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Two-point boundary value problems and exact controllability

for several kinds of linear and nonlinear wave equations
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Abstract: In this paper we introduce some new concepts for second-order hyperbolic

equations: two-point boundary value problem, global exact controllability and exact con-

trollability. For several kinds of important linear and nonlinear wave equations arising

from physics and geometry, we prove the existence of smooth solutions of the two-point

boundary value problems and show the global exact controllability of these wave equations.

In particular, we investigate the two-point boundary value problem for one-dimensional

wave equation defined on a closed curve and prove the existence of smooth solution which

implies the exact controllability of this kind of wave equation. Furthermore, based on

this, we study the two-point boundary value problems for the wave equation defined on

a strip with Dirichlet or Neumann boundary conditions and show that the equation still

possesses the exact controllability in these cases. Finally, as an application, we introduce

the hyperbolic curvature flow and obtain a result analogous to the well-known theorem of

Gage and Hamilton for the curvature flow of plane curves.
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1 Introduction

Consider the following seconder-order hyperbolic partial differential equation

P(t, x, u,Du,D2u) = 0, (1.1)

where t is the time variable, x = (x1, · · · xn) stand for the spacial variables, u = u(t, x)

is the unknown function, P is a given smooth function of the independent of vari-

ables t, x1, · · · , xn, the unknown function u, the first-order partial derivatives Du =

(ut, ux1
, · · · , uxn) and the second-order partial derivatives D2u = (utt, utx1

, · · · ). Since

we only consider the hyperbolic case, the initial data associated with the equation (1.1)

read

t = 0 : u = u0(x), ut = u1(x), (1.2)

where u0(x) and u1(x) are two given functions which stand for the initial position and

the initial velocity, respectively. The equation (1.1) and the initial data (1.2) constitute

the famous Cauchy problem. Another important problem related to (1.1) is the following

so-called two-point boundary value problem for the equation (1.1):

Two-point Boundary Value Problem (TBVP): Given two suitable smooth functions

u0(x), uT (x) and a positive constant T , can we find a C2-smooth function u = u(t, x)

defined on the strip [0, T ] × R
n such that the function u = u(t, x) satisfies the equation

(1.1) on the domain [0, T ] ×R
n, the initial condition

u(0, x) = u0(x), ∀ x ∈ R
n (1.3)

and the terminal condition

u(T, x) = uT (x), ∀ x ∈ R
n? (1.4)

Another Statement of TBVP: Given two suitable smooth functions u0(x), uT (x) and

a positive constant T , can we find an initial velocity ut(0, x) = u1(x) such that the Cauchy

problem (1.1)-(1.2) has a solution u = u(t, x) ∈ C2([0, T ]×R
n) which satisfies the terminal

condition (1.4)?

The system (1.1) together with (1.3)-(1.4) can be viewed as a distributed parameter

control system when the initial velocity function u1(x) is considered as a control input.

We now give the following definition.
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Definition 1.1. For any given T > 0, if the TBVP (1.1), (1.3)-(1.4) has a C2 solution

on the strip [0, T ] × R
n, then the equation (1.1) is called to possess the global exact con-

trollability; If the TBVP (1.1), (1.3)-(1.4) admits a C2 solution on the strip [0, T ]×R
n for

some given T > 0, then we say that the equation (1.1) possesses the exact controllability.

Remark 1.1. For the system of seconder-order hyperbolic partial differential equations,

we have similar concepts and definitions; For higher-order hyperbolic partial differential

equations, we have a similar discussion.

The wave equations play an important role in both theoretical and applied fields, they

include two classes: linear wave equations and nonlinear wave equations. The classical

wave equation is an important second-order linear partial differential equation of waves,

such as sound waves, light waves and water waves. It arises in fields such as acous-

tics, electromagnetics, fluid dynamics, and general relativity. Historically, the problem

of a vibrating string such as that of a musical instrument was studied by Jean le Rond

d’Alembert, Leonhard Euler, Daniel Bernoulli, and Joseph-Louis Lagrange.

The wave equation is the prototypical example of a hyperbolic partial differential

equation. In its simplest form, the wave equation refers to a unknown scalar function

y = y(t, x) which satisfies

ytt − c2∆y = 0, (1.5)

where ∆ =

n
∑

i=1

∂2

∂x2i
denotes the Laplacian and c is a fixed constant which stands for the

propagation speed of the wave. One of aims of the present is to investigate the TBVP for

(1.5), more precisely we study the following TBVP:

TBVP for (1.5): Given two functions f(x), g(x) ∈ C [n/2]+2(Rn) and a positive constant

T , can we find a C2-smooth function y = y(t, x) defined on the strip [0, T ]×R
n such that

the function y = y(t, x) satisfies the equation (1.5) on the domain [0, T ] ×R
n, the initial

condition

y(0, x) = f(x), ∀ x ∈ R
n (1.6)

and the terminal condition

y(T, x) = g(x), ∀ x ∈ R
n? (1.7)
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Another Statement: Given two functions f(x), g(x) ∈ C [n/2]+2(Rn) and a positive

constant T , can we find an initial velocity v = v(x) such that the Cauchy problem for the

wave equation (1.5) with the initial data

t = 0 : y = f(x), yt = v(x) (1.8)

has a solution y = (t, x) ∈ C2([0, T ] ×R
n) which satisfies the terminal condition (1.7)?

In this paper we shall show the global exact controllability of the equation (1.5) and

some nonlinear wave equations arising from geometry and the theory of relativistic strings.

It is well-known that there are many deep and beautiful results on the TBVP for or-

dinary differential equations, however, according to the authors’ knowledge, few of results

on the TBVP for hyperbolic equations, even for (linear or nonlinear) wave equations have

been known. Therefore, we can say that the result presented in this paper is the first

result on this research topic.

On the other hand, the study on boundary control problems for hyperbolic systems

was initiated by D.L. Russell in the 1960s. In [15], using the characteristic method,

he showed that a class of n× n first order linear hyperbolic systems is exactly boundary

controllable. This work led to an intensive investigation of controllability and stabilization

of linear hyperbolic systems for more than 30 years. The literature pertaining to this

study is now absolutely enormous, we refer to two excellent review papers Russell [16]

and Lions [14]. However, while it may be fair to say that the study of boundary control

of linear hyperbolic systems is now nearly complete, the study of nonlinear hyperbolic

systems is still vastly open. Up to now, some results on the exact boundary controllability

of (abstract) semilinear wave equations have been obtained (see [1], [2], [4], [12]-[13],

[19]-[21] and references cited therein). As for boundary control of quasilinear hyperbolic

systems, there have been few results so far. Motivated by Ruessell’s work, Cirinà [3] studied

boundary control of general quasilinear hyperbolic systems. Using a different approach

from that of Russell, he proved that the system is locally exactly boundary controllable in

the sense that the C1 norms of both initial and terminal states are required to be small.

All the above results are obtained under the assumption that the initial and terminal

states are smooth, and they are discussed in the framework of classical solutions. For the

global exact controllability of system (1.1) in the case that the initial and terminal states

maybe contain discontinuity points of the first kind, up to now only a few of results have

been known. In Kong [7], the author investigated the global exact boundary controlla-
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bility of 2× 2 quasilinear hyperbolic system of conservation laws with linearly degenerate

characteristics and proved that the system with nonlinear boundary conditions is globally

exactly boundary controllable in the class of piecewise C1 functions. Later, by a new

constructive method, Kong and Yao reproved the global exact boundary controllability

of a class of quasilinear hyperbolic systems of conservation laws with linearly degenerate

characteristics, shown that the system with nonlinear boundary conditions is globally ex-

actly boundary controllable in the class of piecewise C1 functions, in particular, gave the

optimal control time of the system (see [9]).

Here we would like to remark that the TBVP and the boundary control problems are

essentially different two kinds of problems. Both of them play an important role in both

theoretical and applied aspects.

We now state the first result in this paper.

Theorem 1.1. The TBVP (1.5)-(1.7) admits a C2-smooth solution y = y(t, x) defined

on the strip [0, T ] ×R
n.

Theorem 1.1 implies that the wave equation (1.5) possesses the global exact control-

lability.

Remark 1.2. The solution of the TBVP of (1.5)-(1.7) does not possess the uniqueness

(see Remarks 2.2 and 3.2 for the details).

Remark 1.3. Theorem 1.1 can be generalized to the case of inhomogeneous wave equa-

tions, i.e.,

ytt − c2∆y = F (t, x), (1.9)

where F (t, x) is a given function which stands for the source term of the system.

Remark 1.4. We have similar results for some nonlinear wave equations including a

wave map equation arising from geometry and the equations for the motion of relativistic

strings in the Minkowski space-time R
1+n (see Section 7 for the details). These nonlinear

wave equations play an important role in both mathematics and physics.

However, some problems arising from engineering, control theory etc. can be reduced

to the TBVP for wave equations defined on a closed curve, say, a circle. The typical

example is the vibration of a closed elastic string. In this case, since the wave equation is

defined on a closed curve and then the solution must possess the periodicity, the method
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used in the proof of Theorem 1.1 will no longer work. It needs some new ideas and new

technologies to study such a kind of problems.

In this paper we also investigate this kind of problems mentioned above. For simplicity,

we consider the following TBVP1



























ytt − yθθ = 0, ∀ (t, θ) ∈ [0, T ] ×R,

y(0, θ) = f(θ), ∀ θ ∈ R,

y(T, θ) = g(θ), ∀ θ ∈ R,

(1.10)

where y = y(t, θ) is the unknown function of the variables t and θ, T is a given positive

constant, f(θ) and g(θ) are two given periodic C3 functions of θ ∈ R, say, the period is

L, in which L is a positive real number. The second result in the present paper is the

following theorem.

Theorem 1.2. The TBVP (1.10) admits a global L-periodic C2 solution y = y(t, θ)

defined on the domain [0, T ]×R, provided that
T

L
is a rational number with

2T

L
6∈ N.

Remark 1.5. Theorem 1.2 implies that the wave equation in (1.10) possesses the exact

controllability. On the other hand, in general, the solution of the TBVP (1.10) is not

unique (see the proof of Theorem 1.2 in Section 4 for the details).

Remark 1.6. In Theorem 1.2, if
2T

L
∈ N, then there exists a relationship between f(θ)

and g(θ). This means that f(θ) and g(θ) can not be given arbitrarily. See Remark 4.2 for

the details.

As a consequence, we consider the following TBVP defined on a circle



























ytt − yθθ = 0, ∀ (t, θ) ∈ [0, T ] × S
1,

y(0, θ) = f(θ), ∀ θ ∈ S
1,

y(T, θ) = g(θ), ∀ θ ∈ S
1,

(1.11)

where S
1 stands for the unit circle, f(θ) and g(θ) are two given C3 functions of θ ∈ S

1.

By Theorem 1.2, we have

1In fact, by scaling, any wave equation ytt − c2yθθ = 0 with the propagation speed c can be reduced to

the wave equation in (1.10). Therefore, in this paper, without loss of generality, we only consider the wave

equation with the propagation speed c = 1.

6



Theorem 1.3. The TBVP (1.11) admits a global C2 solution y = y(t, θ) defined on the

cylinder [0, T ]× S
1, provided that

T

2π
is a rational number and

T

π
6∈ N.

Remark 1.7. Theorem 1.3 implies that the wave equation defined on a circle possesses

the exact controllability.

Remark 1.8. For the (1 + n)-dimensional wave equation (1.5), we have similar results,

provided that the initial/terminal data f(x) and g(x) in (1.6)-(1.7) are C [n/2]+3 smooth

functions and are periodic in r =
√

x21 + · · · + x2n. In fact, in the present situation, using

Theorem 1.2, by a way similar to the proof of Theorem 1.1 we can prove that the TBVP

(1.5)-(1.7) admits a global C2 solution y = y(t, x) defined on the strip [0, T ]×R
n, provided

that
T

L
is a rational number with

2T

L
6∈ N, where L is the period of f(x), g(x) with respect

to r. In other words, in this case the equation (1.5) still possesses the exact controllability.

Based on the results mentioned above, we further study the two-point boundary value

problems for the wave equation defined on a strip with Dirichlet or Neumann boundary

conditions and show that the equation still possesses the exact controllability in these cases.

Finally, as an application of the results mentioned above, we introduce the hyperbolic

curvature flow and obtain a result analogous to the well-known theorem of Gage and

Hamilton [5] for the curvature flow of plane curves.

This paper is organized as follows. Section 2 is devoted to the study on the global

exact controllability of one-dimensional wave equation. Based on Section 2, in Section

3 we investigate the global exact controllability of linear wave equations in several space

variables and we prove Theorem 1.1. In Section 4, we give the proof of Theorem 1.2 and

Theorem 1.3, respectively. As some applications of Theorem 1.2, in Sections 5 and 6 we

study the two-point boundary value problems for the wave equation defined on a strip

with (homogeneous or inhomogeneous) Dirichlet or Neumann boundary conditions and

show that the equation still possesses the exact controllability in these cases. The global

exact controllability of some nonlinear wave equations arising from geometry and physics

has been investigated in Section 7. In Section 8 we introduce the hyperbolic curvature flow

and prove a result analogous to the one shown by Gage and Hamilton in [5] for curvature

flow of plane curves. In Section 9 we give a summary and some discussions and then

present several open problems.

7



2 One-dimensional wave equation

This section concerns the global exact controllability of one-dimensional wave equation,

which is a basis of the present paper.

Consider the following TBVP for one-dimensional wave equation



























ytt − yxx = 0,

y(0, x) = f(x),

y(T, x) = g(x),

(2.1)

where T is an arbitrary fixed positive constant, f(x) and g(x) are two given functions

of x ∈ R. We have the following theorem which is a special case of Theorem 1.1 but

fundamental in this paper.

Theorem 2.1. Suppose that f(x) and g(x) are two given C2-smooth functions of x ∈

R. Then the TBVP (2.1) admits a C2-smooth solution y = y(t, x) defined on the strip

[0, T ]×R.

Proof. Introduce

ỹ(t, x) = y(t, x)−
f(x− t) + f(x+ t)

2
, (2.2)

and

f̃(x) = g(x) −
f(x− T ) + f(x+ T )

2
. (2.3)

Obviously, f̃(x) is a C2-smooth function of x ∈ R. By means of ỹ(t, x) and f̃(x), the

TBVP (2.1) can be equivalently rewritten as



























ỹtt − ỹxx = 0,

ỹ(0, x) = 0,

ỹ(T, x) = f̃(x),

(2.4)

Therefore, in order to prove Theorem 2.1, it suffices to show that the TBVP (2.4) has a

C2-smooth solution ỹ = ỹ(t, x) defined on the strip [0, T ]×R.

By d’Alembert formula, the solution of the following Cauchy problem











ỹtt − ỹxx = 0,

t = 0 : ỹ = 0, ỹt = v(x)

(2.5)
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reads

ỹ(t, x) =
1

2

∫ x+t

x−t
v(τ)dτ, (2.6)

where v(x) is a C1-smooth function to be determined, which stands for the initial velocity.

We next show that there indeed exists an initial velocity v(x) such that the solution

ỹ = ỹ(t, x) of the Cauchy problem (2.5), defined by (2.6), satisfies the terminal condition

in the TBVP (2.4), i.e.,

ỹ(T, x) = f̃(x). (2.7)

To do so, we construct a C1 function u(x) on [−T, T ] which satisfies

∫ T

−T
u(τ)dτ = 2f̃(0), u(T )− u(−T ) = 2f̃ ′(0) and u′−(T )− u′+(−T ) = 2f̃ ′′(0). (2.8)

Define

v(x) =























u(x− 2NT ) + 2

N
∑

i=1

f̃ ′(x− (2i− 1)T
)

, ∀ x ≥ 0,

u(x+ 2NT )− 2

N
∑

i=1

f̃ ′(x+ (2i− 1)T
)

, ∀ x < 0,

(2.9)

where N is given by

N =

[

|x|+ T

2T

]

.

In (2.9), the terms including the summation disappear in the case of N = 0.

We claim that the function v(x) defined by (2.9) is C1-smooth.

In what follows, we distinguish two cases to show this fact.

Case A: x ≥ 0. In this case, for every x 6= (2N − 1)T (N ∈ N), by (2.9) it is easy

to check that v(x) is C1-smooth at such a point x.

When x = (2N − 1)T , it follows from (2.9) that

lim
α→x+

v(α) = v(x) = u(−T ) + 2
N−1
∑

i=0

f̃ ′(2iT ) (2.10)

and

lim
α→x−

v(α) = lim
α→x−

u
(

α−2(N−1)T
)

+2

N−1
∑

i=1

lim
α→x−

f̃ ′(α−(2i−1)T
)

= u(T )+2

N−1
∑

i=1

f̃ ′(2iT ).

(2.11)

Combining (2.10) and (2.11) gives

v(x)− lim
α→x−

v(α) = u(−T )− u(T ) + 2f̃ ′(0). (2.12)
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Noting the second equation in (2.8) yields the continuity of v(x) for all x ≥ 0.

On the other hand, it follows from (2.9) that

v′−(x) = u′−
(

x− 2(N − 1)T
)

+ 2
N−1
∑

i=1

f̃ ′′(x− (2i − 1)T
)

= u′−(T ) + 2
N−1
∑

i=1

f̃ ′′((2N − 2i)T
)

(2.13)

and

v′+(x) = u′+(x−2NT )+2

N
∑

i=1

f̃ ′′(x− (2i−1)T
)

= u′+(−T )+2

N
∑

i=1

f̃ ′′((2N −2i)T
)

. (2.14)

Combining (2.13) and (2.14) gives

v′+(x)− v′−(x) = u′+(−T )− u′−(T ) + 2f̃ ′′(0). (2.15)

Noting the third equation in (2.8), we have

v′+(x) = v′−(x). (2.16)

Summarizing the above argument yields that the function v(x) defined by (2.9) is C1-

smooth for all x ≥ 0.

Case B: x < 0. Similarly, we can prove that the function v(x) is C1-smooth in the

present situation.

Combining Cases A and B, we have shown that the function v(x) defined by (2.9) is

a C1-smooth function of x ∈ R, and then the solution ỹ = ỹ(t, x), defined by (2.6), of the

Cauchy problem (2.5) is C2-smooth on the whole upper plane R
+ ×R.

We now claim that, for the initial velocity v(x) defined by (2.9), the solution ỹ = ỹ(t, x)

defined by (2.6) satisfies the terminal condition (2.7).

In fact, we verify this statement by distinguishing the following two cases:

Case 1: x ≥ 0. In the present situation, it holds that

x ≤ 2NT + T ≤ x+ 2T.
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Thus it follows from (2.9) that

1

2

∫ x+2T

x
v(τ)dτ =

1

2

[
∫ 2NT+T

x
v(τ)dτ +

∫ x+2T

2NT+T
v(τ)dτ

]

=

∫ 2NT+T

x

[

1

2
u(τ − 2NT ) +

N
∑

i=1

f̃ ′(τ − (2i − 1)T
)

]

dτ+

∫ x+2T

2NT+T

[

1

2
u
(

τ − 2(N + 1)T
)

+
N+1
∑

i=1

f̃ ′(τ − (2i− 1)T
)

]

dτ

=
1

2

[
∫ 2NT+T

x
u(τ)dτ +

∫ x+2T

2NT+T
u(τ)dτ

]

+

N
∑

i=1

[

f̃
(

(2N − 2i+ 2)T
)

− f̃
(

x− (2i− 1)T
)

]

+

N+1
∑

i=1

[

f̃
(

x− (2i− 3)T
)

− f̃
(

(2N − 2i+ 2)T
)

]

=
1

2

[
∫ T

x−2NT
u(τ)dτ +

∫ x−2NT

−T
u(τ)dτ

]

+

N
∑

i=1

[

f̃
(

x− (2i− 3)T
)

− f̃
(

x− (2i − 1)T
)

]

+

f̃
(

x− (2N − 1)T
)

− f̃(0)

=
1

2

∫ T

−T
u(τ)dτ + f̃(x+ T )− f̃(0). (2.17)

Noting the first condition of (2.8), we obtain

1

2

∫ x+2T

x
v(τ)dτ = f̃(x+ T ). (2.18)

This leads to

ỹ(T, x) =
1

2

∫ x+T

x−T
v(τ)dτ = f̃(x). (2.19)

This is the desired terminal condition (2.7) for the case of x ≥ 0.

Case 2: x < 0. In a similar manner, we can prove the terminal condition (2.7)

holds for all x < 0.

The above discussion shows that ỹ = ỹ(t, x) defined by (2.6) is a C2-smooth solution

of the TBVP (2.4) defined on the strip [0, T ] ×R. This proves Theorem 2.1.

Remark 2.1. In order to illustrate that it is easy to construct the function u satisfying

(2.8), in this remark we present two examples. The first example reads

u =
f̃ ′′(0)

2T
x2 +

f̃ ′(0)

T
x+

f̃(0)

T
−

f̃ ′′(0)T

6
. (2.20)
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It is easy to check that the function u defined by (2.20) satisfies all conditions in (2.8).

The second example is

u(x) =











h̃+
h

2
+

h

2
sin

( π

T
x+

π

2

)

, ∀ x ∈ [−T, 0),

h̃+ h+
1

T
f̃ ′′(0)x2, ∀ x ∈ [0, T ],

(2.21)

where

h = 2f̃ ′(0) − T f̃ ′′(0) and h̃ =
f̃(0)

T
+

(

7

12
T f̃ ′′(0) −

3

2
f̃ ′(0)

)

.

It is easy to verify that the function u defined by (2.21) also satisfies all conditions in

(2.8).

Remark 2.2. The solution of the TBVP (2.4) (equivalently, (2.2)) is not unique. In fact,

by the definition of u(x) we observe that such a function u is not unique. This results the

non-uniqueness of the initial velocity v(x) and then the solution ỹ = ỹ(t, x). For example,

choose a C1-smooth function v1(x) satisfying

∫ x+T

x−T
v1(τ)dτ = 0. (2.22)

This implies that v1(x) is a 2T -periodic function and satisfies

∫ T

−T
v1(τ)dτ = 0. (2.23)

Obviously, the function

ỹ(t, x) =
1

2

∫ x+t

x−t

(

v(τ) + v1(τ)
)

dτ (2.24)

also gives a C2-smooth solution of the TBVP (2.4).

The idea to construct v(x) (see (2.9)) essentially comes from the characteristic-quadrilateral

identity given in [10]. In fact, using the characteristic-quadrilateral identity, we have

ỹ(A) + ỹ(D) = ỹ(B1) + ỹ(C1). (2.25)

See Figure 1. By the the initial condition in the TBVP (2.4), we get

ỹ(A) = ỹ(B1) + ỹ(C1). (2.26)

Similarly, we obtain

ỹ(B1) = ỹ(B2) + ỹ(C2), · · · , ỹ(BN−1) = ỹ(BN ) + ỹ(CN ). (2.27)
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Figure 1: The method to construct the initial velocity v(x) by characteristic-quadrilaterals

On the other hand, it follows from (2.6) that

ỹ(A) =
1

2

∫ x

−T
v(τ)dτ, ỹ(BN ) =

1

2

∫ x−2NT

−T
v(τ)dτ. (2.28)

Combining (2.26)-(2.28) gives the definition of v(x) shown by (2.9).

Remark 2.3. In fact, the existence of the C2-solution of the TBVP (2.4) is equivalent to

the existence of the C1-solution of the following integral equation

∫ x+T

x−T
v(τ)dτ = f̃(x). (2.29)

(2.29) is a typical example of Volterra integral equations of the first kind. By the theory of

Volterra integral equations, we can obtain the existence of the C1-solution of the integral

equation (2.29). However, by this theory we do not know how to construct the desired

solution. But, in our theory we present a direct method to construct the desired solution

of the TBVP (2.1).

3 Wave equations in several space variables

In this section, we study the global exact controllability of wave equations in several space

variables and prove Theorem 1.1.
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Consider the TBVP (1.5)-(1.7), i.e., the following TBVP


























� y(t, x) = 0,

y(0, x) = f(x),

y(T, x) = g(x),

(3.1)

where (t, x) ∈ R
+ ×R

n, the symbol � stands for the d’Alembert’s operator, i.e.,

� = ∂2
t −

n
∑

i=1

∂2
i = ∂2

t −∆x,

and f(x), g(x) ∈ C [n/2]+2(Rn) are two given functions defined on Rn. In (3.1), without

loss of generality, we assume that the propagation speed c of wave is 1. Thus, in order to

prove Theorem 1.1, it suffice to show the following theorem.

Theorem 3.1. The TBVP (3.1) has a C2-smooth solution y = y(t, x) defined on the strip

[0, T ]×R
n.

Remark 3.1. Theorem 3.1 implies the global exact controllability of wave equations in

several space variables. Similar result is true for the following inhomogeneous wave equa-

tions

� y(t, x) = F (t, x).

We next give the proof of Theorem 3.1 (equivalently, Theorem 1.1).

Proof. We distinguish two cases to prove Theorem 3.1.

Case A: n = 2k + 1 (k ∈ N)

Define the spherical mean of any given function h(x) defined on R
n:

Arh(x) =
1

ωn−1

∫

Sn−1

h(x+ ry)dσ(y), (3.2)

where ωn−1 denotes the area of the unit sphere Sn−1 ⊂ R
n and dσ(y) stands for the

Lebesgue measure on the unit sphere Sn−1. Let

w(t, r) =

(

1

r

∂

∂r

)k−1
(

r2k−1Ary(t, x)
)

. (3.3)

It is easy to check that the function w(t, r) satisfies the following TBVP






























wtt − wrr = 0,

w(0, r) =

(

1

r

∂

∂r

)k−1
(

r2k−1Arf(x)
)

,

w(T, r) =

(

1

r

∂

∂r

)k−1
(

r2k−1Arg(x)
)

.

(3.4)
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Thus, by Theorem 2.1, the TBVP (3.4) has a C2-smooth solution defined on the domain

[0, T ]×R.

Denote

c0 =

k
∏

i=1

(2i − 1). (3.5)

Then we have

y(t, x) = lim
r→0

Ary(t, x) = lim
r→0

1

c0r
w(t, r). (3.6)

It is easy to verify that the function y = y(t, x) defined by (3.6) is a C2-smooth solution

of the TBVP (3.1) on the strip [0, T ]×R
n.

Case B: n = 2k (k ∈ N)

By Hadamard’s method of descent, we can also prove that the TBVP (3.1) has a

C2-smooth solution on the strip [0, T ] × R
n. The main idea here is that if y solves a

wave equation with n space variables, then it is also a solution of the corresponding wave

equation with n+1 space variables, which happens to be independent of the last variable

xn+1. Here we omit the details. Thus the proof of Theorem 3.1 is completed.

Remark 3.2. Noting Remark 2.2, we know that the solution of the TBVP (3.1) does not

possesses the uniqueness.

4 Wave equation defined on a closed curve

This section concerns the exact controllability of the wave equation defined on a circle. In

other words, in this section we prove Theorem 1.2 and then Theorem 1.3.

To do so, we need the following Lemma (see Kong [8]).

Lemma 4.1. Suppose that F (x) is a L-periodic C2 function of x ∈ R, and its derivative

of third order, i.e., F ′′′(x), is piecewise smooth. Suppose furthermore that the Fourier

series of F (x) is given by

F (x) =
1

2
A0 +

∞
∑

k=1

Ak cos

(

2kπ

L
x

)

+

∞
∑

k=1

Bk sin

(

2kπ

L
x

)

, (4.1)

where

A0 =
2

L

∫ L

0
f(x)dx, Ak =

2

L

∫ L

0
f(x) cos

(

2kπ

L
x

)

dx, Bk =
2

L

∫ L

0
f(x) sin

(

2kπ

L
x

)

dx.

Then the series

∞
∑

k=1

|k2Ak| and

∞
∑

k=1

|k2Bk| are convergent.
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Proof. It follows from (4.1) that























∞
∑

k=1

Bk sin

(

2kπ

L
x

)

=
1

2

(

F (x)− F (−x)
)

, G(x),

1

2
A0 +

∞
∑

k=1

Ak cos

(

2kπ

L
x

)

=
1

2

(

F (x) + F (−x)
)

, H(x).

(4.2)

Since G(x) is a L-periodic odd function, its derivative of third order, i.e., G′′′(x), is a

L-periodic piecewise continuous even function. So the form of the Fourier series of G′′′(x)

should be

G′′′(x) =
1

2
B

(3)
0 +

∞
∑

k=1

B
(3)
k cos

(

2kπ

L
x

)

, (4.3)

where B
(3)
0 and B

(3)
k (k = 1, 2, · · · ) stand for the coefficients of the Fourier series. By

Parseval inequality, we obtain

1

2

(

B
(3)
0

)2
+

∞
∑

k=1

(

B
(3)
k

)2
=

2

L

∫ L

0

[

G′′′(x)
]2
dx < ∞. (4.4)

On the other hand,

B
(3)
k =

2

L

∫ L

0
G′′′(x) cos

(

2kπ

L
x

)

dx

=
2

L

[

G′′(x) cos

(

2kπ

L
x

)]

∣

∣

∣

L

0
+

2kπ

L

2

L

∫ L

0
G′′(x) sin

(

2kπ

L
x

)

dx

=
2kπ

L

2

L

[

G′(x) sin

(

2kπ

L
x

)]

∣

∣

∣

L

0
−

(

2kπ

L

)2 2

L

∫ L

0
G′(x) cos

(

2kπ

L
x

)

dx

= −

(

2kπ

L

)2 2

L

[

G(x) cos

(

2kπ

L
x

)]

∣

∣

∣

L

0
−

(

2kπ

L

)3 2

L

∫ L

0
G(x) sin

(

2kπ

L
x

)

dx

= −

(

2kπ

L

)3

Bk. (4.5)

Here we have made use of the fact that G(x) and G′′(x) are L-periodic odd functions. So

∞
∑

k=1

(

k3Bk

)2
=

(

L

2π

)6 ∞
∑

k=1

(

B
(3)
k

)2
< ∞. (4.6)

Then by Cauchy inequality, it yields

∞
∑

k=1

∣

∣k2Bk

∣

∣ ≤

√

√

√

√

∞
∑

k=1

(k3Bk)
2 ·

∞
∑

k=1

1

k2
< ∞. (4.7)

Similarly, we can show that
∞
∑

k=1

∣

∣k2Ak

∣

∣ is convergent.

Thus, the proof of Lemma 4.1 is completed.

16



Remark 4.1. Obviously, it follows from Lemma 4.1 that the series

∞
∑

k=1

|Ak|,

∞
∑

k=1

|Bk|,

∞
∑

k=1

|kAk|,

∞
∑

k=1

|kBk|

are convergent.

We now prove Theorem 1.2.

Proof. Suppose that the Fourier series of the solution y = y(t, θ) to (1.10) reads

y(t, θ) =
1

2
a0(t) +

∞
∑

k=1

ak(t) cos

(

2kπ

L
θ

)

+
∞
∑

k=1

bk(t) sin

(

2kπ

L
θ

)

, (4.8)

where a0(t), ak(t), bk(t) stand for the coefficients of the Fourier series. Then by the first

equation in (1.10), we obtain































a′′0(t) = 0,

a′′k(t) +

(

2kπ

L

)2

ak(t) = 0,

b′′k(t) +

(

2kπ

L

)2

bk(t) = 0.

(4.9)

In particular,























f(θ) =
1

2
a0(0) +

∞
∑

k=1

ak(0) cos

(

2kπ

L
θ

)

+
∞
∑

k=1

bk(0) sin

(

2kπ

L
θ

)

,

g(θ) =
1

2
a0(T ) +

∞
∑

k=1

ak(T ) cos

(

2kπ

L
θ

)

+

∞
∑

k=1

bk(T ) sin

(

2kπ

L
θ

)

,

(4.10)

in which














a0(0) =
2

L

∫ L

0
f(x)dx,

a0(T ) =
2

L

∫ L

0
g(x)dx,

(4.11)















ak(0) =
2

L

∫ L

0
f(x) cos

(

2kπ

L
x

)

dx,

ak(T ) =
2

L

∫ L

0
g(x) cos

(

2kπ

L
x

)

dx,

(4.12)

and














bk(0) =
2

L

∫ L

0
f(x) sin

(

2kπ

L
x

)

dx,

bk(T ) =
2

L

∫ L

0
g(x) sin

(

2kπ

L
x

)

dx.

(4.13)
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It follows from (4.9) that































a0(t) = α0 + β0t,

ak(t) = αk cos

(

2kπ

L
t

)

+ βk sin

(

2kπ

L
t

)

,

bk(t) = ᾱk cos

(

2kπ

L
t

)

+ β̄k sin

(

2kπ

L
t

)

,

(4.14)

where α0, β0, αk, βk, ᾱk and β̄k are some constants. Comparing (4.11)-(4.13) with (4.14)

gives














α0 =
2

L

∫ L

0
f(x)dx,

α0 + β0T =
2

L

∫ L

0
g(x)dx,

(4.15)















αk =
2

L

∫ L

0
f(x) cos

(

2kπ

L
x

)

dx,

αk cos

(

2kπ

L
T

)

+ βk sin

(

2kπ

L
T

)

=
2

L

∫ L

0
g(x) cos

(

2kπ

L
x

)

dx

(4.16)

and














ᾱk =
2

L

∫ L

0
f(x) sin

(

2kπ

L
x

)

dx,

ᾱk cos

(

2kπ

L
T

)

+ β̄k sin

(

2kπ

L
T

)

=
2

L

∫ L

0
g(x) sin

(

2kπ

L
x

)

dx.

(4.17)

That is,














α0 =
2

L

∫ L

0
f(x)dx,

β0 =
2

LT

∫ L

0
[g(x) − f(x)]dx,

(4.18)































αk =
2

L

∫ L

0
f(x) cos

(

2kπ

L
x

)

dx,

βk =















0, if
2kT

L
∈ N,

2

L sin
(

2kπ
L T

)

∫ L

0

[

g(x)− f(x) cos

(

2kπ

L
T

)]

cos

(

2kπ

L
x

)

dx, if
2kT

L
6∈ N

(4.19)

and






























ᾱk =
2

L

∫ L

0
f(x) sin

(

2kπ

L
x

)

dx,

β̄k =















0, if
2kT

L
∈ N,

2

L sin
(

2kπ
L T

)

∫ L

0

[

g(x)− f(x) cos

(

2kπ

L
T

)]

sin

(

2kπ

L
x

)

dx, if
2kT

L
6∈ N.

(4.20)
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Here we would like to point out that, when
2kT

L
∈ N, i.e., sin

(

2kπ

L
T

)

= 0, in (4.19)-

(4.20) we take the corresponding coefficients βk and β̄k as zero. In fact, we may also take

βk and β̄k as some series satisfying

∞
∑

k=1

|k2βk| < ∞,

∞
∑

k=1

|k2β̄k| < ∞. (4.21)

The different choice of βk and β̄k can give the different solution. This implies that the

solution of the TBVP under consideration is not unique.

Since
T

L
is a rational number and

2T

L
6∈ N,

2T

L
can be expressed as a fraction

p

q
, where

p and q are two irreducible integers and q is not less than 2, i.e., q ≥ 2. By the property

of sinusoid, we have
∣

∣

∣

∣

sin

(

2kπ

L
T

)
∣

∣

∣

∣

=

∣

∣

∣

∣

sin

(

kpπ

q

)
∣

∣

∣

∣

≥

∣

∣

∣

∣

sin

(

π

q

)
∣

∣

∣

∣

, Cs, if k is not the multiple of q. (4.22)

So for the given T and L, Cs is a constant. Then it follows from (4.14), (4.19), (4.21) and

Remark 4.1 that

∞
∑

k=1

|ak(t)| ≤

∞
∑

k=1

(|αk|+ |βk|)

≤

(

1 +
1

Cs

) ∞
∑

k=1

∣

∣

∣

∣

2

L

∫ L

0
f(x) cos

(

2kπ

L
x

)

dx

∣

∣

∣

∣

+
1

Cs

∞
∑

k=1

∣

∣

∣

∣

2

L

∫ L

0
g(x) cos

(

2kπ

L
x

)

dx

∣

∣

∣

∣

< ∞. (4.23)

Similarly, we obtain from (4.14), (4.20), (4.21) and Remark 4.1 that

∞
∑

k=1

|bk(t)| < ∞. (4.24)

Combining (4.23), (4.24) and (4.15) gives the convergence of the Fourier series (4.8) of the

solution y = y(t, θ) immediately.

Moreover, by Lemma 4.1, Remark 4.1 and (4.21) we obtain

∞
∑

k=1

|kαk| < ∞,

∞
∑

k=1

|kβk| < ∞,

∞
∑

k=1

|kᾱk| < ∞,

∞
∑

k=1

∣

∣kβ̄k
∣

∣ < ∞ (4.25)

and

∞
∑

k=1

∣

∣k2αk

∣

∣ < ∞,

∞
∑

k=1

∣

∣k2βk
∣

∣ < ∞,

∞
∑

k=1

∣

∣k2ᾱk

∣

∣ < ∞,

∞
∑

k=1

∣

∣k2β̄k
∣

∣ < ∞. (4.26)

Using (4.25) and (4.26), by a similar argument as used above, we can prove

∞
∑

k=1

|kak(t)| < ∞,

∞
∑

k=1

|kbk(t)| < ∞,

∞
∑

k=1

∣

∣a′k(t)
∣

∣ < ∞,

∞
∑

k=1

∣

∣b′k(t)
∣

∣ < ∞ (4.27)
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and


























∞
∑

k=1

∣

∣k2ak(t)
∣

∣ < ∞,

∞
∑

k=1

∣

∣k2bk(t)
∣

∣ < ∞,

∞
∑

k=1

∣

∣ka′k(t)
∣

∣ < ∞,

∞
∑

k=1

∣

∣kb′k(t)
∣

∣ < ∞,

∞
∑

k=1

∣

∣a′′k(t)
∣

∣ < ∞,

∞
∑

k=1

∣

∣b′′k(t)
∣

∣ < ∞.

(4.28)

Obviously, (4.27) and (4.28) imply that the Fourier series of the first-order derivatives of y

(i.e., yt and yθ) and second-order derivatives of y (i.e., ytt, ytθ and yθθ) are also convergent,

respectively.

Thus, the proof of Theorem 1.2 is completed.

Remark 4.2. By (4.10), (4.14), (4.18), the first equation in (4.19) and the first equation

in (4.20), if
2T

L
∈ N, then g(θ) satisfies

g(θ) =
1

2
(α0 + β0T ) +

∞
∑

k=1

αk cos

(

2kπT

L

)

cos

(

2kπ

L
θ

)

+

∞
∑

k=1

ᾱk cos

(

2kπT

L

)

sin

(

2kπ

L
θ

)

=
1

L

∫ L

0
g(x)dx+

∞
∑

k=1

2

L

∫ L

0
f(x) cos

(

2kπ

L
x

)

dx cos

(

2kπ

L
θ

)

cos

(

2kπT

L

)

+

∞
∑

k=1

2

L

∫ L

0
f(x) sin

(

2kπ

L
x

)

dx sin

(

2kπ

L
θ

)

cos

(

2kπT

L

)

. (4.29)

Then in this case, for any given f(θ), the terminal value g(θ) can not be arbitrary. In

particular, if
T

L
∈ N, then it should hold that

g(θ) =
1

L

∫ L

0
[g(x) − f(x)]dx+ f(θ). (4.30)

Remark 4.3. If
T

L
is a irrational number, then (4.22) is incorrect, and then we can not

get the convergence in (4.23), etc.

Remark 4.4. Theorem 1.2 shows that, for some T satisfied the assumptions in Theo-

rem 1.2, there exist some initial velocity v(θ) such that the Cauchy problem for the wave

equation in (1.10) with the initial data

t = 0 : y = f(θ), yt = v(θ) (4.31)

has a solution y = y(t, θ) ∈ C2([0, T ]×R) which satisfies the terminal condition in (1.10),

i.e., the third equation in (1.10).

Theorem 1.3 comes from Theorem 1.2 directly.
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5 Wave equation with homogeneous Dirichlet or Neumann

boundary conditions

In this section, we investigate the TBVP for the wave equation defined on the domain

[0, T ]×[0, L] with homogeneous Dirichlet boundary conditions and homogeneous Neumann

boundary conditions, respectively, where T, L > 0 are two given real numbers.

More precisely, we consider the following problem for the wave equation with the

homogeneous Dirichlet boundary conditions











































ytt − yxx = 0,

y(0, x) = f(x),

y(T, x) = g(x),

y(t, 0) = y(t, L) = 0,

(5.1)

and the problem for the wave equation with the homogeneous Neumann boundary condi-

tions










































ytt − yxx = 0,

y(0, x) = f(x),

y(T, x) = g(x),

yx(t, 0) = yx(t, L) = 0,

(5.2)

where y = y(t, x) is the unknown function of (t, x) ∈ [0, T ]× [0, L], f(x) and g(x) are two

given C3 functions of x ∈ [0, L]. Moreover, f and g satisfy the compatibility conditions

f(x)
∣

∣

∣

x=0

x=L
= g(x)

∣

∣

∣

x=0

x=L
= 0, f ′′(x)

∣

∣

∣

x=0

x=L
= g′′(x)

∣

∣

∣

x=0

x=L
= 0, for the Dirichlet conditions;

(5.3)

f ′(x)
∣

∣

∣

x=0

x=L
= g′(x)

∣

∣

∣

x=0

x=L
= 0, for the Neumann conditions. (5.4)

We have the following theorem which can be viewed as consequences of Theorem 1.2.

Theorem 5.1. (A) Suppose that the compatibility conditions in (5.3) are satisfied,
T

L
is

a rational number and
T

L
6∈ N. Then the problem (5.1) admits a C2 solution y = y(t, x)

on the domain [0, T ]× [0, L].
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(B) Suppose that the compatibility conditions in (5.4) are satisfied,
T

L
is a rational

number and
T

L
6∈ N. Then the problem (5.2) admits a C2 solution y = y(t, x) on the

domain [0, T ]× [0, L].

Proof. For the case of the Dirichlet boundary conditions, we extend any C2 solution

y = y(t, x) to the domain [0, T ]× [−L,L] by

y(t, x) = −y(t,−x), for x ∈ [−L, 0], (5.5)

and then extend y = y(t, x) to be 2L-periodic. See [10] and [11]. One easily checks that if

the given initial/terminal data have the form in (5.1), the extended initial/terminal data

are 2L-periodic and given by (see [10]-[11])

f̃(x) , y(0, x) =











−f(−x), for x ∈ [−L, 0],

f(x), for x ∈ [0, L],

(5.6)

g̃(x) , y(T, x) =











−g(−x), for x ∈ [−L, 0],

g(x), for x ∈ [0, L],

(5.7)

respectively. Thus, we obtain an extended TBVP for the wave equation defined on the

strip [0, T ] × R. When the compatibility conditions in (5.3) are satisfied, this extended

y = y(t, x) is a C2 solution of the extended TBVP with the extended initial/terminal data
(

f̃(x), g̃(x)
)

. Therefore, we may make use of Theorem 1.2 and obtain the solution, denoted

by ỹ = ỹ(t, x), to the extended TBVP defined on the strip [0, T ]×R. Obviously, ỹ = ỹ(t, x)

is a 2L-periodic odd C2 function. So the Dirichlet boundary conditions are satisfied

naturally. Let y = y(t, x) be the restriction of ỹ = ỹ(t, x) on the region [0, T ] × [0, L]. It

is easy to see that y = y(t, x) is the C2 solution to (5.1).

Similarly, for the case of Neumann boundary conditions, we can extend y = y(t, x) by

y(t, x) = y(t,−x), for x ∈ [−L, 0]. (5.8)

See [10]-[11]. Then, y = y(t, x) can be extended to be a classical 2L-periodic C2 solution

of the extended TBVP for the wave equation with 2L-periodic initial/terminal data given

by

f̃(x) , y(0, x) =











f(−x), for x ∈ [−L, 0],

f(x), for x ∈ [0, L],

(5.9)
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g̃(x) , y(T, x) =











g(−x), for x ∈ [−L, 0],

g(x), for x ∈ [0, L],

(5.10)

respectively. When the compatibility conditions in (5.4) are satisfied, by a similar argu-

ment as used above, we can prove the part (B) in Theorem 5.1.

Thus, the proof of Theorem 5.1 is completed.

Remark 5.1. Theorem 5.1 shows that the wave equation defined on the domain [0, T ] ×

[0, L] still possesses the exact controllability in the cases of homogeneous Dirichlet boundary

conditions and homogeneous Neumann boundary conditions, provided that the correspond-

ing compatibility conditions are satisfied.

6 Wave equation with inhomogeneous Dirichlet or Neumann

boundary conditions

This section is devoted to the exact controllability of the wave equation defined on the

domain [0, T ] × [0, L] with inhomogeneous Dirichlet boundary conditions and inhomoge-

neous Neumann boundary conditions, respectively, where T, L are two given positive real

numbers.

More precisely, we consider the following TBVP for the wave equation with the inho-

mogeneous Dirichlet boundary conditions























































ytt − yxx = 0,

y(0, x) = f(x),

y(T, x) = g(x),

y(t, 0) = h(t),

y(t, L) = l(t),

(6.1)

and the TBVP for the wave equation with the inhomogeneous Neumann boundary condi-
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tions






















































ytt − yxx = 0,

y(0, x) = f(x),

y(T, x) = g(x),

yx(t, 0) = H(t),

yx(t, L) = K(t),

(6.2)

where y = y(t, x) is the unknown function of (t, x) ∈ [0, T ]× [0, L], f(x), g(x) are two given

C3 functions of x ∈ [0, L] which stands for the initial data and terminal data, respectively,

h(t), l(t) are two given C3 functions of t ∈ [0, T ], and H(t), K(t) are two given C2

functions of t ∈ [0, T ]. Moreover, we assume that f , g, h, l, H and K satisfy the following

compatibility conditions











































f(0) = h(0), f ′′(0) = h′′(0),

f(L) = l(0), f ′′(L) = l′′(0),

g(0) = h(T ), g′′(0) = h′′(T ),

g(L) = l(T ), g′′(L) = l′′(T ),

for the Dirichlet conditions; (6.3)











































f ′(0) = H(0),

f ′(L) = K(0),

g′(0) = H(T ),

g′(L) = K(T ),

for the Neumann conditions. (6.4)

We have

Theorem 6.1. (A) Suppose that the compatibility conditions in (6.3) are satisfied,
T

L
is

a rational number and
T

L
6∈ N. Then the problem (6.1) admits a C2 solution y = y(t, x)

on the domain [0, T ]× [0, L].

(B) Suppose that the compatibility conditions in (6.4) are satisfied,
T

L
is a rational

number and T < L. Then the problem (6.2) admits a C2 solution y = y(t, x) on the

domain [0, T ]× [0, L].

Proof. For the problem (6.1), noting that
T

L
6∈ N, without loss of generality, we may

assume that T < L (otherwise, we only need exchange the t-axes and the x-axes and then
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reduce the problem to the case of T < L). In this situation, we can extend h(t) to the

interval [−T − L, T + L] by

h(t+ L) + h(t− L) = 2l(t), for t ∈ [0, T ]. (6.5)

Moreover we require that the extended h(t) is a C3 function on the interval [−T−L, T+L].

Introduce

ỹ(t, x) = y(t, x)−
h(t+ x) + h(t− x)

2
. (6.6)

Then by (6.5), the problem (6.1) becomes























































ỹtt − ỹxx = 0,

f̃(x) , ỹ(0, x) = f(x)−
h(x) + h(−x)

2
,

g̃(x) , ỹ(T, x) = g(x) −
h(T + x) + h(T − x)

2
,

h̃(t) , ỹ(t, 0) = 0,

l̃(t) , ỹ(t, L) = 0.

(6.7)

And by (6.3), (6.5), the boundary data f̃ , g̃, h̃ and l̃ satisfy the compatibility conditions











f̃(0) = f̃(L) = 0, f̃ ′′(0) = f̃ ′′(L) = 0,

g̃(0) = g̃(L) = 0, g̃′′(0) = g̃′′(L) = 0.

(6.8)

Therefore, we can make use of Theorem 5.1 (A) and obtain the C2 solution to the problem

(6.7), and then the C2 solution to (6.1). This proves the part (A) in Theorem 6.1.

Similarly, for the problem (6.2), noting T < L, we can extend H(t) to the interval

[−L, T + L] by

H(t+ L) +H(t− L) = 2K(t), for t ∈ [0, T ]. (6.9)

As before, we require that the extended H(t) is a C2 function on [−L, T + L].

Let

ỹ(t, x) = y(t, x)−
1

2

∫ t+x

t−x
H(ξ)dξ. (6.10)

25



Then by (6.9), the problem (6.2) becomes



























































ỹtt − ỹxx = 0,

f̃(x) , ỹ(0, x) = f(x)−
1

2

∫ x

−x
H(ξ)dξ,

g̃(x) , ỹ(T, x) = g(x) −
1

2

∫ T+x

T−x
H(ξ)dξ,

H̃(t) , ỹx(t, 0) = 0,

K̃(t) , ỹx(t, L) = 0.

(6.11)

And by (6.4), (6.9), the boundary data f̃ , g̃, H̃ and K̃ satisfy the compatibility conditions











f̃ ′(0) = f̃ ′(L) = 0,

g̃′(0) = g̃′(L) = 0.

(6.12)

Therefore, we can make use of Theorem 5.1 (B) and obtain the C2 solution to the problem

(6.11), and then the C2 solution to (6.2). This proves the part (B) in Theorem 6.1.

Thus, the proof of Theorem 6.1 is completed.

Remark 6.1. Theorem 6.1 shows that the wave equation defined on the domain [0, T ] ×

[0, L] still possesses the exact controllability even in the cases of inhomogeneous Dirichlet

boundary conditions and inhomogeneous Neumann boundary conditions, provided that the

corresponding compatibility conditions are satisfied.

7 Some nonlinear wave equations

This section is devoted to the global exact controllability for some nonlinear wave equations

including a wave map equation arising from geometry and the equations for the motion of

relativistic strings in the Minkowski space-time R
1+n.

7.1 A wave map equation

The theory of wave maps plays an important role in both mathematics and theoretical

physics. The wave map equation is highly geometrical, and can be rewritten in many

different ways. It is also related to the Einstein equations in general relativity. In this
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subsection, we consider the following TBVP for a kind of wave map equation2



























ytt − yxx = y2t − y2x,

y(0, x) = f(x),

y(T, x) = g(x),

(7.1)

where T is a given positive real number, and f(x), g(x) are two given C2-smooth functions

which stand for the initial and terminal states, respectively.

By making the following transformation on the unknown

z(t, x) = e−y(t,x), (7.2)

the TBVP (7.1) can be rewritten as



























ztt − zxx = 0,

z(0, x) = e−f(x) , f̂(x),

z(T, x) = e−g(x) , ĝ(x),

(7.3)

Obviously, the TBVP (7.1) has a C2-smooth solution on the strip [0, T ] × R if and only

if the TBVP (7.3) has a C2-smooth positive solution on [0, T ]×R. Therefore, in order to

prove the existence of a C2-smooth solution of the TBVP (7.1) on [0, T ]×R, it suffices to

show the existence of a C2-smooth positive solution of the TBVP (7.3) on this domain.

In fact, if so, y(t, x) = − ln z(t, x) is a C2-smooth solution to the TBVP (7.1).

To do so, we suppose that

inf f(x) > sup g(x). (7.4)

Similar to (2.2) and (2.3), we introduce

z̃(t, x) = z(t, x)−
f̂(x− t) + f̂(x+ t)

2
(7.5)

and

f̃(x) = ĝ(x)−
f̂(x− T ) + f̂(x+ T )

2

= e−g(x) −
1

2

[

e−f(x−T ) + e−f(x+T )
]

> 0. (7.6)

2In fact, the equation in (7.1) is nothing but the wave map from the Minkowski space R1+1 to the

Riemmannian manifold (R, g), where ds2 = gdy2 , e−2ydy2.
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In (7.6), we have made use of the assumption (7.4). Thus, the TBVP (7.3) can be rewritten

as


























z̃tt − z̃xx = 0,

z̃(0, x) = 0,

z̃(T, x) = f̃(x).

(7.7)

As shown in Section 2, we may construct a non-negative C1 function u(x) defined on

the interval [−T, T ] which satisfies the condition (2.8), and define an initial velocity v(x)

as shown in (2.9). By d’Alembert formula, the solution of the Cauchy problem for the

wave equation in (7.7) with the initial data

z̃(0, x) = 0, z̃t(0, x) = v(x) (7.8)

reads

z̃(t, x) =
1

2

∫ x+t

x−t
v(τ)dτ. (7.9)

It follows from (7.9), (7.5) and the fact that f̂(x) > 0 that the TBVP (7.3) has a C2-smooth

positive solution z = z(t, x), provided that v(x) ≥ 0.

By the above argument, the key point to show the existence of a C2-smooth positive

solution of the TBVP (7.3) on [0, T ] × R is to construct a non-negative initial velocity

v(x). By (2.9), we have

Lemma 7.1. Suppose that the function f̃(x) defined by (7.6) satisfies























N
∑

i=1

f̃ ′(x− (2i− 1)T
)

≥ 0, ∀ x > T,

N
∑

i=1

f̃ ′(x+ (2i− 1)T
)

≤ 0, ∀ x < −T.

(7.10)

Then the function v(x) defined by (2.9) is non-negative.

Lemma 7.1 is obvious, here we omit its proof.

Summarizing the above argument yields the following theorem.

Theorem 7.1. Suppose that f(x) and g(x) are two C2-smooth functions and satisfy (7.4)

and (7.10). Then the TBVP (7.1) admits a C2-smooth solution y = y(t, x) defined on the

strip [0, T ] ×R.

In order to understand the condition (7.10) clearly, we present the following two ex-

amples.
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Example 7.1. Choose the functions f(x) and g(x) such that the function f̃(x) defined by

(7.6) satisfies










f̃ ′(x) ≥ 0, ∀ x > 0,

f̃ ′(x) ≤ 0, ∀ x < 0.

(7.11)

In this case, it is easy to see that f̃(x) satisfies the assumption (7.10), and then the TBVP

(7.1) has a C2-smooth solution on the domain [0, T ] × R. For example, we may choose

f(x) and g(x) satisfying

f̃(x) = x2n + c,

where f̃(x) is defined by (7.6), c is a constant and n is a positive integer.

Example 7.2. Choose the functions f(x) and g(x) such that the function f̃(x) defined by

(7.6) satisfies










f̃ ′(x) ≥ 0, ∀ x ∈ [0, 2T ],

f̃ ′(x) = −f̃ ′(x+ 2T ).

(7.12)

In the present situation, we have

N
∑

i=1

f̃ ′(x− (2i− 1)T
)











≥ 0, if N is odd,

= 0, if N is even,

if x ≥ 0 (7.13)

and

N
∑

i=1

f̃ ′(x+ (2i− 1)T
)











≤ 0, if N is odd,

= 0, if N is even,

if x < 0. (7.14)

This implies that f̃(x) satisfies the assumption (7.10), and then the TBVP (7.1) has a

C2-smooth solution on the domain [0, T ] × R. As an example, we may choose f(x) and

g(x) satisfying

f̃ ′(x) =
π

2T
sin

πx

2T
, i.e., f̃(x) = − cos

πx

2T
+ c,

where f̃(x) is defined by (7.6) and c is a constant.

7.2 The equations for the motion of relativistic strings in the Minkowski

space-time R1+n

LetX = (t, x1, · · · , xn) be a position vector of a point in the (1+n)-dimensional Minkowski

space R1+n. Consider the motion of a relativistic string and let xi = xi(t, θ) (i = 1, · · · , n)
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be the local equation of its world surface, where (t, θ) are the the surface parameters. The

equations governing the motion of the string read (see [11])

|xθ|
2xtt − 2〈xt, xθ〉xtθ + (|xt|

2 − 1)xθθ = 0. (7.15)

The system (7.15) contains n nonlinear partial differential equations of second order. These

equations also describe the extremal surfaces in the Minkowski space R
1+n. Kong et al

[11] considered the Cauchy problem for the equations (7.15) with the following initial data

t = 0 : x = p(θ), xt = q(θ), (7.16)

where p is a given C2 vector-valued function and q is a given C1 vector-valued function.

The Cauchy problem (7.15)-(7.16) describes the motion of a free relativistic string in the

Minkowski space R
1+n with the initial position p(θ) and initial velocity (in the classical

sense) q(θ). In particular, when p(θ) and q(θ) are periodic, the string under considera-

tion is a closed one. It has shown that the global smooth solution of the Cauchy problem

(7.15)-(7.16) exists and is unique (see [11]). On the other hand, it is well known that closed

form representations of solutions for partial differential equations are very important and

fundamental in both mathematical analysis and physical understanding. Unfortunately,

nonlinear partial differential equations in general do not possess representations of so-

lutions in closed form. Surprisingly, in the paper [10], we discovered a general solution

formula in closed form for the nonlinear wave equations (7.15). By introducing a new con-

cept of generalized time-periodic function, we proved that, if the initial data is periodic,

then the smooth solution of the Cauchy problem (7.15)-(7.16) is generalized time-periodic,

namely, the space-periodicity also implies the time-periodicity. This fact yields an interest-

ing physical phenomenon: the motion of closed strings is always generalized time-periodic.

However, up to now there is not any result on the TBVP for the equations (7.15). In

this subsection we investigate this problem and prove the global exact controllability of

the equations (7.15).

By [6], under a very natural assumption which is a necessary and sufficient condition

guaranteeing the motion is physical, there exists a globally diffeomorphic transformation

of variables

τ = t, ϑ = ϑ(t, θ) (7.17)

such that the system (7.15) become

x̃ττ − x̃ϑϑ = 0, (7.18)
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where

x̃(τ, ϑ) = x
(

t(τ, ϑ), θ(τ, ϑ)
)

, (7.19)

in which t = t(τ, ϑ), θ = θ(τ, ϑ) is the inverse of the transformation (7.17).

By Theorem 2.1, the system (7.18) possesses the global exact controllability. Noting the

transformation (7.17) is globally diffeomorphic, we obtain the global exact controllability

of the system (7.15).

In physics, the global exact controllability of the system (7.15) implies some interesting

physical phenomena. For example, if we take the periodic initial data p(θ) which stands

for a closed string, and a non-periodic terminal condition (e.g., x(T, θ) = θ) which denotes

an open string, then the global exact controllability of the system (7.15) means that a

closed string may become an open string. This fact implies that the topological structure

of the string may change in its motion process.

8 Hyperbolic curvature flow and Gage-Hamilton’s theorem

Let γ(t) be a one parameter family of closed convex smooth curves in the plane. The

position vector X(t, s) parameterizes the curve and the curvature is k(t, s). The hyperbolic

curvature flow is described by the following wave equation

ktt − kss = 0, (8.1)

where the subscript ν denotes partial differentiation with respect ν.

Consider the TBVP for the wave equation (8.1) with the following initial condition

and terminal condition

k(0, s) = f(s), k(T, s) = k0 > 0, (8.2)

where f(s) is a given non-negative periodic smooth function with the period L, T is a

positive real number, and k0 is a positive constant. We have

Theorem 8.1. There exists a positive constant k0 such that the TBVP (8.1)-(8.2) admits

a non-negative smooth solution k = k(t, s), provided that
T

L
is a rational number with

2T

L
6∈ N.

Remark 8.1. By the basic theorem on plane curves, Theorem 8.1 implies that, under the

hyperbolic curvature flow, any closed convex smooth curve in the plane can evolve into a
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circle in a finite time, and remains convex for sequent times. This is a result analogous to

the well-know theorem of Gage and Hamilton for the mean curvature flow of plane curves.

We now prove Theorem 8.1.

Proof. Consider the TBVP for the wave equation (8.1) with the following initial condition

and terminal condition

k(0, s) = f(s), k(T, s) = k∗, (8.3)

where k∗ is an arbitrary given positive constant. By Theorem 1.2, the TBVP (8.1), (8.3)

has a global L-periodic solution k = k(t, s). Define

v(s) = ∂tk(0, s). (8.4)

Clearly, v(s) is the initial velocity corresponding to the solution k = k(t, s). That is to

say, the solution of the Cauchy problem for the wave equation (8.1) with the initial data

k(0, s) = f(s), kt(0, s) = v(s) is nothing but k = k(t, s), moreover this solution satisfies

the terminal data k(T, s) = k∗.

Notice that v(s) is L-periodic. Let

M = min
s∈[0,L]

v(s). (8.5)

If M ≥ 0, then by D’Alembert formula

k(t, s) =
f(s+ t) + f(s− t)

2
+

1

2

∫ s+t

s−t
v(τ)dτ ≥ 0, ∀ (t, s) ∈ [0, T ]×R. (8.6)

Taking k0 = k∗, we finish the proof of Theorem 8.1.

Otherwise, it holds that v(s) + |M | ≥ 0. Thus, it is easy to see that k̄ , k(t, s) + |M |t

is a global L-periodic smooth solution of the TBVP


























k̄tt(t, s)− k̄ss(t, x) = 0,

k̄(0, s) = f(s),

k̄(T, s) = k∗ + |M |T.

(8.7)

Obviously, the initial velocity corresponding to the solution k̄(t, s) reads

v̄(s) , ∂tk̄(0, s) = v(s) + |M | ≥ 0. (8.8)

This implies that the solution is non-negative, i.e., k̄(t, s) ≥ 0 for all (t, s) ∈ [0, T ] × R.

Taking k0 = k∗ + |M |T gives the conclusion of Theorem 8.1. Thus, the proof of Theorem

8.1 is completed.
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9 Summary and discussions

In the present paper we introduce three new concepts for second-order hyperbolic equa-

tions, they read two-point boundary value problem, global exact controllability and exact

controllability, respectively. These second-order hyperbolic equations considered here in-

clude many important partial differential equations arising from both theoretical aspects

and applied fields, e.g., mechanics (fluid mechanics and elasticity), physics, engineering,

control theory and geometry, etc., the typical examples are wave equation, hyperbolic

Monge-Ampère equation, wave map. For several kinds of important linear and nonlinear

wave equations, in this paper we prove the existence of smooth solutions of the two-point

boundary value problems and show the global exact controllability of these wave equations.

In particular, we investigate the two-point boundary value problem for one-dimensional

wave equation defined on a closed curve and prove the existence of smooth solution, this

implies the exact controllability of this kind of wave equation. Furthermore, based on

this, we study the two-point boundary value problems for the wave equation defined on

a strip with Dirichlet or Neumann boundary conditions and show that the equation still

possesses the exact controllability in these cases. Finally, as an application of Theorem

1.2, we introduce the hyperbolic curvature flow and prove a result analogous to the well-

known theorem of Gage and Hamilton [5] for the curvature flow of plane curves. This

result can be viewed as a simple application of hyperbolic partial differential equation to

both geometry and topology.

Usually, “two-point boundary value problem” has another meaning: it applies to a

boundary problem for a second order ODE in a bounded interval. The present paper gen-

eralizes this concept to the case of second-order hyperbolic partial differential equations.

The two-point boundary value problem for partial differential equations is a new research

topic. According to the authors’ knowledge, up to now, few of results on the two-point

boundary value problems for partial differential equations, in particular, hyperbolic par-

tial differential equations (even for linear or nonlinear wave equations) have been known.

Therefore, the present paper can be viewed as the first work in this new research topic.

It is well-known that, there are a lot of deep and beautiful results on the two-point

boundary value problems for ordinary differential equations and for second-order differ-

ential inclusions. On the other hand, there are many important results on the boundary

control problems for wave equations and hyperbolic systems. However, the two-point
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boundary value problems and the boundary control problems are essentially different two

kinds of problems. Both of them play an important role in both theoretical and applied

aspects.

The main aim of this paper is to introduce the concept “two-point boundary value

problem” for second-order hyperbolic equations and to show the global exact controllability

or exact controllability for several kinds of important linear and nonlinear wave equations.

Although the results obtained in this paper are restrictive in some sense (they only apply

to cases in which the solution to the Cauchy problem can be found explicitly: linear

(classical) wave equations and their reformulations), these results shed further light on

the study of this new research topic. In the future we will investigate the following open

problems which seem to us more interesting and important: (i) what happens if we consider

a general equation of the form

ytt − yxx = f(y)

with a regular and bounded function f(y)? (ii) what happens if we include regular coef-

ficients and/or lower order terms? (iii) what happens if we consider a quasilinear wave

equation of the form

ytt − (C (yx))x = 0

with a smooth and increasing function C (ν), e.g., C (ν) = ν√
1+ν2

? (iv) what happens if

we consider other models, particularly some nonlinear models arising from applied fields

such as control theory, fluid dynamics, elasticity as well as engineering, etc.
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