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it is hard to use Feynman diagrams directly to obtain boundary contributions, thus we propose another
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1. Motivations

Although generally one can compute any scattering amplitude by Feynman diagrams, as long as the theory

has a Lagrangian description, this method is usually complicated in practical applications. In order to make

calculations of tree-level and loop-level amplitudes more efficiently, many methods have been suggested in

past few decades, among them there is the on-shell BCFW recursion relation[2, 3], which was inspired by

Witten’s twistor program [4]. Using the BCFW recursion relation, one can construct tree-level amplitudes

in terms of sub-amplitudes with fewer external particles, thus it has reduced a big, difficult problem into

several smaller and easier ones. The on-shell recursion relation, together with the leading singularities[5],

play important roles in recent developments of S-matrix program[6, 7, 8, 9, 10].

The key idea of BCFW recursion relation is to pick up two special momenta pi, pj and do the following

deformation (hence we will call it ”BCFW deformation”) using an auxiliary momentum q:

pi(z) = p1 + zq, pj(z) = pj − zq , (1.1)

while other momenta are untouched. With this deformation, the momentum conservation is still kept.

Furthermore, the momentum q is chosen to satisfy conditions q2 = 0, pi ·q = pj ·q = 0 so that the deformed

pi(z) and pj(z) are kept on-shell. It is only possible for complex q and space-time dimension D ≥ 4.

With the deformed on-shell amplitude A(z) over single complex variable z, we consider following contour

integration

B =

∮

C

A(z)

z
dz (1.2)
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where contour C is a big enough circle around z = 0. We can evaluate the integration by two different

ways, either by contour around z = ∞ or by contour of big circle around the origin. Identified these two

results we obtain

A(z = 0) = −
∑

zα

Res

(
A(z)

z

)
+ B , (1.3)

where A(z = 0) is the wanted physical amplitude and B is the boundary contribution. Residues of poles

in the right hand side of (1.3) can always be calculated using factorization properties from lower-point on-

shell amplitudes. In other words, expression (1.3) shows that for any theory, some parts of tree amplitudes

are always ”on-shell constructible”. Contrast to that, the boundary contribution B is the obstacle for

the application of BCFW recursion relation. If boundary contribution is zero under the chosen BCFW

deformation, the whole amplitude is cut-constructible as emphasized in [11]. But for some theories there

are no such deformations available to makes B vanishing, thus we must consider the boundary contribution

B when computing A(z = 0). So it is hard to see if the theory is cut-constructible or not when B is

not zero. Many theories we are familiar with have zero boundary contributions, which usually can not

be easily inferred from Feynman diagrams and we should rely on other methods as shown in [12]-[16].

Some theories with non-zero boundary contributions have been discussed in [1], and they are found to be

cut-constructible.

For gauge theory, it is well known that one can always find good deformation with zero boundary

contribution B = 0 [2, 3], such as deformations 〈i+|j−], 〈i+|j+] and 〈i−|j−] , i.e.,

λi(z) = λi + zλj, λ̃j(z) = λ̃j − zλ̃i . (1.4)

With these deformations one can calculate tree-level amplitudes A efficiently. However, there is one

bad deformation 〈i−|j+] which does not make the A(z) vanish at infinity. Although in practise one can

always choose a good deformation to simplify calculations and avoid the boundary contributions, it is still

important to study the non-zero boundary contributions from the theoretical aspect. Especially we want

to ask whether the theory is still cut-constructible with nonzero boundary contributions, and what is the

physical implication of these non-zero values.

To calculate non-zero boundary contributions, there are many ways to follow. The first method is to

compute them from Feynman diagrams, as have been done in paper [1] for theories with scalars. However,

by some simple analysis it is easy to see that this method is not very practical for gauge theory. Unlike

theories with scalars and fermions where only a few types of Feynman diagrams give nonzero boundary

contributions, there are many types of Feynman diagrams giving potential nonzero boundary contributions

in gauge theory, as long as the line from i to j has no more than four four-point vertexes. The second

method is to calculate the full amplitude with good deformation and then deform it with bad deformation

to get the boundary contributions. This method can get the boundary contributions straightforwardly, but

it does not give us the insight whether the boundary part is cut-constructible or not.

In this short note, we propose an alternative method to recursively calculate nonzero boundary con-

tributions with bad deformation for gauge theory and related theory, i.e., the theory with scalars and
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fermions with N = 4 interaction terms. The note is organized as following. In section two we will derive

an on-shell recursion relation for boundary contributions from the N = 4 SYM theory. In section three

we will illustrate our idea by two simple examples. One of them is the gluon MHV amplitude and another

one, the NMHV amplitude with two fermions. In section four we will give a brief summary of our results.

2. The general framework

It is well known that tree-level amplitudes of pure gluons are identical to these obtained from N = 4

super-Yang-Mills (SYM) theory. In N = 4 SYM theory, one can group all components into following

on-shell superfield [17, 4, 18, 19]

Φ(p, η) = G+(p) + ηAψ+

A +
1

2
ηAηBSAB +

1

3!
ηAηBηCǫABCDψ

D− +
1

4!
ηAηBηCηDǫABCDG

−(p) (2.1)

with Grassmann coordinate ηA, A = 1, 2, 3, 4. Using superfields, amplitudes can be written as functions of

(λi, λ̃i, η
A
i ). For example, the super-MHV amplitude is given by Nair’s formula [17] as

An(λ, λ̃, η) =
δ4(

∑
i λiλ̃i)δ

8(
∑

i λiη
A
i )

〈1|2〉 〈2|3〉 ... 〈n|1〉
. (2.2)

To obtain the corresponding scattering amplitudes with various component configurations we just need to

expand above expression as the series of ηA.

Having the super-amplitudes, we need also the supersymmetric version of BCFW recursion relation,

which is given in [20, 18]. The super-BCFW deformation contains the usual 〈i|j]-deformation for two

chosen momenta as given by (1.4), as well as the deformation for η variables as

ηAj (z) = ηAj − zηAi , (2.3)

so that the super-energy-momentum conservation is preserved, i.e.,
∑

t λtη
A
t is invariant under the full

super-BCFW deformation. With this in mind the supersymmetric version of BCFW recursion relation can

be written as

A =
∑

L,R

∫
d4ηPML(λi(zP ), λP (zP ), λ̃P (zP ), ηP (zP ))

1

P 2
MR(λ̃j(zP ), ηj(zP ), λP (zP ), λ̃P (zP ), ηP (zP )) . (2.4)

If the deformed super-amplitudeASUSY (z) approaches to zero when z goes to infinity1, there is no boundary

contribution. A nice property of N = 4 super-amplitudes is that no matter what helicities of (i, j) are,

AN=4(z) approaches to zero with z → ∞, i.e., there is no bad deformation at all for N = 4 SYM theory.

Having this fact, we expand the super-amplitude as the series of η as

An =

4∑

a1..an=0

Aa1...an

n∏

i=1

ηaii (2.5)

1It will be interesting to see if there is supersymmetric theory with nonzero boundary contributions for any super-BCFW-

deformation.

– 3 –



where Aa1...an denotes amplitude of field configurations specified by (a1, a2, ..., an). Under the deformation

(1.4) and (2.3) we have

An(z) =
4∑

a1..an=0

Aa1...an(z)
n∏

i=1

ηi(z)
ai , (2.6)

where ηj(z) = ηj − zηi and ηk(z) = ηk for all the k 6= j. Aa1...an(z) is the super-amplitude of specific field

configuration (a1, a2, ..., an) after 〈i|j]-deformation. However, it is more suitable to consider the boundary

behavior using the form (2.5) since each super-amplitude of specific configurations is independent in form

(2.5). To re-write the deformed super-amplitude expansion (2.6) into the form (2.5), we expand ηj(z) in

(2.6) as follows2

4∑

a1..an=0

Aa1...an(z)η
ai
i (ηj − zηi)

aj

n∏

k=1,k 6=i,j

η
ak
k

=

4∑

a1..an=0

Aa1...an(z)(

aj∑

t=0

αtη
ai+t
i (−z)tη

aj−t

j )

n∏

k=1,k 6=i,j

η
ak
k

=

4∑

a1..an=0

ηaii η
aj
j

n∏

k=1,k 6=i,j

η
ak
k




∑

t≥0,4≥ai+t,aj−t≥0

αt(−z)
tAai+t,aj−t(z)




where αt represents the binomial coefficient. After above expansion, we can now explain our method. For

the left hand side of (2.6) we have

∮
dz

An(z)

z
= 0 , (2.7)

and using the fact that each term in the form (2.5) is independent, we get immediately

∮
dz

z

∑

t≥0,4≥ai+t,aj−t≥0

αt(−z)
tAa1,...,ai+t,...,aj−t,...,an(z) = 0 . (2.8)

Equations (2.8) gives relations among amplitudes whose field configuration differences from each other only

at the positions i and j. The boundary contributions of Aai,aj (z) after 〈i|j]-deformation are calculated by

the following contour integration

Bai,aj =

∮

C

Aai,aj (z)

z
dz (2.9)

where the contour is a big enough circle around z = 0. Thus one can use the relation (2.8) to calculate

boundary contributions of certain amplitude through pole contributions of other amplitudes. For example,

2Since it is the expansion of Grassman variables, we need to be careful with the sign when changing two variables, which

we have not been very careful in our arguments.
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the boundary contribution of Aai,aj (z) is given by

Bai,aj =

∮

C

Aa1,...,ai,...,aj,...,an(z)

z
dz = −

∮
dz

z

∑

t>0,4≥ai+t,aj−t≥0

αt(−z)
tAa1,...,ai+t,...,aj−t,...,an(z) , (2.10)

where the presence of positive powers of z in the numerator makes only physical poles contribute to

boundary values. Similar framework can be obtained for boundary contributions of theories with fermions,

for which one example will be presented in next section. A direct implication of our result is that even

with a bad deformation in gauge theory, boundary contributions are also cut-constructible in some sense,

i.e, they can be obtained from pole contributions of some other related theories recursively.

3. Examples

In this section, we will use two simple examples to demonstrate our idea. We will discuss gluon MHV

amplitude in detail as the first example and then briefly for another example.

3.1 The first example: gluon MHV amplitude

Since the purpose of this note is to understand boundary contributions of bad deformation, not to use it

in practical calculations, we will illustrate our idea simply by using MHV amplitude of gluons, which is

given by

A(s−, n−) =
〈s|n〉4

〈1|2〉 〈2|3〉 ... 〈n|1〉
. (3.1)

We take the bad deformation 〈s−|t+] with t < s. The z-dependence can be written down explicitly as

At=0,s=4 =
〈s+ zt|n〉4

〈1|2〉 〈2|3〉 ... 〈s− 1|s + zt〉 〈s+ zt|s+ 1〉 ... 〈n|1〉
,

where for later convenience we have explicitly written the power of η-expansion at positions t, s in the

N = 4 super-amplitude. Splitting it into pole part of z as well as divergent parts of za, a ≥ 0, we obtain

following boundary values, i.e., the coefficient of z0-term. If t 6= s− 1 or t 6= s+ 1, the highest power of z

is z2 and the coefficient of z0 term is given by

Bt=0,s=4 =
〈n|t〉2

〈s− 1|t〉3 〈t|s+ 1〉3

(
6 〈n|s〉2 〈s− 1|t〉2 〈t|s+ 1〉2

−4 〈n|s〉 〈n|t〉 〈s− 1|t〉 〈t|s+ 1〉 (〈s|s+ 1〉 〈s− 1|t〉+ 〈s− 1|s〉 〈t|s+ 1〉)

+ 〈n|t〉2 (〈s|s+ 1〉2 〈s− 1|t〉2 + 〈s|s+ 1〉 〈s− 1|t〉 〈s|s− 1〉 〈s+ 1|t〉+ 〈s|s− 1〉2 〈s+ 1|t〉2)
)
.

(3.2)

– 5 –



If t = s− 1 or t = s+1, the highest power becomes z3, and the z0 term would be (we just write down the

case t = s− 1)

Bt=0,s=4 =
−〈n|s− 1〉

〈s|s− 1〉 〈s− 1|s+ 1〉4

(
−〈n|s− 1〉3 〈s|s+ 1〉3 − 6 〈n|s〉2 〈s− 1|s+ 1〉2 〈n|s− 1〉 〈s|s+ 1〉

+4 〈n|s〉 〈s− 1|s + 1〉 (〈n|s− 1〉2 〈s|s+ 1〉2 + 〈n|s〉2 〈s− 1|s+ 1〉2)
)
. (3.3)

It is worth to notice that the numerical coefficients of each term in expression (3.2) and (3.3) is 1, 4, 6, 4, 1,

which are an indication of matter contents of N = 4 theory.

Now we apply our framework (2.8) to this example. The relevant combination can be easily found to

be
∮
dz

z

(
At=0,s=4(z)− 4zAt=1,s=3(z) + 6z2At=2,s=2(z)− 4z3At=3,s=1(z) + z4At=4,s=0(z)

)
= 0 . (3.4)

By using following results

At=4,s=0 =
〈t|n〉4

〈1|2〉 〈2|3〉 ... 〈n|1〉
, At=3,s=1 =

〈s|n〉 〈t|n〉3

〈1|2〉 〈2|3〉 ... 〈n|1〉
, (3.5)

At=2,s=2 =
〈s|n〉2 〈t|n〉2

〈1|2〉 〈2|3〉 ... 〈n|1〉
, At=1,s=3 =

〈s|n〉3 〈t|n〉

〈1|2〉 〈2|3〉 ... 〈n|1〉
, (3.6)

the integrand of (3.4) becomes

〈s|n〉4

〈1|2〉 〈2|3〉 ... 〈s− 1|s + zt〉 〈s+ zt|s+ 1〉 ... 〈n|1〉
,

which gives zero boundary contribution as it should be. Then we rewrite (3.4) as follows

Bt=0,s=4 ≡

∮
dz

z
At=0,s=4(z)

= −

∮
dz

z

(
−4zAt=1,s=3(z) + 6z2At=2,s=2(z)− 4z3At=3,s=1(z) + z4At=4,s=0(z)

)
. (3.7)

It is easy to see that one can use (3.7) to calculate boundary contributions in the first line. Since the

z-factor appears in numerator, there is no pole contribution at z = 0 in (3.7), and all contributions come

from physical poles. To calculate these terms we can use formula

∮
dzA(z)

z
zk = −

∑

α

AL(zα)
zkα
P 2

AR(zα), k ≥ 1 . (3.8)

We will apply formula (3.8) to (3.7) and compare results with the one given by (3.2) and (3.3).

The case t = s− 1, n = s+ 1:

As a warm up let us start from the simplest case t = s− 1 and n = s+ 1. There are four terms from

recursion relation (3.7), as illustrated in figure (1). The first three diagrams do not contribute because the
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n

+−

f f

gg

+ −

A1,3

s t

n

+−

f f

gg

s t

n

+−

gg

+ −

s t

n

+−

gg

φ φ

A2,2

+ −

− +

A3,1

A4,0

g g
+

−

ts

− +

n + 1 n + 1

n + 1
n + 1

Figure 1: The four diagrams are these boundary contributions for A0,4 with t = s − 1 and n = s + 1 using the

recursion relation.

left hand side of each diagram is three-point MHV amplitude with all λ proportional to each other, thus

gives zero value. So boundary contributions of At=0,s=4 are given by A4,0
L (zα)

z4α
P 2A

4,0
R (zα). Using

zα = −
〈n|s〉

〈n|t〉
, (3.9)

we obtain

Bt=0,s=4 = A
4,0
L (zα)

z4α
P 2

A
4,0
R (zα) = (−

〈n|s〉

〈n|t〉
)4A4,0

L (zα)
1

P 2
A

4,0
R (zα) =

〈s|n〉4

〈1|2〉 〈2|3〉 ... 〈n|1〉
= A0,4(0)(3.10)

which agrees with the one given by (3.3).

The case t = s− 1, n 6= s+ 1:

The second case we are considering is t = s−1 and n 6= s+1. Again there are four terms from recursion

relation (3.7), as shown in figure (2). All these four diagrams give nonzero boundary contributions to

At=0,s=4. By using

zα = −
〈s+ 1|s〉

〈s+ 1|t〉
, (3.11)

we have

| s(zα)〉 =| ŝ〉 =| s〉 −
〈s+ 1|s〉

〈s+ 1|t〉
| t〉 = −

〈t|s〉

〈s+ 1|t〉
| s+ 1〉 (3.12)
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s t

+

+

f f

gg

+ −

A1,3

s t

+

f f

gg

s t

+

gg

s t

+

gg

φ φ

A2,2

+ −

− +

A3,1

A4,0

g g
+

−

s + 2s + 1

+

−

+

s + 2s + 1

s + 2s + 1

+

s + 2s + 1

+

+−

Figure 2: The four diagrams are these boundary contributions for A0,4 with t = s − 1 and n 6= s + 1 using the

recursion relation.

where we have used the Schouten identity. All contributions from four diagrams in figure (2) have common

denominator as

P (0)2
〈
t̂|P̂

〉〈
P̂ |s+ 2

〉
〈s+ 2|s + 3〉 · · ·

〈
t− 1|t̂

〉
[ŝ|s+ 1]

[
s+ 1| − P̂

] [
−P̂ |ŝ

]

= [s+ 1|s]4 〈s|s+ 1〉 〈s+ 1|s + 2〉 · · · 〈t− 1|t〉 〈t|s〉 (3.13)

and these four numerators are given separately as

A1,3 : −4 [ŝ|s+ 1]
[
P̂ |s+ 1

]3 〈
P̂ |n

〉3 〈
t̂|n

〉
zα = 4zα [ŝ|s+ 1]4 〈n|ŝ〉3

〈
t̂|n

〉
,

A2,2 : [ŝ|s+ 1]2
[
P̂ |s+ 1

]2 〈
P̂ |n

〉2 〈
t̂|n

〉2
6z2α = 6z2α [ŝ|s+ 1]4 〈n|ŝ〉2

〈
t̂|n

〉2

A3,1 : −4z3α [ŝ|s+ 1]3
[
P̂ |s+ 1

]1 〈
P̂ |n

〉1 〈
t̂|n

〉3
= 4z3α [ŝ|s+ 1]4 〈n|ŝ〉1

〈
t̂|n

〉3

A4,0 : z4α [ŝ|s+ 1]4
〈
t̂|n

〉4
(3.14)

Sum up these four numerators we have

[ŝ|s+ 1]4 [〈n|ŝ〉+ zα
〈
t̂|n

〉
]4 − [ŝ|s+ 1]4 〈n|ŝ〉4 . (3.15)

Combining with the common denominator we get the final result

Bt=0,s=4 =
[〈n|ŝ〉+ zα

〈
t̂|n

〉
]4 − 〈n|ŝ〉4

〈s|s+ 1〉 〈s+ 1|s + 2〉 · · · 〈t− 1|t〉 〈t|s〉

=
〈n|s〉4 − [ 〈n|s+1〉〈t|s〉

〈t|s+1〉 ]4

〈s|s+ 1〉 〈s+ 1|s + 2〉 · · · 〈t− 1|t〉 〈t|s〉
(3.16)
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s

−−

g f

gf

+ −

A1,3

s− 1 t

s

−+

g f

gf

s− 1 t

s

−+

gg

− +

s− 1 t

s

−

gφ

g φ

A2,2

+ −

− +

A3,1

A4,0

g g
+

−

ts− 1

+ +

s + 1 s + 1

s + 1
s + 1

Figure 3: These four diagrams are the A part of boundary contributions for A0,4 with t 6= s − 1, t 6= s + 1 and

n = s+ 1 using the recursion relation.

where in the second step we have used (3.11) and (3.12). This result agrees with the one given by (3.3).

Case t 6= s− 1, t 6= s+ 1 and n=s+1:

The third case we are considering is t 6= s − 1, t 6= s + 1 and n = s + 1. There are five diagrams

contributing to boundary values. We divide these five diagrams into two parts, as part A shown in figure

(3) and part B, in figure (4). We first calculate contributions of part A from figure (3), where zAα is given

by

zAα = −
〈s− 1|s〉

〈s− 1|t〉
. (3.17)

The common denominator of these four contributions is

P (0)2
〈
t̂|P̂

〉〈
P̂ |s+ 1

〉
〈s+ 1|s+ 2〉 · · ·

〈
t− 1|t̂

〉
[s− 1|ŝ]

[
ŝ|P̂

] [
P̂ |s− 1

]

= [s− 1|s]4 〈t|t+ 1〉 · · · 〈s− 1|s〉 〈ŝ|s+ 1〉 〈s+ 1|s+ 2〉 · · · 〈t− 1|t〉 . (3.18)

By using Schouten identity, we have

〈ŝ|s+ 1〉 =
〈s|t〉 〈s− 1|s+ 1〉

〈s− 1|t〉
, (3.19)

thus the denominator becomes

[s− 1|s]4
〈s|t〉 〈s− 1|s+ 1〉

〈s− 1|t〉 〈s|s+ 1〉

∏

i

〈i|i+ 1〉 . (3.20)
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s s + 1

+

+

−

ts− 1

−

−

A4,0

Figure 4: The diagram is the B part of boundary contributions for A0,4 with t 6= s − 1, t 6= s + 1 and n = s+ 1

using the recursion relation.

By similar calculations for these four numerators as in (3.14) we get

[ŝ|s− 1]4 [〈n|ŝ〉+ zα 〈t|n〉]
4 − [ŝ|s− 1]4 〈n|ŝ〉4

= [ŝ|s− 1]4 〈n|s〉4 − [ŝ|s− 1]4 [
〈n|s− 1〉 〈s|t〉

〈s− 1|t〉
]4 . (3.21)

Putting these results together we have part A contributions from figure (3)

〈s− 1|t〉 〈s|s+ 1〉

〈s|t〉 〈s− 1|s+ 1〉

1∏
i 〈i|i+ 1〉

[〈n|s〉4 − [
〈n|s− 1〉 〈s|t〉

〈s− 1|t〉
]4] . (3.22)

The part B contribution from figure (4) can be calculated by similar way and the result is

〈s+ 1|t〉 〈s− 1|s〉

〈s− 1|s+ 1〉 〈s|t〉

1∏
i 〈i|i+ 1〉

〈n|s〉4 . (3.23)

By using Schouten identity 〈s− 1|t〉 〈s|s+ 1〉 + 〈s+ 1|t〉 〈s− 1|s〉 = 〈s|t〉 〈s− 1|s + 1〉, we can combine

part A and part B contributions together and get the final result for boundary values A0,4 with t 6= s− 1,

t 6= s+ 1 and n=s+1 is

Bt=0,s=4 =
1∏

i 〈i|i+ 1〉
[〈n|s〉4 −

〈s− 1|t〉 〈s|s+ 1〉

〈s|t〉 〈s− 1|s + 1〉
[
〈n|s− 1〉 〈s|t〉

〈s− 1|t〉
]4] . (3.24)

The result agrees with the one given by (3.2).

The case t 6= s− 1, t 6= s+ 1, n 6= s+ 1 and n 6= s− 1:

The last case we are considering is t 6= s−1, t 6= s+1, n 6= s+1 and n 6= s−1. There are totally eight

diagrams contributing to A0,4, again we divide eight diagrams into two parts, as part A shown in figure

(5) and part B, in figure (6).
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s

+−

g f

gf

+ −

A1,3

s− 1 t

s

++

g f

gf

s− 1 t

s

++

gg

− +

s− 1 t

s

+

gφ

g φ

A2,2

+ −

− +

A3,1

A4,0

g g
+

−

ts− 1

+ +

s + 1 s + 1

s + 1
s + 1

Figure 5: These diagrams are the A part of the boundary contributions for A0,4 with t 6= s−1, t 6= s+1, n 6= s+1

and n 6= s− 1 using the recursion relation.

By similar calculations as done in (3.16) we get results for part A in figure (5) as

〈s− 1|t〉 〈s|s+ 1〉

〈s|t〉 〈s− 1|s+ 1〉

1∏
i 〈i|i+ 1〉

[〈n|s〉4 − [
〈n|s− 1〉 〈s|t〉

〈s− 1|t〉
]4] (3.25)

and similarly the contribution for part B in figure (6) as

〈s+ 1|t〉 〈s− 1|s〉

〈s− 1|s + 1〉 〈s|t〉

1∏
i 〈i|i+ 1〉

[〈n|s〉4 − [
〈n|s+ 1〉 〈t|s〉

〈t|s+ 1〉
]4] . (3.26)

So the final boundary value for A0,4 with t 6= s− 1, t 6= s+ 1, n 6= s+ 1 and n 6= s− 1 is

Bt=0,s=4 =
1∏

i 〈i|i+ 1〉
[〈n|s〉4 −

〈s− 1|t〉 〈s|s+ 1〉

〈s|t〉 〈s− 1|s + 1〉
[
〈n|s− 1〉 〈s|t〉

〈s− 1|t〉
]4

−
〈s+ 1|t〉 〈s− 1|s〉

〈s− 1|s + 1〉 〈s|t〉
[
〈n|s+ 1〉 〈t|s〉

〈t|s+ 1〉
]4] . (3.27)

The result agrees with the one given by (3.2).

3.2 The second example: amplitude with two fermions and four gluons Λ+
1
Λ−
2
g−
3
g−
4
g+
5
g+
6

The A(Λ+
1
Λ−
2
g−
3
g−
4
g+
5
g+
6
) amplitude has been calculated in [21] by choosing a good deformation, here we

will discuss boundary contributions with bad deformation for this one, thus provide a generalization of our

discussions to cases besides gluons. We will consider two different bad deformations.

First we consider the bad shifting 〈4−|5+]. With this choice, there is no contribution from physical

poles and the whole amplitude is given by boundary contributions. There are four diagrams under 〈4−|5+]
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s s + 1

−

+

−

ts− 1

+

+

A1,3

s s + 1

ts− 1

+

A2,2

s s + 1

+

−

+

t
s− 1

+

−

A3,1

s s + 1

+

−

+

ts− 1

+

−

A4,0

Figure 6: These diagrams are the B part of the boundary contributions for A0,4 with t 6= s− 1, t 6= s+1, n 6= s+1

and n 6= s− 1 using the recursion relation.

deformation, as shown in figure (7). The recursion relation for boundary contributions is given by

Bt=0,s=4 ≡

∮
dz

z
At=0,s=4(z)

= −

∮
dz

z

(
−z3At=3,s=1(z) + z4At=4,s=0(z)

)
. (3.28)

according to the general formula (2.8). Compared to the one given by (3.7), we see that there are only

two terms with numerator coefficient 1. The reason is that this amplitude has fermions Λ1,Λ2, so in order

to get non-zero contributions, Λ must pair up with the same kind of fermions (recall that there are four

different fermions in N = 4 SYM theory).

The boundary contributions from figure (7.a) and (7.c) are given by

−A3,1
L (za)

z3a
P 2

A
3,1
R (za) +A

4,0
L (zc)

z4c
P 2

A
4,0
R (zc)

= −
s2561 〈1|5 + 6|2]

〈5|6〉 〈1|6〉 [2|3] [3|4] 〈5|1 + 6|2] 〈1|5 + 6|4]
(3.29)
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A4,0
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3−4+
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3−

4+

5− 6+

−
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−

+

−

+

−

+

Figure 7: The boundary term for A(Λ+
1 Λ

−

2 g
−

3 g
−

4 g
+
5 g

+
6 ) with 〈4−|5+] shifting using the recursion relation.

while the boundary contributions from figure (7.b) and figure (7.d) are given by

−
〈3|2〉2 〈3|1〉 [5|6]3

s456 〈1|2〉 [4|5] 〈3|4 + 5|6] 〈1|5 + 6|4]
−

[6|1]2 [6|2] 〈3|4〉3

s345 〈4|5〉 [1|2] 〈3|1 + 2|6] 〈5|1 + 6|2]
(3.30)

where s561 = (k5 + k6 + k1)2, s456 = (k4 + k5 + k6)
2 and s345 = (k3 + k5 + k5)

2. Putting these four terms

together, we find that

Bt=0,s=4 = −
s2561 〈1|5 + 6|2]

〈5|6〉 〈1|6〉 [2|3] [3|4] 〈5|1 + 6|2] 〈1|5 + 6|4]

−
〈3|2〉2 〈3|1〉 [5|6]3

s456 〈1|2〉 [4|5] 〈3|4 + 5|6] 〈1|5 + 6|4]
−

[6|1]2 [6|2] 〈3|4〉3

s345 〈4|5〉 [1|2] 〈3|1 + 2|6] 〈5|1 + 6|2]

= A(Λ+
1
Λ−
2
g−
3
g−
4
g+
5
g+
6
) , (3.31)

where the last identity can be checked with the result obtained in [21].

Our general framework can also be used to solve the problem raised in [22], where the author concluded

that one can not use nearby fermions to take BCFW deformation if the helicity configuration is (+,−) or

(−,+). The author also stated that the pair of one fermion and an adjacent gluon with the same helicity

is also not suitable for BCFW deformation. Now we understand that one can use nearby fermions to

do BCFW deformation if one is able to find boundary contributions. Using the recursion relation, the

– 13 –



boundary contributions with 〈1+|2−] shifting are given by

B′ =

∮
dz

z
A1,3(z) =

∮
dz

z
z3A4,0(z) = −A4,0

L (zα)
z3α
P 2

A
4,0
R (zα) . (3.32)

Contributions from physical poles under this deformation is zero and the whole amplitude is again given by

boundary contributions. There are three diagrams with pole contributions from A4,0, i.e., the pure gluon

helicity configuration (−,+,−,−,+,+). These three terms are exactly the one given by (3.31).

4. Conclusion and discussions

In this paper we have studied boundary contributions with bad deformation in gauge theory. We de-

duce a very useful on-shell recursion relation to calculate the boundary contributions from N = 4 SUSY

amplitudes. It provides useful understanding of bad deformations although we can always choose good

deformations to calculate the gauge theory amplitudes. Especially our recursion relation shows the cut-

constructibility of boundary contributions in generalized sense, i.e., they are given by pole contributions

of related theory. Obviously same consideration can be done for amplitudes with gravitons.
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