Thus we can extend the degree to
whole complex number field C.

By the definition, deg(0) = 0 and deg(p) = 1 if and only if p is an non-zero algebraic
number. It is obviously that deg(π) = deg(log(n)) = 2, n ∈ Z, n > 1.

Let P denotes the set of all periods. Let Pk = {p ∈ P| deg(p) = k}, then P =
⋃∞

k=0 Pk.
Thus we give a classification for all periods.

The following two propositions are the basic properties of degrees.

Proposition 3.2. Let p1, p2 be two periods, then deg(p1 p2) ≤ deg(p1) + deg(p2) and
deg(p1 + p2) ≤ max(deg(p1), deg(p2)).

Proof. First we consider the real case. Assume that deg(p1) = k, deg(p2) = l, then there ex-
ists two domains Σ1 ⊆ R

k,Σ2 ⊆ R
l both bounded by polynomial inequalities with algebraic

coefficients such that

p1 =

∫
Σ1

dx1...dxk, p2 =

∫
Σ2

dy1...dyl.

One has

p1 p2 =

∫
Σ1×Σ2

dx1...dxkdy1...dyl,

where Σ1 × Σ2 ⊂ R
k × Rl = Rk+l also bounded by polynomial inequalities with algebraic

coefficients. So deg(p1 p2) ≤ deg(p1) + deg(p2).
Suppose that k ≤ l, then

deg(p1) + deg(p2) =
∫
Σk×∆

dx1...dxl +

∫
Σ1

dx1...dxl,

where ∆ is the l − k-times product of [0, 1]. Hence deg(p1 + p2) ≤ max(deg(p1), deg(p2)).
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For the complex case, let p1 = a1 + ib1, p2 = a2 + ib2, where a1, a2, b1, b2 are real
periods. One gets

deg(p1 p2) = deg(a1a2 − b1b2 + i(a1b2 + a2b1))
= max(deg(a1a2 − b1b2), deg(a1b2 + a2b1))
≤ max(max(deg(a1a2), deg(b1b2)),max(deg(a1b2), deg(a2b1)))
= max(deg(a1a2), deg(b1b2), deg(a1b2), deg(a2b1))
≤ max(deg(a1) + deg(a2), deg(b1) + deg(b2), deg(a1) + deg(b2),

deg(a2) + deg(b1))
= deg(p1) + deg(p2))

and

deg(p1 + p2) = max(deg(a1 + a2), deg(b1 + b2))
≤ max(max(deg(a1), deg(a2)),max(deg(b1), deg(b2)))
= max(deg(a1), deg(a2), deg(b1), deg(b2))
= max(max(deg(a1), deg(b1)),max(deg(a2), deg(b2)))
= max(deg(p1), deg(p2)).

�

Generally, we can not get deg(p1 + p2) = max(deg(p1), deg(p2)). The simplest example
is p1 = π, p2 = 1 − π. The following examples also show that the equality deg(p1 p2) =
deg(p1) + deg(p2) is not true generally.

Example 3.3. 1): Consider

ξ =

$
x2+y2≤1,0≤z(x2+y2+1)≤1

dxdydz =
"

x2+y2≤1

dxdy
x2 + y2 + 1

=

∫ 2π

0

∫ 1

0

rdrdθ
r2 + 1

= π log 2.

deg(ξ) ≤ 3. But deg(π) + deg(log 2) = 4.
2): Consider

η =

$
x2+y2≤1,0≤z((x2+y2)2+1)≤4

dxdydz =
"

x2+y2≤1

4dxdy
(x2 + y2)2 + 1

=

∫ 2π

0

∫ 1

0

4rdrdθ
r4 + 1

= π2.

deg(η) ≤ 3. But 2 deg(π) = 4.

Proposition 3.4. If p is a nonzero algebraic number and p1 is any non-zero period, then
deg(p + p1) = deg(p1) = deg(pp1).

Proof. The first equality follows from deg(p1) = deg(−p+p+p1) ≤ deg(p+p1) ≤ deg(p1).
For the real case, deg(pp1) = deg(p1) is obviously from the definition. In complex case,
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let p = a + ib, p1 = a1 + ib1, a, b ∈ Q, a1 and b1 are any real periods. We have

deg(pp1) = deg(aa1 − bb1 + i(ba1 + ab1))
= max(deg(aa1 − bb1) deg(ba1 + ab1))
≤ max(max(deg(aa1), deg(bb1)),max(deg(ba1), deg(ab1)))
= max(deg(aa1), deg(bb1), deg(ba1), deg(ab1)).

Since p , 0, the last equation equals deg(p1). So deg(pp1) ≤ deg(p1). But p is any
nonzero algebraic number, so one has deg(p1) = deg( 1

p pp1) ≤ deg(pp1). Hence deg(p1) =
deg(pp1).

�

Denote Pk = {p ∈ P| deg(p) ≤ k}, Pk + Pl = {pk + pl|pk ∈ Pk, pl ∈ Pl}, PkPl = {pk pl|pk ∈

Pk, pl ∈ Pl}. Then Pk + Pl ⊆ Pmax(k,l) and PkPl ⊆ Pk+l. Pk has a good graded characteristic.
It is a additive group but in general (except k = 1) not a ring. Proposition 3.4 tells us that
Pk is a P1-module, i.e. Q-module.

If we consider the map d : P × P→ Z by

(p1, p2) 7→ deg(p1 − p2).

It obviously satisfies

• d(p1, p2) = 0 if and only if p1 = p2.
• d(p1, p2) = d(p2, p1).
• d(p1, p2) ≤ d(p1, p3) + d(p3, p2).

So d defines a metric on P. The Pk is a ball of radius k and center at 0.

4. S         

Using the decomposition properties of rational functions with one variable, we can get
the precise forms of some periods with degrees ≤ 2.

Theorem 4.1. Let p be a real period with deg(p) ≤ 2. If it can be written as p =
∫

R(x)dx
for some rational function R(x). Then it has the form a arctan ξ + b log η + c, where
a, b, c, ξ, η ∈ Q.

Proof. Because any rational function can decompose as following four types

A
x − a

,
A

(x − a)n ,
Bx +C

x2 + bx + c
,

Bx +C
(x2 + bx + c)n

where A, B,C, a, b, c ∈ Q and n ≥ 2. By elementary integral theory, in every type the
integral value has the form a arctan ξ + b log η + c. �

It seems very difficult to determine the degree of a given period. We present following
three problems.

Problem 1: Give a concrete period such that the degree ≥ 3.
Problem 2: Let p1, p2 be two non-algebraic periods. Does deg(p1 p2) ≥ 2?
Problem 3: Determine the precise forms of all periods with degrees = 2.
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5. A    

In general, determining the transcendence of the sum of two transcendental numbers is
a very difficult problem. For example, the transcendence of e+π is a longstanding problem
in number theory. But if the transcendental numbers are periods. We have some theoretic
solutions.

Theorem 5.1. Let p1, p2 be two transcendental periods. If deg(p1) , deg(p2), then both
p1/p2 and p1 + p2 are transcendental numbers.

Proof. If p1/p2 = a is algebraic, by Proposition 3.4 one have deg(p1) = deg(p2a) =
deg(p2). Which is a contradiction.

Since deg(p1) , deg(p2), we may assume that deg(p1) < deg(p2). By Proposition 3.2
one has deg(p2) = deg(−p1 + p1 + p2) ≤ max(deg(p1), deg(p1 + p2)) = deg(p1 + p2) ≤
max(deg(p1), deg(p2)) = deg(p2). So we have deg(p1 + p2)) = deg(p2). Hence p1 + p2 are
transcendental. �

More generally, we have following result about linearly independence

Theorem 5.2. Let p1, p2 be any two complex numbers. If deg(p1) , deg(p2), then p1 and
p2 are linearly independent over Q.

Proof. If one is not a period, the theorem is obviously true. We may assume that both are
periods. If p1 and p2 are linearly dependent, let ap1 + bp2 = c, a, b, ∈ Q \ 0, c ∈ Q. Then
deg(p1) = deg( c

a −
c
b p2) = deg(p2). Which is a contradiction. �

It is obviously that above results can extend to arbitrary periods. That is, if 1 <
deg(p1) < deg(p2) < ... < deg(pk), then p1 + p2 + ... + pk is transcendental. If 1 ≤
deg(p1) < deg(p2) < ... < deg(pk) ≤ ∞, then p1, p2, ..., pk are linearly independent over Q.

It was conjectured in [2] that the basis of the natural logarithms e is not a period. i.e.
deg(e) = ∞. This implies that e+π is a transcendental number. Using Theorem 5.2 we can
improve this as

Corollary 5.3. To prove that e + π is a transcendental number, one only needs to prove
that deg(e) ≥ 3.

6.    

Let p be a period. We consider the following zeta function for p

ζp(t) = exp(
∞∑

m=1

tm deg(pm)
m

), 0 ≤ t < 1.

It is the analogue of Weil’s zeta function for algebraic variety over finite fields. We find
that ζp(t) has some interesting properties.

Theorem 6.1. (1) ζ0(t) = 1. If p is a non-zero algebraic number, then ζp(t) = 1
1−t .

(2) ζp1 p2 (t) ≤ ζp1 (t)ζp2 (t).
(3) ζp(t) ≤ exp( t deg(p)

1−t ).
(4) If deg(p1) ≤ deg(p2), then ζp1+p2 (t) ≤ exp( t deg(p2)

1−t ).
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Proof. Since deg(0) = 0 and deg(p) = 1 for non-zero algebraic number p. (1) is directly.
From Proposition 3.2, we have

ζp1 p2 (t) = exp(
∞∑

m=1

tm deg(pm
1 pm

2 )
m

)

≤ exp(
∞∑

m=1

tm(deg(pm
1 ) + deg(pm

2 ))
m

)

= ζp1 (t)ζp2 (t),

and

ζp(t) ≤ exp(
∞∑

m=1

tm deg(p)) = exp(
t deg(p)

1 − t
).

If deg(p1) ≤ deg(p2),

ζp1+p2 (t) = exp(
∞∑

m=1

tm deg((p1 + p2)m)
m

)

≤ exp(
∞∑

m=1

tm deg(pk
1 pm−k

2 )
m

)

≤ exp(
∞∑

m=1

tm(k deg(p1) + (m − k) deg(p2))
m

)

≤ exp(
∞∑

m=1

tmm deg(p2)
m

)

= exp(
t deg(p2)

1 − t
).

In the second step we choose k such that deg(pk
1 pm−k

2 ) = max{deg(pi
1 pm−i

2 ), 0 ≤ i ≤ m}.
�

Problem: Let p be a non-algebraic period. Is ζp(t) a transcendental function?

R
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