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Abstract

In this paper we introduce a new kind of hyperbolic geometric flows — dissipative
hyperbolic geometric flow. This kind of flow is defined by a system of quasilinear
wave equations with dissipative terms. Some interesting exact solutions are given,
in particular, a new concept — hyperbolic Ricci soliton is introduced and some of
its geometric properties are described. We also establish the short-time existence
and uniqueness theorem for the dissipative hyperbolic geometric flow, and prove the
nonlinear stability of the flow defined on the Euclidean space of dimension larger
than 2. Wave character of the evolving metrics and curvatures is illustrated and the

nonlinear wave equations satisfied by the curvatures are derived.
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1 Introduction

Let .# be an n-dimensional complete Riemannian manifold with Riemannian metric g;;.

The following evolution equation for the metric g;;

a;f,jj + 2Ry + T (g, 2?) —0 (1.1)
has been recently introduced and named as general version of hyperbolic geometric flow
by Kong and Liu [8], where R;; is the corresponding Ricci curvature tensor and .%;; is a
given smooth symmetric tensor on the Riemannian metric g and its first order derivative
with respect to t. A special but important case is
*gij
ot?

= —2R;j. (1.2)

Usually, we call (1.2) the standard hyperbolic geometric flow or simply hyperbolic geometric
flow. (1.1) and (1.2) are two nonlinear systems of second order partial differential equations
on the metric g;;.

For the hyperbolic geometric flow (1.2), some interesting exact solutions have been
constructed by Kong and Liu [8]. Recently, Kong, Liu and Xu [9] have investigated the
evolution of Riemann surfaces under the flow (1.2) and given some results on the global
existence and blowup phenomenon of smooth solutions to the flow equation (1.2). In our
paper [2], we prove the short-time existence for the hyperbolic geometric flow (1.2) and
the nonlinear stability of the Euclidean space with dimension larger than 4. Moreover,
we also study the wave character of the curvatures for the flow (1.2) and derive the
equations satisfied by curvatures including the Riemannian curvature tensor R;jx;, the
Ricci curvature tensor I2;; and the scalar curvature R. However, these evolution equations
are quite complicated. In general, the solution of the hyperbolic geometric flow (1.2) may
blowup in a finite time even for smooth initial data.

Motivated by the well-developed theory of the dissipative hyperbolic equations, we

introduce a new geometric analytical tool — dissipative hyperbolic geometric flow:
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where g;;(t) stands for a family of Riemannian metrics defined on ./, and d is a positive

constant. The derivation of (1.3) is given in Section 6. Here we would like to point out that



the reason that we choose (1.3) as the equation form of dissipative hyperbolic geometric
flow is that, in the case it possesses a simpler equation satisfied by the scalar curvature.
Noting the dissipative property of (1.3), we expect that the dissipative hyperbolic geo-
metric flow admits a global smooth solution (i.e., a family of Riemannian metrics) for all
t > 0, and the solution (metrics) has some good or anticipant geometric properties for
relatively general initial data in the case that the dissipative coefficient d is chosen to be
suitably large.

In the present paper we will focus on some basic properties enjoyed by the dissipative
hyperbolic geometric flow. The first basic property is on the hyperbolic Ricci soliton.
The hyperbolic Ricci soliton is a new concept which we introduce in this paper. We will
prove that there does not exist steady gradient hyperbolic Ricci soliton with initial metric
of positive average scalar curvature on n-dimensional compact manifold (where n > 3).
Comparing with the traditional Ricci flow, here we need the assumption that the initial
metric has non-negative average scalar curvature. If this assumption does not hold, then
the question whether there exist steady gradient hyperbolic Ricci solitons still remains
open. See Theorem 3.1 for the detail.

The second fundamental property is the short-time existence and uniqueness theorem
for the dissipative hyperbolic geometric flow. For compact manifolds, we can prove that
the dissipative hyperbolic geometric flow always admits a unique smooth solution ( a fam-
ily of Riemannian metrics) for smooth initial data. See Theorem 4.1. Notice that the
dissipative hyperbolic geometric flow (1.3) is only weakly hyperbolic, since the symbol of
the derivative of E = F(g;;) 2 —2R;; has zero eigenvectors in the natural coordinates.
In order to reduce the nonlinear weakly hyperbolic partial differential equation (1.3) to
a nonlinear symmetric system of strictly hyperbolic partial differential equations, we use
harmonic coordinates introduced by DeTurck and Kazdan [4]. Then by the standard the-
ory of symmetric hyperbolic system, we can prove the short-time existence and uniqueness
theorem 4.1.

The third property is the nonlinear stability. By the global existence theory of dissi-
pative wave equations, we can prove the global nonlinear stability of the Euclidean space
R™ with n > 3. See Theorem 5.1 for the details. In the proof of nonlinear stability, the
dissipative property of the flow (1.3) play an important role.

The fourth fundamental property is the wave character of the curvatures. Since the

dissipative hyperbolic geometric flow is described by a system of quasilinear wave equations



on the metrics g;;(t, x), the wave property of the metric implies the wave character of the
curvatures. The equations will play an important role in the future study. See Section 6
for the details.

The paper is organized as follows. In Section 2, we introduce the dissipative hyperbolic
geometric flow equation and give a useful lemma. In order to understand the basics of the
dissipative hyperbolic geometric flow, we construct some exact solutions. These solutions
may be useful in physics. In Section 3, we introduce the steady gradient hyperbolic Ricci
soliton, and prove Theorem 3.1 — one of the main results in this paper. Section 4 is
devoted to the short-time existence and uniqueness of the flow, while Section 5 is devoted
to the global nonlinear stability of the Euclidean space R™ with n > 3. The wave character
of the curvatures is discussed in Section 6, and the nonlinear wave equations satisfied by

the curvatures are also derived in this section.

2 Dissipative hyperbolic geometric flow

The dissipative hyperbolic geometric flow considered here is defined by the equation (1.3),

namely,
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where g;;(t) stands for a family of Riemannian metrics defined on .#, and d is a positive
constant. The reason that we choose (2.1) as the equation form of dissipative hyperbolic
geometric flow is as follows: in this case the flow possesses a simpler equation satisfied by
the scalar curvature. See the derivation of (2.1) in Section 6.

We first establish some useful equations from the flow equation (2.1). Let

i‘a ij
u(z,t) = g" gt], (2.2)
|09 _ i 51991 Ogk
o000 0gig O
w(e,t) = ghglgr SRS (2.4)
and denote the matrix
0gi; -
Gz, t) = (gt]gjk> . (2.5)



Then we have
u(z,t) = trG(x,t), v(z,t) = trG?(z,t), w(z,t) =trG3(z,t),

where trG stands for the trace of the matrix G. Thus by (2.1) we obtain
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Theorem 2.1 For the dissipative hyperbolic geometric flow (2.1), the quantities u(z,t),

v(z,t) and w(x,t) satisfy the following equations

Ju(z,t) n—2 , 1
— 9R_— %02 du—
ot R n—lu Y n—lv
and
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(2.10)

In order to understand basically the dissipative hyperbolic geometric flow, in what

follows we construct some exact solutions.



Consider the following Cauchy problem
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where ggj (x) is a Riemannian metric on the manifold .#, and k:gj (x) is a symmetric tensor
on .

If we assume that the initial metric g?j(;v) is Ricci flat, and the initial velocity /c?](x)
vanishes, then easily see that g;;(z,t) = g%(x) is the unique smooth solution to the Cauchy
problem (2.11).

If we assume that the initial Riemannian metric is Einstein, that is to say,
Rij(2,0) = Agij(2,0), Yz e, (2.12)

where ) is a constant. Furthermore, we suppose that

391']'
ot

(2,0) = pgij(z,0), (2.13)
where p is an another constant. Let

gij(x,t) = p(t)gij(z,0). (2.14)
By the definition of the Ricci tensor, we have

Rij(z,t) = Rij(x,0) = Agij(x,0), Yz e /. (2.15)

It follows from (2.13) and (2.14) that

p(0) =1, p'(0) = p. (2.16)
Substituting (2.14) into the evolution equation (2.1) gives the following ODE

P (t) = —dp'(t) — 2. (2.17)
The solution of (2.17) with the initial data (2.16) reads

p(t) =1 — %t - (Z + Z;‘) (=% —1). (2.18)



It follows from (2.18) that

2X 2X
o) = =+ (u + d) e . (2.19)

Noting that d > 0, we distinguish the following three cases to discuss:
Case I. X > 0.
In this case, it follows from (2.18) that

tlgl—noo p(t) -

Thus the evolving metric g;;(z,t) shrinks homothetically to a point as ¢ approaches some
finite time 7.

Case II. A =0.

In the present situation, p(t) = 1 — 4(e”% — 1). If & < —1, then the evolving metric
gij(x,t) shrinks homothetically to a point as t approaches the time T 2 —é In(1 + %); If
£ > —1, then the metric g;;(x,t) evolves smoothly and is positive defined for all time; If
£ = —1, the metric g;j(x,t) evolves smoothly and is positive defined for all time, but it
shrinks homothetically to a point as ¢t — +o0.

Case III. )\ <0.

In this case, if © < 0 and p(Tp) < 0, where Tj 2 —éln (%), then the evolving
metric g;;(z,t) shrinks homothetically to a point as ¢ approaches some finite time not later
than T'. Otherwise, g;;(z,t) is smooth and positive defined for all time.

Summarizing the above argument leads to the following theorem.

Theorem 2.2 For the Cauchy problem (2.11) of the dissipative hyperbolic geometric flow,
suppose that the assumptions (2.12)-(2.13) are satisfied. Then, if one of the following
conditions is satisfied, then the evolving metric g;j(x,t) shrinks homothetically to a point
as t approaches some finite time:

(a) A>0;

(b) A=0 and p < —d;

(c) AX<0,u<0andp (éln <2)\2J;\d“>> > 0.

For the other instances, gij(x,t) are smooth and positive defined for all time. In

addition, if A =0 and p = —d < 0, the metric g;j(x,t) evolves smoothly and is positively

defined for all time, but it shrinks homothetically to a point as t — +00.



3 Hyperbolic Ricci soliton

The theory of soliton solutions plays an important role in the study of geometric analysis,
in particular in the study of Ricci flow. In this section we first introduce a new concept

— steady hyperbolic Ricci soliton for the flow (2.1), and then describe its properties.

Definition 3.1 A solution to an evolution equation is called a steady soliton, if it evolves
under a one-parameter subgroup of the symmetry group of the equation; A solution to the
dissipative hyperbolic geometric flow (2.1) is called a steady hyperbolic Ricci soliton, if it

moves by a one-parameter subgroup of the symmetry group of the equation (2.1).

If ¢, is a one-parameter group of diffeomorphisms generated by a vector field V on .,

then the hyperbolic Ricci soliton is given by

9ij(x,t) = ¢ gij(x,0) = gij(pe(2), 0). (3.1)
It implies that
agzj(l‘, t) = Lvgij = gV, VP + g ViVF 2 T, (3.2)
and
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= (9ipViV,; VP 4+ g, ViV, VP) VE 4 g (Vi VE -V, VP + YV, VE .V, VP)
p J Jp P J J

+g¢ijVk -V VP + gijl-V’“ - Vi VP,



where £y stands for the Lie derivative with respect to the vector field V. Thus, the

equation (2.1) can be reduced to

(9ipVEVVP + gipViViVE)VE + gy (VVE -V, VP + YV, VE -V, 1P)
+gipV;VE -V VP 4 g, Vi VE VL VP

= —2Ryj + 20" (9 Vo V¥ + 9ok ViVF) 91V V! + 94V, V)
=207 (gpk VgV + 9ok VpV*) 90V V! + g ViV — d(gix Vi VF + gjuViVF)
+L [gpq(gpkquk + quVka) i 9ij

n—1
1

n—1

(979 (9 TV + 9V V) 92V V! + 909, V1) i (3.4)
We predigest it into the following

2Rij + (9p ViV VP + g5 Vi ViVP) VF
= 20"gugVVFEV V! + gV VIVVE 4+ g VvV VF
4
—(d+4VEV*)(ga ViV + g ViV + m(quq)%U
2

——— (gug"V VIV + T, VIV, V) gy (3.5)
If the vector field V is the gradient of a function f on .#, then the soliton is called
a steady gradient hyperbolic Ricci soliton. In what follows, we consider the steady

gradient hyperbolic Ricci soliton.
For the steady gradient hyperbolic Ricci soliton, the equation (3.5) becomes
2Rij + (9 Vi ViV [ + gjpViViVP )V f
= 2079951V V VGV f + 9V V FVIVEf 4 g ViV FVIVE S
4
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That is to say,

Rij + Vi(ViV, IVEf = 2gPIV, Vi fV,V,f — (d+4NF)V.V, f

2 2
+—— (A9 — ——(g"g"V Vi VeV if)gij. (3.6)
n—1 n—1
Taking the trace on 7 and j yields
k 2 2,2 N—3 2
R+ Vi(Af-V f):—mw fl _n—l(Af) —d-Af. (3.7)

Thus, the following theorem comes easily from (3.5)-(3.7).



Theorem 3.1 For the dissipative hyperbolic geometric flow, (3.5) and (3.6) are the evo-

lution equations satisfied by the steady hyperbolic Ricci soliton and the steady gradient

hyperbolic Ricci soliton, respectively. Furthermore, for an n-dimensional compact man-

ifold with n > 3, if the average scalar curvature of the initial metric is non-negative,

1.€.,

)3f/‘f xdgdvz ,
M

then for the steady gradient hyperbolic Ricci soliton, the generating function f must satisfy

(3.8)

the condition Hess(f) =0 on ., i.e., f is a constant and the solution metric g;;(x,t) =
gij(x,0) is Ricci flat for all time t. In reverse, if the initial metric g;;(x,0) is Ricci flat
and the function f = constant, then it is obvious that the steady gradient hyperbolic Ricci

soliton generated by f is a solution to the dissipative hyperbolic geometric flow.

4 Short-time existence and uniqueness

In this section, we reduce the dissipative hyperbolic geometric flow (2.1) to a symmetric
hyperbolic system in the so-called harmonic coordinates (see [4]), then based on this, we
prove the short-time existence and uniqueness theorem for the flow equation (2.1).

Let g;j(x,t) be a family of metrics on an n > 1 dimensional manifold .#. We consider

the space-time R x .# equipped with the following Lorentzian metric
ds* = —dt* + gij(z, t)dz'da’. (4.1)

It follows from (3.4) in Dai, Kong and Liu [2] that

8291']‘ 829i i 829‘ ] 8Fk 8Fk
QR = J Kkl v]
2 2 oz 9 ohodl T\ I gur Tk ga
+29k19pqrfkrg'l + aT;ij
0 0
4 <gzkrrsgprgqs 8917](1 + g Frsgprgqs 89?‘1) (42)
where
k ij 1k
I* £ gvry,. (4.3)

Then the evolution equation (2.1) for the dissipative hyperbolic geometric flow can be

10



reduced to the following

8291']' kl 82gij 81“’“ 8Pk agz
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(4.4)

Similar to [4], we make use of the harmonic coordinates such that, for fixed time ¢, it

holds that
r*(x,t) 2 ”Ff} =0, when z is in an open neighborhood of point p € .Z. (4.5)

Then the equation (4.4) can be written as

gij i %95 |,  Ogu agkl)

o2 =9 dahout TR T ) (+6)

where

= Ogr1 Ogmi

dg dg
Hij(grts —, ot axp) —29k1gpqrfkfgl - (gzkfmgmgqs B qu + ik Frsgpr‘g(JS o pQ>

892’;0 8gjq 9474 8gpq 891’]’ dagij

Pq _ _
200 o Y o o ot
dg 1 0gP?10g
pqZIPaN2 ) Pay,.. 4
19 ) ot ot ) (47)
991 3gkl 5913

and

are homogenous quadratic with respect to except the dissipative term d

oxP

and rational with respect to gj; with non-zero denominator det(g;;) # 0. By introducing

the new unknowns g;;, h;; = 68;7, Gij ke = %, the system (4.6) can be transformed into

a system of partial differential equations of first order

(391‘]‘
ot
0Gii k Oh;;
kCYigk g9l 4.8

g ot g Oxk’ (4.8)
Ohi; 11 09ij.k

_ 09 g
(ot 9 o T Hu

= hij,

In the C? class, the system (4.8) is equivalent to (4.6). It is easy to see that (4.8) is a

quasilinear symmetric hyperbolic system, which can be rewritten as

A= W) I+ B, (49)

11



1
where u = (gij, gijk, hij)? is the §n(n + 1)(n + 2)-dimensional unknown vector function

and the coefficient matrices A°, A7, B are given by

I 0 o .- 0 0
0 911[ 912_[ glnI 0
0 921]‘ 922I . 92n[ 0
A%(u) = A%(gij, gije- hig) = | ,
0 gnII gnQI . gnnI 0
0 O o - 0 I
0 0 0 0 0
0 0 0 0 gt
A . 0 0 0 - 0 g2
Al (u) = AV (grts Grips i) = ,
0O 0 0 - 0 gl
0 glj[ g2j[ ... gnj[ 0

1 1 1 1
where 0 is the <2n(n + 1)) X <2n(n + 1)) zero matrix, [ is the <2n(n + 1)) X <2n(n + 1))

identity matrix,
hi;
B(u) = B(gij, 9ijp- hij) = | 0 |,
i
in which 0 is the %nQ (n + 1)-dimensional zero vector.

By the theory of the symmetric hyperbolic system ( [5], [6]), we can obtain the following

theorem.

Theorem 4.1 Let (A, g?](x)) be an n-dimensional compact Riemannian manifold. Then
there exists a constant n > 0 such that the Cauchy problem (2.11) has a unique smooth

solution g;j(x,t) on A % [0,1).

Remark 4.1 Theorem 4.1 can also be proved in a manner similar to that in DeTurck (see

[3); (1], [2])-

12



5 Nonlinear stability of Euclidean metrics

This section is devoted to the nonlinear stability of the dissipative hyperbolic geometric
flow (2.1) defined on the Euclidean space with the dimension larger than two.

We consider the following Cauchy problem for the dissipative hyperbolic geometric
flow (2.1),

9gij dgip Og; O9pq \ 99ij
: = 2R, pg 29w 2959 pq 99pa ij
12 2hij + 2075 5 <d 207 > ot
1 99pq ? 9P Ogpq
Pq - 5.1
+n— 1 [<g ot > - ot ot 9ij» (5.1)
agij

gij(xv 0) = 52']' + 69%(33), (J?, O) = egilj(x)a

ot

where g?j(x) and g,}j(l') are given symmetric tensors defined on the Euclidean space R™.

Theorem 5.1 The flat metric g;; = d;; on the Euclidean space R™ with n > 3 is globally
nonlinearly stable with respect to the given tensor (g%(a:),g%(m)) € C°(R™) , i.e., there
exists a positive constant €y = €g (g%(x),g%(:c)) > 0 such that, for any € € (0, €], the

initial value problem (4.1) admits a unique smooth solution g;j(x,t) for all time t > 0.

Remark 5.1 For the standard hyperbolic geometric flow (1.2), we can only obtain the
nonlinear stability of the Fuclidean space R"™ withn > 5 (see [2]). Under suitable assump-

tions, similar results are true for general hyperbolic geometric flow (1.1).
Proof of Theorem 5.1. Let the symmetric tensor h;; on R" defined by
hij(x,t) = gij(x,t) — & (5.2)
and 6% be the inverse of ;5. Then for small h,
HY & g — §9 = —p' 4 0" (h?), (5.3)

where h¥ = §**§7'hy; and O (h?) vanishes to the second order at h = 0. Then the Cauchy
problem (5.1) for the metric g;;(x,t) is equivalent to the following initial value problem

for the tensor h;;(z,t) in the harmonic coordinates z* around the origin in R"

02 62hz~ — Ohy; Ohyy
whzj(m,t) = (ok + Hkl)axk;l + Hij (Ot + bty —,— ),

ot " dxp (5.4)
t=0:hy(z,0) = eg?j(w),




where fl\i/j(ékl + hyi, %, %’;’;}) is defined in (4.7). Thus, the Cauchy problem (5.4) can be

reduced to the following

02 Kkl 82hij Ghij — Ohy; Ohyy
I _ — H..
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By the definition (4.7) and (5.2)-(5.3), we have
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1
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14



where

Ohyy Ohyy
Dhy & (—=, ——
b= ot~ OxP )
and || - || stands for the norm with respect to the flat metric d;;.

By the theory of dissipative wave equations (see [10], [11]), we know that, for sufficiently
small € > 0, the Cauchy problem (5.5), i.e., (5.1), admits a unique smooth solution for all
t > 0 on R™ with n > 3. The proof of Theorem 5.1 is completed. [

6 Wave character of curvatures — Derivation of dissipative

hyperbolic geometric flow

In this section, we will illustrate why we choose (2.1) as the equation of the dissipative
hyperbolic geometric flow. Based on this we derive the nonlinear wave equations satis-
fied by the curvatures. The results presented in this section show the wave character of
curvatures.

We first assume that the metrics on a manifold .# evolve by the following equation

829ij
e (:L‘,t) = —QRU(QZ,t) + Gij(l‘,t), (61)
where
99ip 9g; O9pq 0gi; | ,09ij Jg
. — pq P ~J939 pq ~IP4 J J pq ~ZIP9 .
Gij(,1) W95 ot T o o Ty T g gt
dg dgP? Og
Pq PaN2 Pq . )
f(g ot ) gl]+h< ot ot >92] (6- )

and the terms a, b, d, e, f, h are all constants determined below. Then direct calculation
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gives
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x 10°Rij 9’ OR;  Og™* dg™* OR; 02gt*
_ ik gl ikl 9 g gl 09 B 9 g ik IR, g
99 g P2 o — o Bum) F 27 g 2Ry
_ ik 1O Riju +439ik ORiy, 09" 59““RU
-9 o2 ot ot ot ot K
; 0%g - Agpr 0g
R [ —g™ghs =I5 4 9gir gks gpa Z2PT 2545
o O%R. 9a** OR: 9ail gtk
_ ik _jl ijkl A g ik 9 g g R
99 g at ot or or kT
i 9 7”8 s ir ks
49“"9’“9”% g;] Ry — 29" g™ (—2Rys + Gys) Rk
w107 Ry dg’* OR; dg’t dg'*
_ ik _jl igkl 4 g ik 9 g g R
g o ot ot ot ot kT
i 0 7«6 S . ir ks
49”9’“9”‘1%%&;@ + 4|Ric]”> — 29" g" RixGhs, (6.3)

where
|Ric]> = " ¢’ Rij R
is the norm of Ricci curvature tensor Ric = R;;. In (6.3), we have made use of the
evolution equation (6.1).
We choose the normal coordinates around a fixed point p on the manifold .# such that

891’]‘
ozk

Ffj(p) =0 (Vi j, k), orequivalently, (p) =0,

where Ffj stand for the Christoffel symbols. By the computations (5.2)-(5.5) in [2], we get
0? R 1 0? a2gkj 0? 02 g1 0? 829]'1
oz M T g [83}@3:’ ( ot ) T odiow ( o2 )  Oaidxk ( ot )}
1[ 9* (g * ([ Pgu & (ga
2 [axﬂ'axl ( o2 ) t wion ( o2 )  Oxidak ( o2 )]
0 0 0

a P q P q
+29pq (atril : ar‘jk - arjl : arz‘k : (6.4)
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Then it follows from (6.1) and (6.4) that

0? 1 ? 0?2 02
@Rijkl T2 L%Uia:cl (=2Rkj) + 0x'0xI (=2R5) - Oxtork (_zRﬂﬂ
1 H? 0?2 0?
3 [3$j81:l (=2R5i) + g (2 Fm) = axﬂ'amk(_w“)]

0 0 0
+20pq (atrfl 5l T gt at%)

1[ 92 92 52
"2 [Wij * 0zt G Ozt Ok Gjl}

1[ 02 92 92
- [chﬁ Gl — aka”} . (6.5)

Similar to Hamilton [7], by Theorem 5.1 in [2] we have

1[ 62 0? 0?
2 [835@;101 (=2Ry) + OO (=2Fw) - Dtk (_Zle)]
1 0? 0? 9?

5 | 2R+ g (20 e (2

O Org 9p 0.y
+29pq <atril "ot ik T arﬂ ' ar‘ik
= ARjji + 2(Bijii — Bijik — Bijk + Bikji)
—g" (RpjriRgi + RipiRgj + Rijpi Rok + RijepRy1)
0 0 0
#2000 (T 5T~ T T (66)
where B;jr = g"" 9%° Rpiqj Ryist and A is the Laplacian with respect to the evolving metric.

Combing (6.3), (6.5) and (6.6) and referring to the computations in Theorem 5.3 in
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[2] leads to

9°R .
ot (0w 0,0
+29% 9" gpq (atrfzatrgk o ?latrgk>

ik _jp lqagpqg

_9 R
9 99 ot ot jkl
i kq99pq ORik : 99pq grs
—94P kq ¥ IPq A4R:.a®P g™ sk ¥ Ipq
A T T A T
L ik il 0? 0? 0?
—q" —— G+ ———Gy — ———G;
3979 [8:6181‘[ K Y Puiomd H T aiggh
1l 0 9? 9?
——g" —— Gpi + ——— G — ———G;
2 [8:678371 K wioa M T Bziogh
*QQiTgksRikGrs
= AR+ 2[Ric|?

e 0,0 0. p 0
kgl

Dy O
=29 g =2 = Rijn

. 0gpq OR1; ; OGpq Og
—9qPgkaZIPI T2 o P g7 oSk 2P ZITS
99" "5 o +4Rikg"g g ot ot

L 52 92 4
ik it L (] — 24 ks
o <8xi8lekJ axiakaﬂ> 9" 9" RixGrs. (6.7)

In the normal coordinates, we have

oozl M T 9xidxk

_ gikgjl (Vilek‘j + ViF?kaj + ViF:;)ijk)

. 92 92 .
gk gl < Grj — Gﬂ> — 29" g Rip. G5

~9" 9" (Vi¥ViGri + V17,Gpi + VI Gor)
—2¢" g Ry G
= " P (ViViGrj — ViViGri) + ¢* g/ Vil Gy — ¢ g7V, Gy
+g"* g (Wil = ViT1) Gk — 29" g™ RirGrs
= g PUVVIGry — Vi ViGe) + gikglefﬂka — 29" g* Ry G
= ¢*¢ (ViViGi; — V;ViGri) — 9" 9" RiyGrs, (6:8)

where we have made use of the following equality in the normal coordinates

P
D arlj _ 81“%

il = o oI

— \V.T?P _\.TP
= Vily; = Vil
and V; means the covariant derivative in the direction -2;. In the normal coordinates, we

Oxl”
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easily obtain

99ij
83:’1 = gipl'h; + 9l
Py _ 0T ory,
Oxk ot ot ot
029, . 8P§’j g ﬁ
Oxkox! P oxk TPk
Then, we have
9 ( Pgy \ 09T g0ty 90T 4.8 ary
ot \azkazl ) ~ ot azk T ot ok T IPat ogk T I Gt guk
This implies that
vl(agjp) _ %gip _ Fqlagpq _ ra 99iq _ 8 gip
ot oxlot U ot P ot oxlot’
9g,p 0 0Zgjp 4 99pq g 9944 629]’1) dg 9g,
V(2R = : — ¢ 2P e Z2)y —T1e 21 g Z2N4
ViVi(=5;) or axlor i ot war ) Tl Gmrar ~ o "ot )
r ‘9291”10 g 99pq g O9rq r 829]'7” g 99rq q 995q
“LiGatar g Vg ) T PlGaigr ~Tiar gy
= Q( 82giﬂ' ) — 8quj 99pq _ 31—‘;1]3 99,q
ot * 0xkozx! ozt Ot oxt Ot
o ory, o ory,
N g”’"& ozt “’p”& ozt
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By the direct computations, we have

pq ag]p 8gkq
at ot

99;p 8qu
ot ot

"7V V(g

= g*gllgP1v,V(

) — "'V ;Vi(g

) — g% g7t g1V ;v (

pq%agkq)
ot ot
99ip 9q )
ot ot

y 99jp . 09k
_ ik gl _pq V.V Jp q
9" Vi( 5t ) 9t

99jp o < 99kq

09ip ) OGrq

ot - ot

99ip
ot

agip
5t Vil

o ory,

_gikgjlgpq Vjvz(

+gzkgjlgpq Vz( 9kq

ot

agkq
ot

_ gik gjl gP? \ (

+ 8giijVZ(agkq)]
v (20 wagﬂ"’)vi(ag’“q)]

)+ wagip)vj(ag’“q)]

9g,p

ot ot

ot ot

ot
00y, | Ogrg 00T, Ogpg

ot

— gikgjlgpq |:8ng

ot Mot oz T ot
agip

ik _jl _pq 892’;0 ﬁ 8Fqu

"ot o | ot ot oz | ot
0 0Ty, gy 001y,

8gkq

—-9"9"g [Ot Ikt 55 B

ot Y7ot oz ot
azgjp 8291«1

829ip 3291“1 629@ 829/’«1

2 2
+gikgjlgpq |:a Yjp 0 Ikq

otozrt Otox! ~ Otdx! Otdxt  Otdxd Otdx!  Otdx!l OtdxI
i I
_ gjl gri 9g,p Q 8qu ik jl 9g,p Q aril ik _pq OGkq é alﬁlp ik jl IYkq Q 61“?].
ot Ot ozt ot Ot Oxt ot Ot Oxt
i k
_ gjlgpq%ﬁarlq ik 109ip O OTYy i pgOgig 0 Oy
ot ot 0xJ ot Ot OxJ ot Ot 0z

829]'1) 82gkq

829jp a2gkq

8291';) 82gkq 8291']2 829kq

ik gl pq
+97gg [8taxi Dt

ot ot

D
_ (gikgjl 89k1gR‘_ + 9gik gil 8gklgafjp
= i

829]’1) 6291«1

otoz! otoxt

ot Ot Oxt
azgjp 82%(1

otoxi otox!  Otox! OtdxI

0 O0Q, O
k _jl

ik jl _pg
t9gg (ataxi dt0a!

Otox! Otoxt

O gip 8291«;)

_ [ _,097 0Ry; 097 0 ory,
at ot

ot Ot oxi
a2gjp 8291611

OtoxI Otox!
dgi* §gt gtk 9git &
i+ 5 a Rijw — 2979
I =gy oy Ti + ~gp gy Tm = 2979

tk gl pq
T9eg <ataxi D10

otox! Otdxt

otozI Otoz!

32.9]'10 829kq B 8291';0 829kq>

where we have made use of the following equation

99;p Q or iq
ot Ot Oz’

Jl .pq

ik 199k O ory;

ot Ot OxP
0 0gE O ore
ik gl ~Z (PP J?
9" o1 51 Fis T 551 )
ik 199k 0 o, + gk gl g1 O orY,
ot ot Y ot ot Ozt
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9 ot oz Ot

o oIy,

Ip "ot Oxi
o or,

|

)

gp’”% oI

ot ot Ozt

ik _jl 89kqQ3F§ﬂ-
ot ot 0xJ

ik jl % Q 8%
ot Ot 0zJ

l% ﬁ 8%
ot ot OxI

(6.9)



Analogously, we obtain

. OGpg 09k i i Opq Ogik
ik JixT . pqZIPL ZIIRN ik gl pq 2 IP4 TR
9rgViVIgH = T 5 ) — 9 ViVl =5 = o)
o OGpg 09k ik i OGpq Ogik
_ ik gl pax7 . pg Ik ik gl _pavT pq
9ug gV T —5) — 9 Vi S )
Ogpg . OR  Og’ Ogpq . . O OT% dg’™* o ore
_ pq & IPq o ) — 9(gP122Pe ik Y kr _ Il kr
("o ) or — or T = 200" 5009 5 50 ~ 208 ot ow

o 829 629 ” 329 829 ” 82g 829‘k
ik jl ,pq pq J pq j pg i
B ((%c%ci otox! ~ Otdx! Otdxt OtdxI 3758:31) : (6.10)

On the other hand,

0gik )

.y dg; .y
PR VA vt s L L v v o

ot
. o or? o ort - o or? o ore
— ik gl o kl e J ik gl 7 kl e il
99 <gﬂpat ozt gt g | T 99 (g“’at oz T a:w)
ikﬁaﬂcl gﬂQaFﬁ'l - gjlﬁarfk _gle%
ot Ozt ot Ozt ot Ox7 ot 0zI
gj@ar;l _ 19N,
ot Oz ot 0zJ

)
Jlale’ (611)

L ag L 89
gzkgjlvivl <gpqalt)qgjk> o gzkg]lvjvl (gpqaiqgik

= g

. 89 A 89
= g% gl gPg ViViI(Z2EL) — g gl gPlg,), Vv (—22L)

ot ot
o 9a.
= (1=n)g"g" V(S
o o orP o or%.
= (1—=n)g*gt | g.) — kL —
s 0 0T}
= 2n-1)g" o A (6.12)
0 B y 9
VA <(9pqg§q)29jk> —g"*¢'V;V, ((quglt)q)Qgik>
. . 8g 8grs i ; 39 897‘8
_ ik Gl pq . TrSv7. Pq ik gl pq rSYT . ~ZIpq
979" 9979 ViV, <3t 8t> 99" grig™g VM( % o
, - OGpq OGrs

i 99pq  O9rs 99rs ., 09 Jg 99rs
- _ o jl _pq rs . Pq . pq . Pq
(=)' |99 2,9,y P 29 ey, |

897"3 < 0 8F;q 0 a]‘—‘;p> 629;0(] 829?5]

_ _2 _ 1 Jl pq rs i 7~ - j
(n =1)g"g" 9™ | =5\ Wi 507 T %5 505 | + Btowi Bioml

j1 0 O
ot OxJ

= —(n-1) [4(9”89’"])9

2 2
% + 2gitgragrs O 9pa 0 97‘5} (6.13)

otozI otox!
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and

. HaP1 O .
A v vt (e ML BLPELL v v

ot ot 7
; Ogpq g

— D@ gP" g1V pq ZIrs

(n—1)g"g"g VN;((% at>

agpq 8gpq

i ag agrs 89 ag?“s
— 1D P g?° N7, (9P (ZIpa
2= g7 |,V 20 1 v, )
1 s 0gps O OTY Y s Ogpr O OTT
2n — 1 gl rs“Ips Y l1‘ﬂ 2n — 1 gl rs“Ipr Y l:s
(n =99 5 i ans 2~ V99 5 5 B
, 0%g,, 0%g
9 -1 7l pq rsim"‘ qs
+200 =197 "9 5157 otod

ik jl 3gipﬁ<9f‘il

, 0%g,, 0%g
An = 1)g"tg" T ook il gpa grs — P 02

+2(n—1)
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It follows from (6.7)-(6.14) that
O’R

oz = AR+ 2| Ric|?

9g** OR;y, gk gt ik Agpr 09,
9 i i ghs gpa ZZ21 2795 B
ot ot ot or Tk T A9 g 7 Rk

g% OR;;, gk gt ik Ogpr 09,
) T il — wr ks _pq pr qs .
Cor o Vo o uk —2a9797g" 55
R (egpqag”q + flg2myz 4 207 agpq) R}

+|s

0
_’_(bQPQﬂ + d)

ot ot ot ot ot ot
+ | (4(n = 1)h - za)g““gﬂag;”;‘gg — (2a + 2b) ag’zkia;ﬁp
_ (2bgpqaag:q +2(n—1)e+4(n— 1)fgpqag§q> gik;a((i%p]
+ (29" 97 gpq a;fj a;?l - 2gikgﬂgpq8§§l 8;5’“

ik gl _pq
Tagrey (ataxi 9ozl " 9toal dtoxt - 9tdxI Dto!
Pgpq gk | 9pg Pgit 0 9pq 329¢k>

829]’1) 829kq 8293’12 azgkq 829@'1) aQQkQ>

by g7t gP? : 4 .
RACA <6t6:ﬂ Dtort  Dtoul Dtox’ " 9t0wI diox!
82gpr 82gqs]

. 82 82 .
_2(n o 1)fg]lgpqgrs 9pq Grs + 2(77, o 1)hg]lgpqgrs

OtdzI oOtox! OtdzI Otox!
= AR+ 2|Ric|?
9g"* OR;y, gk 9gt ik Agpr 09,
4 1 —9 i’ 4 ir ks _pq pr qs .
+[ ot ot ot ot Tk TAGNgTg g S5 R
ik ik jl
0g"* OR;, 0g"* 0¢’ ir ks pqagpr agquik

“2a gy T oy Tk — 20979797 5~
Pq
_|_(bgp¢Z% + d) OR _ <€gpqag§q 4 f(gpqag;’Q)? + hag agp‘]) R:|

ot gD ot ot
1 0gs O O dg™ 9 Or}

. o ik _glZIwp ¥ Tkl - £
(4(n —1)h —2a)g"g ot Ot Oxd (2a +2) ot 0t 0x'

Jg dg .0 c‘)Fﬁ
_ pq ~IPq _ _ pq ¥ IPq ik Y D
(2bg 9t +2(n—1)e+4(n—1)fg 5t ) 5 I

+

o 0%g; 0%g;
o _ . ik gl _pq ik gil
+(=26—2(n—1)f —2)g"¢"g OtoxP OtOxd

& il o O29ik O%gp b il oo 02gi7 0% gk
2b + 8) gtk gilgrd 2= I 4 (2(n — 1)h — 2 tkgil gpa — 21
2+ 8)9 g 0 G Braes T B~ Dh = 2a+6) g g g o S

we it pg 95 079 e it pg O°9ip g
-8 ik 3l _pg L) P —4 ik 3l _pgq ZP. ) 1
M A - v il U L e vy e vy (6.15)
In (6.15), if we take
% 1 % 1
“a=a e=0 =Ty T iy o (616)
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then we have

0’R Ogpg . OR 1 dg dgP1 Og
Z - = A 2NRicl? + (d — 2gP122PLy " _ pq £9Pg 2 pq
ot B+ 2 Ricl + (d = 20" 5 ) 5 = 3 [(g o) o e | B
% il pg 02gik 0%gpl % it pq 02917 0%gm
4 ik 4l _pq ol p 4 ik 3l _pg %)
T 500 dt0wt 99 Bt0ar D10
ke it pa 0°9ij 079k il pg P 9ip O*gni
-6 ik gl _pq ) 14 -9 ik jl _pq ”LP‘ 6.17
999 ot0al 9tox T 0t0ai 9tox (6.17)
In this case, the corresponding evolution equation reads
32%'
8t2] *QRij + Gij, (6.18)
where 5ae. 8 S0 8 5
9ip OFGjq 9pq 99ij 9ij
Gii = 2g" _9gP1 d
J N T T A T TR
1 5 9477 9 (6.19)
("7 + (T o) | s
n—1 ot ot ot !
Taking d = —d, we obtain from (6.18) and (6.19) that
0295 dgip 09 . dg Ogi;
. —2R;i 4+ 2¢gP1 2L 2 [ 4 2gP1TPL 4
12 Rij 29755 ( T8 8t> ot
9 (6.20)
! gPt 991 99" 09rq Gijs
n—1 ot ot ot |7

where d is a positive constant. Denoting d by d in (6.20) gives the evolution equation (2.1)

for the dissipative hyperbolic geometric flow.

Theorem 6.1 If we suppose that the evolution equation of the hyperbolic geometric flow
is defined by (6.18)-(6.19) on a manifold 4, then the scalar curvature of the evolving

metrics satisfies the nonlinear wave equation (6.17) in the normal coordinates.

Remark 6.1 If we takea=b=d=e=f=h=0, i.e., G;j =0 in (6.1), then (6.1) is
nothing but the standard hyperbolic geometric flow (1.2) (see [8]).

Remark 6.2 For the evolution equation (6.17) of the scalar curvature, the last term can

be written in the covariant form as follow

99yl
ot

ik

8gi; dgij_ O
5 Gii g Q90 _ 7,091y Ok

v Por "1 ot ot 1 ot

+4V

g* gt grt (4V oy, Ying ag’”).

ot V9ot
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