PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000-000 S 0002-9939(XX)0000-0

CLOSED GEODESICS AND VOLUME GROWTH OF RIEMANNIAN MANIFOLDS

JIANMING WAN

ABSTRACT. In this paper, we study the relation between the existence of closed geodesics and the volume growth of open Riemannian manifolds with non-negative curvature.

1. INTRODUCTION

Let M^n be an n-dimensional complete, noncompact Riemannian manifold with sectional curvature $K_M \ge 0$. Let

$$\alpha_M = \lim_{r \to \infty} \frac{Vol(B(p,r))}{\omega_n r^n},$$

where Vol(B(p, r)) is the volume of geodesic ball in M^n with radius r around p and ω_n denotes the volume of unit ball in \mathbb{R}^n . From [6] we know that α_M is independent of the choosing of base point p. By the Bishop-Gromov volume comparison theorem, we have $0 \leq \alpha_M \leq 1$ and M^n is isometric to \mathbb{R}^n if and only if $\alpha_M = 1$.

The main goal of this paper is to prove the following theorem.

Theorem 1.1. Let M^n be a complete noncompact manifold with nonnegative section curvature. If M^n contains a closed geodesic, then the volume growth $\alpha_M = 0$. In other words, if $\alpha_M > 0$, then M^n does not contain any closed geodesic.

We may see theorem 1.1 in an intuitive manner: To an open manifold with nonnegative section curvature, the closed geodesic will make the manifold shrink.

By Cheeger-Gromoll's soul theorem (see [2]), if the soul of M^n is not a point, then M^n must contain at least one closed geodesic. If the soul is one point, M^n still may have many closed geodesics. The following is a simple example.

Example 1.2. Let $M^2 = C_+ \cup S_1^2$ be a cylinder $C_+ = S^1 \times [0, \infty) = \{(x, y, z) | x^2 + y^2 = 1, z \ge 0\}$ glued to the lower hemi-sphere $S_-^2 = \{(x, y, z) | x^2 + y^2 + z^2 = 1, z \le 0\}$. Then the soul of M^2 is a point, but M^2 admits infinitely many closed geodesics.

In fact, our theorem is more significant when the soul is one point. In this case, the volume growth gives a sufficient condition of the nonexistence of closed geodesics, while this is not a trivial thing.

Remark 1.3. In what follows, we always assume that manifolds are complete noncompact with nonnegative sectional curvature.

The author would like to thank the referee for helpful suggestions.

©XXXX American Mathematical Society

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C20; Secondary 53C22. Key words and phrases. Closed geodesics, volume growth.

JIANMING WAN

2. Proof of Theorem 1.1

The proof of theorem 1.1 is based on the following two lemmas.

Lemma 2.1. Let $\sigma(t)$ be a closed geodesic of M^n with canonical parameter of the arc such that $\sigma(0) = \sigma(b) = p$, $\sigma'(0) = \sigma'(b)$, where b is the length of $\sigma(t)$. For any ray $\gamma(t)$ starts at p, we have $\alpha = \angle(\sigma'(0), \gamma'(0)) = \pi/2$.

Proof. Let l be the length of $\sigma(t)$ from $\sigma(0)$ to $\sigma(l)$. By the Toponogv comparison theorem [1], we have

$$t^2 + l^2 - 2tl\cos\alpha \ge d^2(\sigma(l), \gamma(t)),$$

thus

$$\cos \alpha \le \frac{t^2 + l^2 - d^2(\sigma(l), \gamma(t))}{2tl},$$

where d(.,.) is the distance function. Recalling the condition of Toponogv comparison theorem [1], one only needs $l < \infty$. Let l = b, then $t = d(\sigma(b), \gamma(t))$. Thus

$$\cos\alpha \le \frac{b}{2t}.$$

Let $t \longrightarrow \infty$, then

 \mathbf{so}

$$\alpha \geq \pi/2.$$

 $\cos \alpha \leq 0$,

Considering $\sigma(b-t)$, we obtain

 $\pi - \alpha \geq \pi/2.$

Hence

 $\alpha=\pi/2.$

Remark 2.2. Lemma 2.1 can also be deduced by analytic method. For example, see theorem 1.10 of [2]. But our proof is more directly.

Next lemma is due to Ordway, Stephens and Yang [6]. It shows that α_M is determined by "the volume of rays".

Lemma 2.3. Let $\Sigma = \{\nu \in S_p M | exp_p(t\nu) \text{ is a ray, } t \geq 0\}$. $S_p M$ is unit sphere in $T_p M$. Set

$$C(\Sigma) = \{q \in M | q = exp_p(t\nu), \nu \in \Sigma, t \ge 0\}$$

and

$$B(\Sigma, r) = B(p, r) \bigcap C(\Sigma).$$

Then we have

$$\alpha_M = \lim_{r \to \infty} \frac{Vol(B(\Sigma, r))}{\omega_n r^n}$$

The proof of lemma 2.3 is based on Bishop-Gromov volume comparison theorem. For details, one may see [6].

Now we can prove theorem 1.1.

3

Proof. If M^n contains a closed geodesic, by lemma 2.1, we have $mes(\Sigma) = 0$ (induced measure of unit sphere). By Fubini theorem, for any r > 0 we have

$$nes(exp^{-1}(B(\Sigma, r))) = 0$$

Since exp is C^{∞} , by Sard theorem [3], for any r > 0 we have

$$Vol(B(\Sigma, r)) = 0.$$

Then by lemma 2.3, we have $\alpha_M = 0$.

3. An application of Theorem 1.1

Combining with Cheeger-Gromoll's soul theorem (see [2]), we get an another proof of Marenich and Toponogov's following beautiful theorem (see [5]).

Theorem 3.1. If $\alpha_M > 0$, then M^n is diffeomorphic to \mathbb{R}^n .

Proof. If M^n is not diffeomorphic to \mathbb{R}^n , by Cheeger-Gromoll's soul theorem, the soul (is a totally geodesic submanifold) of M^n is not a point. Then the soul must contain a closed geodesic (since any compact manifold contains at least one closed geodesic [4]). It is also the closed geodesic of M^n . Which is a contradiction to theorem 1.1.

Remark 3.2. By a different method, theorem 3.1 is also a consequence of Perelman's celebrated flat strip theorem (cf. [7]).

References

- 1. J.Cheeger and D.Ebin, *Comparison Theorems in Riemannian Geometry*. North Holland, Armsterdan, 1975.
- J.Cheeger and D.Gromoll, The structure of complete manifolds of nonnegative curvature, Ann. of Math. 96, 413-443, 1972.
- 3. M.W.Hirsch, Differential Topology. Springer-Verlag 1976.
- 4. W.Klingenberg, Riemannian Geometry. de Gruyter, 1982.
- Marenich.V.B and Toponogov, Open manifolds of nonnegative Ricci curvature with rapidly growing volume(Russian). Sib.Mat26, No.4(152),191-194, 1985.
- D.Ordway, B.Stephens and D.G.Yang, Large volume growth and finite topological type, Proceeding of the A.M.S.. Volume 128, Number 4, 1191-1196, 2000.
- G.Perelman, Proof of the soul conjecture of Cheeger and Gromoll. J. Differential Geom. 40, no.1, 209-212, 1994.

Center of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China.

E-mail address: wanj_m@yahoo.com.cn