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CLOSED GEODESICS AND VOLUME GROWTH OF
RIEMANNIAN MANIFOLDS

JIANMING WAN

Abstract. In this paper, we study the relation between the existence of closed

geodesics and the volume growth of open Riemannian manifolds with non-

negative curvature.

1. Introduction

Let Mn be an n-dimensional complete, noncompact Riemannian manifold with
sectional curvature KM ≥ 0. Let

αM = lim
r→∞

V ol(B(p, r))
ωnrn

,

where V ol(B(p, r)) is the volume of geodesic ball in Mn with radius r around p and
ωn denotes the volume of unit ball in Rn. From [6] we know that αM is independent
of the choosing of base point p. By the Bishop-Gromov volume comparison theorem,
we have 0 ≤ αM ≤ 1 and Mn is isometric to Rn if and only if αM = 1.

The main goal of this paper is to prove the following theorem.

Theorem 1.1. Let Mn be a complete noncompact manifold with nonnegative sec-
tion curvature. If Mn contains a closed geodesic, then the volume growth αM = 0.
In other words, if αM > 0, then Mn does not contain any closed geodesic.

We may see theorem 1.1 in an intuitive manner: To an open manifold with
nonnegative section curvature, the closed geodesic will make the manifold shrink.

By Cheeger-Gromoll’s soul theorem (see [2]), if the soul of Mn is not a point,
then Mn must contain at least one closed geodesic. If the soul is one point, Mn

still may have many closed geodesics. The following is a simple example.

Example 1.2. Let M2 = C+∪S2
1 be a cylinder C+ = S1× [0,∞) = {(x, y, z)|x2 +

y2 = 1, z ≥ 0} glued to the lower hemi-sphere S2
− = {(x, y, z)|x2 + y2 + z2 = 1, z ≤

0}. Then the soul of M2 is a point, but M2 admits infintely many closed geodesics.

In fact, our theorem is more significant when the soul is one point. In this
case, the volume growth gives a sufficient condition of the nonexistence of closed
geodesics, while this is not a trivial thing.

Remark 1.3. In what follows, we always assume that manifolds are complete non-
compact with nonnegative sectional curvature.
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2. Proof of Theorem 1.1

The proof of theorem 1.1 is based on the following two lemmas.

Lemma 2.1. Let σ(t) be a closed geodesic of Mn with canonical parameter of the
arc such that σ(0) = σ(b) = p, σ

′
(0) = σ

′
(b), where b is the length of σ(t). For any

ray γ(t) starts at p, we have α = ∠(σ
′
(0), γ

′
(0)) = π/2.

Proof. Let l be the length of σ(t) from σ(0) to σ(l). By the Toponogv comparison
theorem [1], we have

t2 + l2 − 2tl cos α ≥ d2(σ(l), γ(t)),

thus

cos α ≤ t2 + l2 − d2(σ(l), γ(t))
2tl

,

where d(., .) is the distance function. Recalling the condition of Toponogv com-
parison theorem [1], one only needs l < ∞. Let l = b, then t = d(σ(b), γ(t)).
Thus

cos α ≤ b

2t
.

Let t −→∞, then
cos α ≤ 0,

so
α ≥ π/2.

Considering σ(b− t), we obtain

π − α ≥ π/2.

Hence
α = π/2.

�

Remark 2.2. Lemma 2.1 can also be deduced by analytic method. For example,
see theorem 1.10 of [2]. But our proof is more directly.

Next lemma is due to Ordway, Stephens and Yang [6]. It shows that αM is
determined by ”the volume of rays”.

Lemma 2.3. Let Σ = {ν ∈ SpM |expp(tν) is a ray, t ≥ 0}. SpM is unit sphere in
TpM . Set

C(Σ) = {q ∈ M |q = expp(tν), ν ∈ Σ, t ≥ 0}
and

B(Σ, r) = B(p, r)
⋂

C(Σ).

Then we have

αM = lim
r→∞

V ol(B(Σ, r))
ωnrn

.

The proof of lemma 2.3 is based on Bishop-Gromov volume comparison theorem.
For details, one may see [6].

Now we can prove theorem 1.1.
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Proof. If Mn contains a closed geodesic, by lemma 2.1, we have mes(Σ) = 0 (in-
duced measure of unit sphere). By Fubini theorem, for any r > 0 we have

mes(exp−1(B(Σ, r))) = 0.

Since exp is C∞, by Sard theorem [3], for any r > 0 we have

V ol(B(Σ, r)) = 0.

Then by lemma 2.3, we have αM = 0. �

3. An application of Theorem 1.1

Combining with Cheeger-Gromoll’s soul theorem (see [2]), we get an another
proof of Marenich and Toponogov’s following beautiful theorem (see [5]).

Theorem 3.1. If αM > 0, then Mn is diffeomorphic to Rn.

Proof. If Mn is not diffeomorphic to Rn, by Cheeger-Gromoll’s soul theorem, the
soul (is a totally geodesic submanifold) of Mn is not a point. Then the soul must
contain a closed geodesic (since any compact manifold contains at least one closed
geodesic [4]). It is also the closed geodesic of Mn. Which is a contradiction to
theorem 1.1. �

Remark 3.2. By a different method, theorem 3.1 is also a consequence of Perelman’s
celebrated flat strip theorem (cf. [7]).
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