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SOME REMARKS ON CIRCLE ACTION ON MANIFOLDS

PING LI AND KEFENG LIU

Abstract. This paper contains several results concerning circle action on almost-complex

and smooth manifolds. More precisely, we show that, for an almost-complex manifold

M2mn(resp. a smooth manifold N4mn), if there exists a partition λ = (λ1, · · · , λu) of weight

m such that the Chern number (cλ1
· · · cλu

)n[M ] (resp. Pontrjagin number (pλ1
· · · pλu

)n[N ])

is nonzero, then any circle action on M2mn (resp. N4mn) has at least n + 1 fixed points.

When an even-dimensional smooth manifold N2n admits a semi-free action with isolated

fixed points, we show that N2n bounds, which generalizes a well-known fact in the free case.

We also provide a topological obstruction, in terms of the first Chern class, to the existence

of semi-free circle action with nonempty isolated fixed points on almost-complex manifolds.

The main ingredients of our proofs are Bott’s residue formula and rigidity theorem.

1. Introduction and main results

Unless otherwise stated, all the manifolds (smooth or almost-complex) mentioned in the

paper are closed, connected and oriented. For almost-complex manifolds, we take the canonical

orientations induced from the almost-complex structures. We denote by superscripts the

corresponding real dimensions of such manifolds. WhenM is a smooth (resp. almost-complex)

manifold, we say M has an S1-action if M admits a circle action which preserves the smooth

(resp. almost-complex) structure.

Given a manifold M and an S1-action, the study of the fixed point set MS1
is an important

topic in geometry and topology. In ([10], p.338), Kosniowski proposed the following conjecture,

which relates the number of fixed points to the dimension of the manifold.

Conjecture 1.1 (Kosniowski). Suppose that M2n is a unitary S1-manifold with isolated

fixed points. If M is not a boundary then this action has at least [n2 ] + 1 fixed points.

Remark 1.2. A unitary S1-manifold means that M has a weakly almost-complex structure

and S1 acts on M preserving this structure.

Recently, Pelayo and Tolman showed that ([15], Theorem 1), if a symplectic manifold

(M2n, ω) has an symplectic S1-action and the weights induced from the isotropy representa-

tions on the fixed points satisfy some subtle condition, then this action has at least n+1 fixed

points.

Remark 1.3. If the action is Hamiltonian, this result is well-known. The reason is that the

fixed points are exactly the critical points of the corresponding momentum map (a perfect

Morse-Bott function) and the even-dimensional Betti numbers of M are all positive. The

conclusion then follows from the Morse inequality.
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Inspired by the techniques from [15], we will show the following theorem in Section 3, which

is our first main result.

Theorem 1.4. (1) Suppose M2mn is an almost-complex manifold. If there exists a parti-

tion λ = (λ1, · · · , λu) of weight m such that the corresponding Chern number (cλ1 · · · cλu
)n[M ]

is nonzero, then for any S1-action on M , it must have at least n+ 1 fixed points.

(2) Suppose N4mn is a smooth manifold. If there exists a partition λ = (λ1, · · · , λu) of

weight m such that the corresponding Pontrjagin number (pλ1 · · · pλu
)n[M ] is nonzero,

then for any S1-action on N , it must have at least n+ 1 fixed points.

Corollary 1.5. (1) If the Chern number cnm[M ] is nonzero, then for any S1-action on

almost-complex manifold M2mn, it has at least n + 1 fixed points. In particular, if

cn1 [M ] is nonzero, then any S1-action on almost-complex manifold M2n has at least

n+ 1 fixed points.

(2) If the Pontrjagin number pnm[N ] is nonzero, then for any S1-action on smooth manifold

N4mn, it has at least n + 1 fixed points. In particular, if pn1 [N ] is nonzero, then any

S1-action on N4n has at least n+ 1 fixed points.

It is a well-known fact that, if a smooth manifold Nn has a free S1-action, then Nn bounds,

i.e., Nn can be realized as the oriented boundary of some smooth, oriented, (n+1)-dimensional

manifold with boundary. Using the language of cobordism theory, [Nn] = 0 ∈ ΩSO
∗ , where

ΩSO
∗ is the oriented cobordism ring. In particular, all the Pontrjagin numbers and Stiefel-

Whitney numbers vanish. This well-known fact is not difficult to prove: Nn is the total space

of the principal S1-bundle over the quotient manifold Nn/S1, of which the structure group is

S1 = SO(2). Then we can extend the action of SO(2) to the 2-disk D2 to get the associated

D2-bundle Nn ×SO(2) D
2, of which the boundary is exactly Nn.

We recall that a circle action is called semi-free if it is free outside the fixed point set or

equivalently, the isotropic subgroup of any point is either trivial or the whole circle. In ([14],

Theorem 1.1), the authors showed that the Pontrjagin numbers of manifolds admitting a

semi-free action with isolated fixed points are all zero. Our following result is a generalization

of both the well-known fact mentioned above and ([14], Theorem 1.1).

Theorem 1.6. If an even-dimensional smooth manifold N2n admits a semi-free S1-action

with isolated fixed points, then N2n bounds. In particular, all the Pontrjagin numbers and

Stiefel-Whitney numbers vanish.

This result tells us that Pontrjagin numbers and Stiefel-Whitney numbers are numerical ob-

structions to the existence of semi-free actions with isolated fixed points on smooth manifolds.

However, in contrast to the smooth case, when an almost-complex manifold (M2n, J) has a

semi-free S1-action with nonempty isolated fixed points, the Chern numbers of (M2n, J) don’t

vanish (see Lemma 3.5). One may ask, in the almost-complex case, whether there still exist

some topological obstructions to the existence of semi-free S1-actions. We know that the first

Chern class plays an important role in complex (almost-complex) manifolds. The following

result provides such an obstruction to the existence of semi-free S1-action on almost-complex

manifolds.

Theorem 1.7. Let (M2n, J) be an almost-complex manifold admitting a semi-free S1-action

with nonempty isolated fixed points. Then the first Chern class c1(M) ∈ H2(M ;Z) is either

primitive or twice a primitive element.
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Remark 1.8. For almost-complex manifolds, in the semi-free case with isolated fixed points,

the only known examples are (CP )n, equipped with the diagonal S1-action. Note that these

examples are even Hamiltonian S1-actions on symplectic manifolds. In fact, Hattori [5] showed

that, if a symplectic manifold (M2n, ω) admits a Hamiltonian, semi-free S1-action with iso-

lated fixed points, then the cohomology ring and the Chern classes of (M2n, ω) are the same as

(CP 1)n. While in the almost-complex case, much less is known. It would be very interesting

to find some more topological obstructions.

In Section 2, we will review the Bott’s residue formula and prove a rigidity proposition.

Then in Section 3, the three subsections will be devoted to the proofs of Theorems 1.4, 1.6

and 1.7 respectively.

2. Preliminaries

2.1. Bott’s residue formula.

2.1.1. almost-complex case. Let (M2n, J) be an almost-complex manifold with a circle action

with isolated fixed points, say {P1, · · · , Pr}. In each fixed point Pi, there are well-defined n

integer weights k
(i)
1 , · · · , k

(i)
n (not necessarily distinct) induced from the isotropy representation

of this S1-action on the holomorphic tangent space TpiM in the sense of J . Note that these

k
(i)
1 , · · · , k

(i)
n are nonzero as the fixed points are isolated. Let f(x1, · · · , xn) be a symmetric

polynomial in the variables x1, · · · , xn. Then f(x1, · · · , xn) can be written in an essentially

unique way in terms of the elementary symmetric polynomials f̃(e1, · · · , en), where ei =

ei(x1, · · · , xn) is the i-th elementary symmetric polynomial of x1, · · · , xn.

Now we can state a version of the Bott residue formula
(
cf. [4] or ([2], p.598)

)
which reduces

the computations of Chern numbers of (M2n, J) to {k
(i)
j }, as follows.

Theorem 2.1 (Bott residue formula). With above notations understood and moreover suppose

the degree of f(x1, · · · , xn) is not greater than n (deg(xi) = 1). Then

(2.1)
r∑

i=1

f(k
(i)
1 , · · · , k

(i)
n )

∏n
j=1 k

(i)
j

= f̃(c1, · · · , cn) · [M ],

where ci is the i-th Chern class of (M2n, J) and [M ] is the fundamental class of M induced

from J .

Remark 2.2. If the degree of f(x1, · · · , xn) is less than n, then the left-hand side of (2.1)

vanishes. If the action has no fixed points (though not necessarily free) it follows that all

Chern numbers are zero.

2.1.2. smooth case. Let N2n be a smooth manifold with a circle action with isolated fixed

points, say {P1, · · · , Pr}. In each fixed point Pi, the tangent space TpiN splits as an S1-

module induced from the isotropy representation as follows

TpiN =
n⊕

j=1

V
(i)
j ,

where each V
(i)
j is a real 2-plane. We choose an isomorphism of C with V

(i)
j relative to which

the representation of S1 on V
(i)
j is given by e

√
−1θ 7→ e

√
−1k

(i)
j θ with k

(i)
j ∈ Z − {0}. We can
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assume the rotation numbers k
(i)
1 , · · · , k

(i)
n be chosen in such a way that the usual orientations

on the summands V
(i)
j

∼= C induce the given orientation on TpiN . Note that these k
(i)
1 , · · · , k

(i)
n

are uniquely defined up to even number of sign changes. In particular, their product
∏n

j=1 k
(i)
j

is well-defined.

Let f(x21, · · · , x
2
n) be a symmetric polynomial in the variables x21, · · · , x

2
n. Let σi = σi(x

2
1, · · · , x

2
n)

be the i-th elementary symmetric polynomial in the variables x21, · · · , x
2
n. Then f(x21, · · · , x

2
n)

can be written in an essentially unique way in terms of σ1, · · · , σn, say f̃(σ1, · · · , σn). Then

we have

Theorem 2.3 (Bott residue formula). With above notations understood and moreover suppose

the degree of f(x21, · · · , x
2
n) is not greater than n (deg(xi) = 1). Then

(2.2)
r∑

i=1

f((k
(i)
1 )2, · · · , (k

(i)
n )2)

∏n
j=1 k

(i)
j

= f̃(p1, · · · , pn) · [N ],

where pi is the i-th Pontrjagin class of N and [N ] is the fundamental class of N determined

by the orientation.

Remark 2.4. Since deg(f(x21, · · · , x
2
n)) ≤ n, what possible appear in f̃(p1, · · · , pn) are

p1, · · · , p[n
2
]. f̃(p1, · · · , pn) · [N ] is nonzero only if n is even. If deg(f(x21, · · · , x

2
n)) < n, then

the left-hand side of (2.2) vanishes. If the action has no fixed points (though not necessarily

free), it follows that all Pontrjagin numbers are zero.

2.2. A rigidity result. In this subsection we want to prove a special rigidity result for circle

actions on almost-complex manifolds with isolated fixed points. For more details on the

rigidity of elliptic complexes, see [12] and [13].

Let (M2n, J) be an almost-complex manifold with first Chern class c1 ∈ H2(M ;Z) divisible

by a positive integer d > 1. Then there exists a holomorphic line bundle L over M such

that L⊗d = K, where K is the canonical line bundle, all in the sense of J . We consider the

holomorphic Euler number of M with coefficients in the line bundle L, χ(M,L), which is a

genus ([6]) with respect to the characteristic power series

(2.3)
x

1− e−x
· e−

x
d .

χ(M,L) is the index of the Todd operator twisted by L.

Now suppose we have an S1-action on (M2n, J). Consider the d-fold covering S1 → S1

with µ 7→ λ = µd. Then µ acts on M and K through λ. This action can be lifted to L. Then

for any g ∈ S1, we can define the equivariant index χ(g;M,L), which is a finite Laurent series

in g.

Now suppose this circle action on M has isolated fixed points. Using the notations in

Section 2.1.1, we have

Proposition 2.5. Suppose the first Chern class of M is divisible by d > 1. Then the rational

function

r∑

i=1

g

∑n
j=1 k

(i)
j

d

∏n
j=1(1− gk

(i)
j )

is identically equal to 0, where g is an indeterminate.
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Proof. Suppose g ∈ S1 is a topological generator. Then the fixed points of the action g are

exactly {P1, · · · , Pr}. Note that the characteristic power series corresponding to χ(M,L) is

(2.3), then the Lefschetz fixed point formula of Atiyah-Bott-Segal-Singer ([2], p.562) tells us

that

χ(g;M,L) =

r∑

i=1

n∏

j=1

g
k
(i)
j

d

1− gk
(i)
j

.

The rigidity result of almost-complex manifolds on the level of d (cf. p.43 and p.58 of [7] or

appendix III of [8]) tells us that, for any topological generator g ∈ S1,

χ(g;M,L) ≡ χ(M,L).

Since the topological generators in S1 are dense, we have an identity

χ(M,L) ≡

r∑

i=1

n∏

j=1

g
k
(i)
j

d

1− gk
(i)
j

for any indeterminate g.

For any k
(i)
j ∈ Z− {0}, we have

lim
g→∞

g
k
(i)
j

d

1− gk
(i)
j

= 0.

Therefore,

r∑

i=1

n∏

j=1

g
k
(i)
j

d

1− gk
(i)
j

≡ 0

for any indeterminate g, which completes the proof. �

3. Proof of main results

3.1. Proof of Theorem 1.4. Now suppose (M2mn, J) is an almost-complex manifold with

some Chern number (cλ1 · · · cλu
)n[M ] 6= 0. Note that any S1-action on M must have at least

one fixed point, otherwise all the Chern numbers of M vanish by Remark 2.2. If the fixed point

set of the S1-action is not isolated, then at least one connected component is a submanifold of

positive dimension. In this case there are infinitely many fixed points. To complete the proof

of the first part of Theorem 1.4, it suffices to consider the S1-actions with nonempty isolated

fixed points.

Like the notations in Section 2.1.1, we assume the isolated fixed points are {P1, · · · , Pr}.

In each fixed point Pi we have mn integer weights k
(i)
1 , k

(i)
2 · · · , k

(i)
mn. Given any partition

λ = (λ1, · · · , λu) of weight m, We define

cλ(i) :=

u∏

t=1

( ∑

1≤j1<j2<···<jλt≤mn

k
(i)
j1
k
(i)
j2

· · · k
(i)
jλt

)
.

Let

{cλ(i) | 1 ≤ i ≤ r} = {s1, · · · , sl} ⊂ Z
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and define

At :=
∑

1≤i≤r
cλ(i)=st

1
∏mn

j=1 k
(i)
j

, 1 ≤ t ≤ l.

Lemma 3.1. If the Chern number (cλ1 · · · cλu
)n[M ] 6= 0, then at least one of At is nonzero.

Proof. Suppose At = 0 for all t = 1, · · · , l. Then Bott residue formula (2.1) tells us

(cλ1 · · · cλu
)n[M ] =

l∑

t=1

(st)
n ·At = 0.

�

The following lemma is inspired by ([15], Lemma 8).

Lemma 3.2. If r ≤ n, then At = 0 for all t = 1, · · · , l.

Proof. Taking

f(x1, · · · , xmn) =
[ u∏

t=1

( ∑

1≤j1<···<jλt≤mn

xj1xj2 · · · xjλt
)]i

, i = 0, 1, · · · , r − 1,

in (2.1), we have





A1 +A2 + · · ·+Al = 0

s1A1 + s2A2 + · · ·+ slAl = 0
...

(s1)
r−1A1 + (s2)

r−1A2 + · · · + (sl)
r−1Al = 0

(3.1)

Note that l ≤ r and s1, · · · , sl are mutually distinct, which means the coefficient matrix of

the first l lines of (3.1) is the nonsingular Vandermonde matrix. Hence the only possibility is

A1 = · · · = Al = 0.

�

Combining Lemma 3.1 with Lemma 3.2 will lead to the proof of the first part of Theorem

1.4. The proof of the second part is similar and so we omit it.

Remark 3.3. It is not surprise that Bott’s residue formula we used here is similar to the

Atiyah-Bott-Berline-Vergne localization formula used in [15]. In fact it turns out that Bott’s

residue formula can be put into the framework of the equivariant cohomology theory ([1],

[3]). But Bott’s original formula is more suitable for our purpose. Note that our sufficient

condition (vanishing of some characteristic number) guaranteeing an explicit lower bound of

the number of fixed points relies only on the manifold itself. While the sufficient condition in

([15], Theorem 1) relies on the data near the fixed points of the action.
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3.2. Proof of Theorem 1.6. In this section we assume that N2n has a circle action with

isolated fixed points and keep the notations of Section 2.1.2 in mind.

The following proposition says, if the action is semi-free, then [N2n] is at most a torsion

element in the oriented cobordism ring ΩSO
∗ .

Proposition 3.4 (Pantilie-Wood). Suppose N2n has a semi-free S1-action with isolated fixed

points. Then all the Pontrjagin numbers of N2n vanish. Equivalently,

[N2n] = 0 ∈ ΩSO
∗ ⊗Q.

The proof of ([14], Theorem 1.1) also uses Bott residue formula, in the language of differ-

ential geometry. Here we give a quite direct topological proof, although the essential is the

same.

Proof. When n is odd, this proposition obviously holds for dimensional reason.

Suppose n is even, say 2q. As noted in Section 2.1.2, in each fixed point Pi, the weights

k
(i)
1 , · · · , k

(i)
n are unique up to even number of sign changes. Since the action is semi-free, all

these k
(i)
j are ±1. Let ρ0 (resp. ρ1) be the number of fixed points with even (resp. odd) −1.

Take f = 1 in (2.2), we have

(3.2) ρ0 − ρ1 = 0,

which means the number of the fixed points are even.

Let λ = (λ1, · · · , λl) be a partition of q. According to (2.2), the corresponding Pontrjagin

number pλ[N ] = pλ1 · · · pλl
[N ] equals to

(
2q

λ1

)
· · ·

(
2q

λl

)
(ρ0 − ρ1) = 0.

This completes the proof of this proposition. �

From ([9], Lemma 2.2) we have

(3.3) [N2n] =
∑

Pi

[CPn
∣∣
Pi
] ∈ ΩSO

∗ ,

where CPn
∣∣
Pi

is the n-dimensional complex projective space associated to the fixed point Pi

and given a suitable orientation.

When n is odd, [CPn] = 0 ∈ ΩSO
∗ (cf. [8], p.1) and therefore [N2n] = 0.

When n is even, say 2q, Porposition 3.4 and (3.3) imply

(3.4)
∑

Pi

[CP 2q
∣∣
Pi
] = 0 ∈ ΩSO

∗ ⊗Q.

It is well-known that [CP 2q] is not a torsion element. From (3.2) we have known the number

of the fixed points {Pi} are even. Hence the only possibility that (3.4) holds is that half of the

orientations of such CP 2q
∣∣
Pi

are canonical and half are opposite to the canonical orientation,

which means the right-hand side, and therefore the left-hand side of (3.3) are zero. This

completes the proof of Theorem 1.6.
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3.3. Proof of Theorem 1.7. In this subsection, (M2n, J) is an almost-complex manifold

with a semi-free circle action with isolated fixed points. Let ρt be the number of fixed points

of the circle action with exactly t negative weights. In fact these ρt are all related to each

other ([16], Lemma 3.1)

ρt = ρ0 ·

(
n

t

)
, 0 ≤ t ≤ n.

This fact can also be derived from a rigidity result (cf. [11], Theorem 3.2). This fact means

the isolated fixed point set is nonempty if and only if ρ0 > 0.

The following lemma shows that the first Chern class of (M2n, J) is nonzero.

Lemma 3.5. The Chern number c1cn−1[M ] is equal to ρ0 ·n ·2
n. In particular, if the isolated

fixed points set is nonempty, then c1(M) is nonzero.

Proof. In each fixed point Pi, the n weights k
(i)
1 , · · · , k

(i)
n are all ±1. If the number of −1

among k
(i)
1 , · · · , k

(i)
n is t, then it is easy to check

e1(k
(i)
1 , · · · , k

(i)
n )en−1(k

(i)
1 , · · · , k

(i)
n )

∏n
j=1 k

(i)
j

= (n − 2t)2.

By Bott’s residue formula (2.1) we have

c1cn−1[M ] =

n∑

t=0

ρt(n− 2t)2 = ρ0

n∑

t=0

(
n

t

)
(n− 2t)2 = ρ0 · n · 2n.

�

Now we can prove our last main result, Theorem 1.7.

Proof. Since c1(M) 6= 0, we can assume c1(M) = d · x, where d is a positive integer and

x ∈ H2(M ;Z) is a primitive element. It suffices to show, if d > 1, then d must be 2.

Using Proposition 2.5 we have

0 ≡

n∑

t=0

ρtg
n−2t

d
(−g)t

(1− g)n

= ρ0
g

n
d

(1− g)n

n∑

t=0

(
n

t

)
(−1)tg

(d−2)t
d .

If the isolated fixed point set is nonempty, then ρ0 > 0. In this case, the last expression is

identically zero if and only if d = 2. �
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The first author also thanks Zhi Lü for many fruitful discussions on the related topics of this

paper.



SOME REMARKS ON CIRCLE ACTION ON MANIFOLDS 9

References

1. M. Atiyah, R. Bott: The moment map and equivariant cohomology, Topology. 23 (1984), 1-28.

2. M.F. Atiyah, I.M. Singer: The index theory of elliptic operators: III, Ann. Math. 87 (1968), 546-604.
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