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Abstract

In this paper we introduce a new geometric flow — the hyperbolic gradient flow for graphs

in the (n + 1)-dimensional Euclidean space R
n+1. This kind of flow is new and very natural

to understand the geometry of manifolds. We particularly investigate the global existence of

the evolution of convex hypersurfaces in R
n+1 and the evolution of plane curves, and prove

that, under the hyperbolic gradient flow, they converge to the hyperplane and the straight

line, respectively, when t goes to the infinity. Our results show that the theory of shock waves

of hyperbolic conservation laws can be naturally applied to do surgery on manifolds. Some

fundamental but open problems are also given.
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1 Introduction

Classical differential geometry has been the study of curved spaces, shapes and structures of man-

ifolds in which the time does not play a role. However, in the last several decades geometers

have made great strides in understanding the shapes and structures of manifolds that evolve in

time. There are many processes in the evolution of a manifold, among them the Ricci flow is

arguably the most successful (see Hamilton [8]), since it plays a fundamental role in the solution

of the famous Poincaré conjecture (see [21]-[23]). The Ricci flow is described by a fully nonlinear

system of parabolic partial differential equations of second order. Another famous geometric flow

— mean curvature flow is also described by a fully nonlinear system of parabolic partial differ-

ential equations of second order. The (inverse) mean curvature flow has been used to prove the

Riemannian-Penrose inequality in general relativity by Huisken and Ilmanen (see [10]) and also

has been used to study many problems arising from applied fields, i.e., imaging processing (see

[2]). In fact, the traditional geometric analysis has been successfully applied the theory of elliptic

and parabolic partial differential equations to differential geometry and physics (see [26]). There

are three typical examples: the Hamilton’s Ricci flow, the (inverse) mean curvature flow and the

Schoen-Yau’s solution of the positive mass conjecture (see [24]-[25]). On the other hand, since

the hyperbolic equation or system is one of the most natural models in the nature, a natural

and important question is if we can apply the theory of hyperbolic differential equations to solve

some problems arising from differential geometry and theoretical physics (in particular, general

relativity). Recently, we introduced the hyperbolic geometric flow which is an attempt to answer

the above question. The hyperbolic geometric flow is a very natural tool to understand the wave

character of the metrics, wave phenomenon of the curvatures, the evolution of manifolds and their

structures (see [12], [13], [16], [5], [6], [14], [9], [15], [17]).

In this paper we introduce a new geometric flow — the hyperbolic gradient flow for graphs

in the (n + 1)-dimensional Euclidean space R
n+1. The flow is described by hyperbolic evolution

partial differential equations of first order for a family of vector fields Xt defined on R
n. Roughly

speaking, the hyperbolic gradient flow evolves the tangent planes of the graph under consideration,

this is different from the Ricci flow, the mean curvature flow or our hyperbolic geometric flow.

This kind of flow is new and very natural to understand deformation phenomena of manifolds (in

particular, graphs in R
n+1) as well as the geometry of manifolds. It possesses many interesting

properties from both mathematics and physics. In the present paper, we particularly investigate

the global existence of the evolution of convex hypersurfaces in R
n+1 and the evolution of plane
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curves, and prove that, under the hyperbolic gradient flow, they converge to the hyperplane and

the straight line, respectively, when t goes to the infinity. Our results show that the theory of

shock waves of hyperbolic conservation laws can be naturally applied to do surgery on manifolds.

Some fundamental but open problems are also given.

2 Hyperbolic gradient flow for graphs in R
n+1

Let Σt be a family of graphs in the (n + 1)-dimensional Euclidean space R
n+1 with coordinates

(x1, · · · , xn+1). Without loss of generality, we may assume that the graphs Σt are given by

xn+1 = f(t, x1, · · · , xn), (2.1)

where f is a smooth function defined on R×R
n. Let Xt be a family of tangent vector fields induced

by Σt, or say,

Xt = (X1, · · ·Xn) = (∂x1
f, · · · , ∂xn

f), (2.2)

where ∂xi
f (i = 1, · · · , n) stand for ∂f

∂xi
. The hyperbolic gradient flow under considered here is

given by the following evolution equations

∂Xt

∂t
+ ∇

(

‖Xt‖
2

2

)

= 0, (2.3)

where ∇ = (∂x1
, · · · , ∂xn

) and

‖ · ‖2 = 〈·, ·〉, (2.4)

in which 〈·, ·〉 stands for the inner product in R
n.

By the definition, the hyperbolic gradient flow introduced in this note is a geometric flow for

the evolution of a family of tangent vector fields induced by a family of graphs, it is quite different

from the Ricci flow and the mean curvature flow: the Ricci flow is described by evolution equations

for a family of Riemannian metrics gij(t) defined on the manifold under consideration, while the

mean curvature flow is on the evolution of the manifold itself.

3 The evolution of convex hypersurfaces in R
n+1

In this section, we shall investigate the evolution of convex hypersurfaces in the (n+1)-dimensional

Euclidean space R
n+1.

As before, let R
n+1 be the (n+1)-dimensional Euclidean space with coordinates (x1, · · · , xn+1),

and xn+1 = S (t, x1, · · · , xn) be a family of hypersurfaces in R
n+1. Introduce the vector field

~v = {S1, · · · ,Sn}, (3.1)
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where Si (i = 1, · · · , n) stand for ∂S

∂xi
. In the present situation, the hyperbolic gradient flow (2.3)

reads

~vt + ~v · ∇~v = 0. (3.2)

In this case, (3.2) is nothing but the transport equation for ~v.

Example 3.1. Consider the evolution of the hypersurface xn = 1
2

(

x2
1 + · · · + x2

n

)

under the

hyperbolic gradient flow. In the present situation, we need to consider the Cauchy problem for the

equation (3.2) with the following initial data

t = 0 : ~v = ~v0 , (x1, · · · , xn). (3.3)

It is easy to see that the solution of the Cauchy problem (3.2), (3.3) reads

~v =

(

x1

t+ 1
, · · · ,

xn

t+ 1

)

, (3.4)

moreover, the solution is unique. Obviously, the vector field defined by (3.4) gives a potential

function xn = 1
2(t+1)

(

x2
1 + · · · + x2

n

)

+ C, where C is a constant independent of x. Noting that

the initial hypersurface is xn = 1
2

(

x2
1 + · · · + x2

n

)

leads to that the constant C must be zero. Thus,

the evolution of the hypersurface xn = 1
2

(

x2
1 + · · · + x2

n

)

under the hyperbolic gradient flow is

described by the family of hypersurfaces xn = 1
2(t+1)

(

x2
1 + · · · + x2

n

)

. Clearly, for any fixed x, the

hypersurfaces tend to flat under the hyperbolic gradient flow when t goes to the infinity. �

Consider the Cauchy problem for the equation (3.2) with the following initial data

t = 0 : ~v = ~v0(x1, · · · , xn), (3.5)

where ~v0 is a smooth vector field defined on R
n. We now consider the global existence and decay

property of smooth solutions of the the Cauchy problem (3.2) and (3.5).

In fact, we can obtain a sufficient and necessary condition on the global existence of smooth

solutions of the following Cauchy problem for more general quasilinear systems of first order

∂u

∂t
+

n
∑

j

λj(u)
∂u

∂xj

= 0, ∀ (t, x) ∈ R
+ × R

n (3.6)

with the initial data

u(0, x) = φ(x), ∀ x ∈ R
n, (3.7)

where x = (x1, · · · , xn) stands for the special variable, u = (u1(x, t), · · · um(x, t))T is the unknown

vector-valued function of (t, x) = (t, x1, · · · , xn) ∈ R
+ × R, λi(u) (i = 1, · · · , n) are given C1

functions and φ(x) = (φ1(x), · · · , φm(x))T is a given C1 vector-valued function with bounded C1

norm. The following lemma comes from Conway [3], Li [20], Dafermos [4] or Kong [11].
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Lemma 3.1 Under the assumptions mentioned above, the Cauchy problem (3.6)-(3.7) has a unique

global C1 smooth solution on the domain R
+ × R

n if only if, for any given x ∈ R
n, it holds that

d(SpV0(x),R
−) ≥ 0, (3.8)

i.e., all eigenvalues of the n× n matrix

V0(x) =

(

m
∑

k=1

∂λi

∂uk

(φ(x))
∂φk

∂xj

)n

i,j=1

(3.9)

are non-negative, where SpV0(x) stands for the spectrum of the matrix V0(x).

Lemma 3.2 Under the assumptions of Lemma 3.2, suppose that φ is a C2 vector-valued function

with bounded C2 norm and suppose furthermore that there exists a positive constant δ > 0 such

that

d(SpV0(x),R
−) ≥ δ, ∀ x ∈ R

n. (3.10)

Then the Cauchy problem (3.6)-(3.7) admits a unique global C2 smooth solution u = u(t, x) on the

domain R
+ × R

n, moreover it holds that

‖ Du(t, x) ‖L∞(Rn)= C1(1 + t)−1 (3.11)

and

‖ D2u(t, x) ‖L∞(Rn)≤ C2(1 + t)−2, (3.12)

where C1 is a positive constant independent of t but depending on δ and the C1 norm of φ, while

C2 is a positive constant independent of t but depending on δ and the C2 norm of φ.

The proof of Lemma 3.3 can be found in Grassin [7] for the case of scalar equation and in Kong

[11] for general case.

If m = n and λi(u) = ui (i = 1, · · · , n) (in this case, the system (3.6) goes back to the system

(3.2)), then in the present situation, V0(x) defined by (3.9) reads

V0(x) =

(

∂φi

∂xj

)n

i,j=1

. (3.13)

In particular, if there exists a potential function Φ(x) such that

∂Φ

∂xi

= φi(x) (i = 1, · · · , n), (3.14)

then

V0(x) = Hess (Φ(x)). (3.15)
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We now turn to consider the Cauchy problem for this special case, i.e.,























∂u

∂t
+

n
∑

j=1

uj

∂u

∂xj

= 0, ∀ (t, x) ∈ R
+ × R

n,

t = 0 : u = φ(x) =

(

∂Φ

∂x1
, · · · ,

∂Φ

∂xn

)T

, ∀ x ∈ R
n.

(3.16)

By Lemma 3.1-3.2, we have

Lemma 3.3 Suppose that the potential function Φ = Φ(x) is C2 smooth and its derivates Φki

(i = 1, ..., n) has a bounded C1 norm. Then the Cauchy problem (3.16) has a unique global C1

smooth solution on the domain R
+ × R

n if only if Hess (Φ(x)) is non-negative for all x ∈ R
n.

Moreover, if the following assumptions are satisfied: (i) Φ is a C3 smooth function, (ii) the

derivative DΦ = (Φx1
, · · · ,Φxn

)T is a vector-valued function with bounded C2 norm, (iii) there

exists a positive constant δ independent of x such that

d(Hess (Φ(x),R−) ≥ δ, ∀ x ∈ R
n, (3.17)

then the global smooth solution u = u(t, x) to the Cauchy problem (3.16) satisfies the following

properties:

(I) there exists a C3 potential function U = U(t, x) such that

ui(t, x) =
∂U

∂xi

(t, x) (i = 1, ..., n), ∀ (t, x) ∈ R
+ × R

n, (3.18)

(II) there exist two positive constants C3 and C4 independent of t but depending on δ and the

C1 norm (for C3), the C2 norm (for C4) of DΦ(x), respectively, such that

‖D2U(t, ·)‖L∞(Rn) ≤ C3(1 + t)−1, (3.19)

and

‖D3U(t, ·)‖L∞(Rn) ≤ C4(1 + t)−2, (3.20)

where D = (∂x1
, ..., ∂xn

).

Proof. By Lemmas 3.1-3.2, we only need to prove (I) in Lemma 3.3.

In order to prove (I), it suffices to show

∂ui(t, x)

∂xj

=
∂uj(t, x)

∂xi

, ∀ i 6= j, ∀ (t, x) ∈ R
+ × R

n. (3.21)

In fact, introduce

ωi
j =

∂ui

∂xj

−
∂uj

∂xi

(i, j = 1, · · · , n; i 6= j). (3.22)
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Obviously, when t = 0,

ωi
j(t, 0) =

∂

∂xj

(

∂

∂xi

Φ

)

−
∂

∂xi

(

∂

∂xj

Φ

)

= 0 (i, j = 1, · · · , n). (3.23)

On the one hand, differentiating the i-th equation in (3.16) with respect to xj gives

∂

∂t

(

∂ui

∂xj

)

+
n
∑

k=1

uk

∂

∂xk

(

∂ui

∂xj

)

= −
n
∑

k=1

∂ui

∂xk

∂uk

∂xj

. (3.24)

On the other hand, differentiating the j-th equation in (3.16) with respective to xi yields

∂

∂t

(

∂uj

∂xi

)

+

n
∑

k=1

uk

∂

∂xk

(

∂uj

∂xi

)

= −

n
∑

k=1

∂uj

∂xk

∂uk

∂xi

. (3.25)

Combing (3.24)-(3.25) leads to

∂ωi
j

∂t
+

n
∑

k=1

uk

∂ωi
j

∂xk

=
∑

p6=q

Γij
pqω

q
p, ∀ i 6= j, (3.26)

where Γij
pq stands for the coefficients of ωq

p which are smooth functions of ∂ul

∂xh
(l, h = 1, · · · , n).

Clearly, ωi
j = 0 (i, j = 1, · · · , n; i 6= j) is a solution of the Cauchy problem (3.26), (3.23). By

the uniqueness of the smooth solution of the Cauchy problem for hyperbolic partial differential

equation, we have

ωi
j ≡ 0 (i 6= j), ∀ (t, x) ∈ R

+ × R
n. (3.27)

This proves (3.21). Thus the proof of Lemma 3.3 is completed. �

Remark 3.1 In Lemma 3.2, we need the C1 norm of φ and the C2 norm of φ is bounded for the

estimates (3.11) and (3.12), respectively. For Lemma 3.3, the situation is similar.

However, in many cases (i.g., Example 3.1), the assumption that the C1 norm or C2 norm

of the initial data is bounded is not satisfied. The following discussion is devoted to the case of

unbounded initial data. For simplicity, we only consider the Cauchy problem (3.16).

Lemma 3.4 Suppose that Φ = Φ(x) is a C3 convex function, i.e., Φ(x) ∈ C3(Rn) and

Hess (Φ) ≥ 0. (3.28)

Then the Cauchy problem (3.16) admits a unique C2 solution u = u(t, x) on the domain R
+ ×R

n.

Moreover, there exists a potential function U = U(t, x) ∈ C3(R+×R
n) such that (3.18) is satisfied.

In particular, if there exists a positive constant δ independent of x such that (3.17) holds, then for

any fixed α ∈ R
n along the characteristic curve x = x(t, α) it holds that

|D2U(t, x(t, α))| ≤ C̃1(1 + t)−1 (3.29)
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and

|D3U(t, x(t, α))| ≤ C̃2(1 + t)−2, (3.30)

where C̃1 and C̃2 are tow constants independent of t but depending on δ and α.

The following corollary comes from Lemma 3.4 directly.

Corollary 3.1 Under the assumptions of Lemma 3.4, for any compact set Ω ⊆ R
n it holds that

‖D2U(t, ·)‖L∞(Ω(t)) ≤ C̃3(1 + t)−1, (3.31)

and

‖D3U(t, ·)‖L∞(Ω(t)) ≤ C̃4(1 + t)−2, (3.32)

where

Ω(t) = {(t, x)|x = x(t, α), α ∈ Ω}, (3.33)

C̃3 and C̃4 are two constants independent of t but depending on δ and the set Ω. �

Proof of Lemma 3.4. Noting (3.28), we have

Φxixi
(x) ≥ 0 (i = 1, · · · , n), ∀ x ∈ R

n. (3.34)

In the present situation, the characteristic curve pasting through any fixed point (0, α) in the initial

hyperplane t = 0 reads

xi = αi +
∂Φ

∂αi

(α)t (i = 1, · · · , n). (3.35)

By (3.34), it is easy to check that the mapping Πt : R
n → R

n defined by (3.35) is proper. On the

other hand,

J(Πt) = I + tHess (Φ). (3.36)

Using (3.28) again, we have

detJ(Πt) ≥ 1, ∀ (t, α) ∈ R
+ × R

n. (3.37)

This implies that for any fixed x ∈ R
+, the mapping Πt is a global C1 deffeomorphism. Solving α

from (3.35) gives

α = α(t, x) ∈ C2(R+ × R
n). (3.38)

The rest of the proof is standard (See [20] or [11]), here we omit the details. The proof of Lemma

3.4 is completed. �
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Lemma 3.3 guarantees that, if the initial vector field is induced by a graph, then so does the

solution vector-field. That is, if there exists a fuction ϕ0(x1, · · · , xn) such that v0
i = ∂ϕ0

∂xi
(i =

1, · · · , n), then there is a family of functions ϕ(t, x1, · · · , xn) such that

vi(t, x1 · · · , xn) =
∂ϕ

∂xi

(t, x1 · · · , xn) (i = 1, · · · , n) (3.39)

and

ϕ(0, x1, · · · , xn) = ϕ0(x1, · · · , xn). (3.40)

From the point of view of geometry, the hyperbolic gradient flow evolves a graph as a family of

graphs in the Euclidean space R
n+1.

Summarizing the above argument leads to

Theorem 3.1 For any given initial vector field induced by a convex graph xn+1 = ϕ0(x1, · · · , xn),

the solution ~v = ~v(t, x1, · · · , xn) to the hyperbolic gradient flow (3.2) exists for all time, and

there exists a unique family of graphs xn+1 = ϕ(t, x1, · · · , xn) such that the solution vector-field

~v = ~v(t, x1, · · · , xn) is induced by the family of graphs xn+1 = ϕ(t, x1, · · · , xn). Moreover, if the

initial graph is strictly convex, then for any fixed point (x1, · · · , xn) ∈ R
n the graphs xn+1 =

ϕ(t, x1, · · · , xn) tends to be flat at an algebraic rate (t+ 1)−1, when t goes to the infinity.

4 The evolution of plane curves

In this section, we particularly investigate the evolution of plane curves under the hyperbolic

gradient flow, here we still consider the graph case, however we do not assume that the graph is

convex.

Let y = f(x) be a smooth curve in the (x, y)-plane, and

v0(x) = f ′(x) (4.1)

be the slope function of the curve. In the present situation, the hyperbolic gradient flow equation

(3.2) becomes one-dimensional case, i.e.,

vt + vvx = 0. (4.2)

This equation can be rewritten as a conservative form

vt + (v2/2)x = 0. (4.3)
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We next consider the Cauchy problem for the conservation law (4.3) with the initial data

t = 0 : v = v0(x). (4.4)

As in Lax [19], we introduce

Definition 4.1 A function ψ has mean value M , if

lim
L→∞

1

L

∫ a+L

a

ψ(x)dx = M (4.5)

uniformly in a.

Corollary 4.1 If a function ψ is periodic with p period, then it has mean value M , and M is

given by

M =
1

p

∫ p

0

ψ(x)dx. (4.6)

If ψ ∈ L1(R), then it has mean value 0.

The following lemma comes from Lax [19].

Lemma 4.1 Let v(t, x) be a bounded weak solution of the Cauchy problem (4.3), (4.4). Suppose

that the initial data v0(x) has a mean value, then v(t, x) has the same mean value for all t.

The following important lemma comes from Kruzkov [18].

Lemma 4.2 Suppose that the initial data v0 is bounded measurable, then the Cauchy problem

(4.3), (4.4) has a unique entropy solution v = v(t, x) on the half plane t ≥ 0.

Lemma 4.3 Under the assumption of Lemma 4.2, if the initial data v0 is periodic with p period,

then the entropy solution v = v(t, x) of the Cauchy problem (4.3), (4.4) tends to M uniformly in

x at an algebraic rate (t+ 1)−1, when t tends to infinity, where M is given by

M =
1

p

∫ p

0

v0(x)dx.

Lemma 4.4 Suppose that the initial data v0 is in the class of L1(R), then the Cauchy problem

(4.3), (4.4) has a unique entropy solution v = v(t, x) on the half plane t ≥ 0. Moreover, v(t, x)

tends to 0 uniformly in x at an algebraic rate (t+ 1)−1, when t tends to infinity.

Lemmas 4.3 and 4.4 can be found in Serre [27] and Bressan [1], respectively.

Remark 4.1 The entropy solution v = v(t, x) mentioned in Lemmas 4.2, 4.3 and 4.4 means that

(i) v = v(t, x) is a weak solution of the Cauchy problem (4.3), (4.4); (ii) it satisfies the entropy

condition. In fact, the entropy solution may includes shock waves, rarefaction waves, and other

physical discontinuities.
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We now consider the evolution of the initial curve y = f(x) under the hyperbolic gradient flow.

Without loss of generality, we may assume that

f(0) = 0. (4.7)

By Lemmas 4.2-4.4, we have

Theorem 4.1 Suppose that f ′(x) is bounded measurable, and suppose furthermore that f ′(x) is

periodic or is in the class of L1(R), then the family of curves y = F (t, x) tends to the straight

line y = Mx uniformly in x at an algebraic rate (t + 1)−1, when t tends to infinity, where M is

the mean value of f ′(x), and y = F (t, x) is generated by the hyperbolic gradient flow, i.e., F (t, x)

satisfies

∂F

∂x
(t, x) = v(t, x), (4.8)

in which v = v(t, x) is the entropy solution of the Cauchy problem (4.3), (4.4) (in the present

situation, v0(x) = f ′(x)).

Remark 4.2 In geometry, one is, in general, interested in the case that the initial data f(x), or

say v0, is smooth and bounded. However, in the evolution process under the hyperbolic gradient

flow, discontinuities may appear. See Example 4.1 below for the details.

Example 4.1. Consider the evolution of the curve y = − cosx in the (x, y)-plane under the

hyperbolic gradient flow. In the present situation, the initial data reads

t = 0 : v = v0(x) = sinx. (4.9)

By the method of characteristics, the solution of the Cauchy problem (4.3), (4.9) can be constructed

and is given by Figure 4.1.

Notice that Figure 4.1 only describes the solution on one space-periodic domain, i.e., R
+ × [0, 2π].

Corresponding to the solution shown in Figure 4.1, the evolution of the curve y = − cosx under

the hyperbolic gradient flow can be described by Figure 4.2.

We observe from Figure 4.2 that the singularity have appeared in the evolutionary process (see

Figure 4.3 for the details).

Figure 4.3 shows that the singularity of cusp type of v = v(t, x) appears at x = π when t = 1.

It is easy to see that the entropy solution v = v(t, x) to the Cauchy problem (4.3), (4.9) includes

space-periodic shock waves. �
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Figure 4.1: The shock solution v = v(t, x) of the Cauchy problem (4.3), (4.9)

5 Conclusions and open problems

It is well known that there have been many successes of elliptic and parabolic equations applied

to mathematics and physics. On the other hand, hyperbolic partial differential equation is a

very important kind of PDEs, it can be used to describe the wave phenomena in the nature and

engineering. Recently, we introduced the hyperbolic geometric flow, showed that the hyperbolic

geometric flow possesses very interesting geometric properties and dynamical behavior, and obtain

some interesting results. However, the hyperbolic geometric flow is described by a fully nonlinear

system of hyperbolic partial differential equations of second order, which is very difficult to solve.

In this paper we introduce a new geometric flow — the hyperbolic gradient flow, which is described

by a quasilinear system of hyperbolic partial differential equations of first order. Comparing the

hyperbolic geometric flow, the hyperbolic gradient flow is easier to solve. The key point of the

hyperbolic gradient flow is to evolve the tangent planes of the graphs under consideration, this is

different with the famous Ricci flow, the mean curvature flow or our hyperbolic geometric flow.

In this paper, we investigate the evolution of convex hypersurfaces in the (n + 1)-dimensional

Euclidean space R
n+1 and the evolution of plane curves, and prove that, under the hyperbolic

gradient flow, they converge to the hyperplane and straight line, respectively, when t goes to the

infinity. Our results obtained in this paper show that the theory of shock waves of hyperbolic
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Figure 4.2: The evolution of the curve y = − cosx under the hyperbolic gradient flow

Figure 4.3: The formation of singularity of cusp type of v = v(t, x)

conservation laws can be naturally applied to differential geometry. We believe that the hyperbolic

gradient flow is a new and powerful tool to study some problems arising from geometry and physics.

However, there are many fundamental but still open problems. In particular, the following open

problems seem to us more interesting and important:

1. The evolution of plane curves. In Theorem 4.1 if we do not assume that f ′(x) has a

mean value, what is the limit of the family of curves F (t, x) as t goes to infinity? Moreover, what

happens if the initial curve is not a graph, e.g., a closed curve?
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2. The evolution of surfaces in R
3. In Theorem 3.1 if the initial surface is a graph but is

not convex, what about the limit of the family of surfaces ϕ(t, x1, x2) as t goes to infinity? A more

difficult but more natural and important question is: how to define the hyperbolic gradient flow for

a family of close surfaces? If so, what is the asymptotic behaviour of a close surface under “the

hyperbolic gradient flow”? This problem is related to the theory of multi-dimensional hyperbolic

systems of partial differential equations of first order.

3. The evolution of hypersurfaces in R
n (n ≥ 4). Investigate the hyperbolic gradient flow

in multi-dimensional Euclidean space R
n+1 (n ≥ 4). In particular, how can we define a suitable “

hyperbolic gradient flow” to evolve a closed sub-maifold? if we can, what is the large time behaviour

of a close hypersurface in R
n (n ≥ 4) under this kind of hyperbolic gradient flow. The convex case

maybe is easier to study.

We may also consider variations of the above hyperbolic gradient flow which can be defined

intrinsically on any manifold. For example we let (M , g) be a Riemannian manifold, and Xt ∈

Γ(M , TM) be a family of tangent vector fileds, the hyperbolic gradient flow under considered here

is given by the following evolution equation

∂Xt

∂t
+

1

2
∇(‖Xt‖

2) = 0, (5.1)

where, if in local coordinates Xt =

n
∑

i=1

X i
t

∂

∂xi

, then ‖Xt‖
2 is defined by

‖Xt‖
2 = gijX

i
tX

j
t (5.2)

and ∇h stands for the gradient vector field of a function h on the manifold, and gij = g( ∂
∂xi

, ∂
∂xj

).

By definition, for any given h ∈ C∞(M ,R) and X ∈ TM , we have

g(X,∇h) = X(h). (5.3)

The study of this flow will be very useful to understand the topological and geometrical structure

of the manifold.

Finally, we would like to point out that, perhaps the method in the present paper is more

important than the results obtained here. Our method may provide a new approach to some

conjectures in differential geometry (see Yau [26]).
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