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In 1977, S.-T. Yau [21] proved the famous Calabi conjecture; as a consequence we
know that every compact Kähler manifold with vanishing first Chern class admits
a Ricci-flat Kähler metric. This special class of Kähler manifolds is known as
the Calabi-Yau manifolds. To include the noncompact case, we may also define a
Calabi-Yau manifold as a complex manifold with SU(n) holonomy or as a complex
manifold with a global nowhere vanishing holomorphic (n, 0)-form. More generally
we may define a possibly singular Calabi-Yau variety as a complex variety with
trivial canonical line bundle. In this review we consider only compact Calabi-
Yau manifolds. Calabi-Yau manifolds have many interesting special properties;
for example, the deformation spaces of Calabi-Yau manifolds are proved to be
unobstructed. It is conjectured by both mathematicians and string theorists that
all Calabi-Yau threefolds can be connected through conifold transitions. A Calabi-
Yau manifold is called rigid if it has no infinitesimal complex deformations. Famous
examples of Calabi-Yau manifolds include the K3 surface, the canonical bundle of
CP 2 and the quintic hypersurfaces in CP 4.

Calabi-Yau manifolds are important in superstring theory, the most promising
theory to unify the four fundamental forces in Nature. They are the shapes that
satisfy the requirement of space for the six hidden spatial dimensions of string
theory, which must be contained in a space smaller than our currently observable
lengths. String theory asserts that Calabi-Yau manifolds have the remarkable mir-
ror symmetry property which can be used to solve important enumerative problems
in algebraic geometry. A famous example of this is the mirror formula of Candelas-
de la Ossa-Green-Parkes [3]. (For proofs of this formula from two different points
of view, see [15] and [10, 17, 1]; for a comparison of the two points of view, see
[4]). String theory and Calabi-Yau manifolds have stimulated several active mathe-
matical research areas such as Gromov-Witten theory, the Strominger-Yau-Zaslow
program, Kontsevich’s homological mirror symmetry conjecture and recently the
arithmetic aspects of Calabi-Yau manifolds. In these developments mirror symme-
try from string theory is the central topic. See [11] and [4] for the history of mirror
symmetry and its applications in physics and mathematics.

It should be mentioned that the recent development of string duality has moti-
vated many exciting new mathematical results. Mirror symmetry has become one
of the dualities among the five string theories. By comparing the mathematical
descriptions of these theories, one often reveals quite deep and unexpected mathe-
matical conjectures, many of which are related to Calabi-Yau manifolds. See [16]
for an example of large N duality between Chern-Simons theory and Calabi-Yau ge-
ometry. The mathematical proofs of these conjectures often help verify the physical
theories which cannot be achieved today through traditional experiments. We can
say that with stimulations from string theory Calabi-Yau manifolds have become a
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good testing ground for analysis, geometry, algebraic geometry, automorphic forms,
number theory and theoretical physics.

On the other hand, elliptic curves have played the most fundamental roles in
modern algebraic number theory. The proof of Fermat’s last theorem by Wiles and
Taylor is to prove the modularity of semistable elliptic curves. Since an elliptic
curve is a one-dimensional Calabi-Yau manifold, it is rather natural to see whether
such modularity property still holds for higher dimensional Calabi-Yau manifolds.
This is actually part of the Fontaine-Mazur-Serre modularity conjecture for Galois
representations. Now we first explain the precise modularity conjecture for rigid
Calabi-Yau manifolds.

Let X be a Calabi-Yau manifold of dimension d defined over the rational numbers
Q. Then it has a model defined over the integers Z. For a variety X defined over a
field K, we denote by X the same variety considered over the algebraic closure K.
If we fix a model of X over Z, then for all but finitely many primes p, its reductions
to the finite fields Fp are smooth. Such primes p are called good primes. If p does
not have this property, then we say that X has bad reduction at p and such a prime
p is called a bad prime.

Let Y be a smooth projective variety defined over an algebraically closed field of
characteristic p which can be either 0 or positive. For some prime l �= p, there is a
cohomology theory, the étale cohomology, which associates to Y certain Ql-vector
spaces Hi

ét(Y,Ql) for i ≥ 0. This cohomology theory has many properties similar
to the classical singular cohomology in characteristic 0. In particular the Lefschetz
fixed point formula holds: Let f : Y → Y be a morphism such that the set of fixed
points Fix(f) is finite and 1 − df is injective, where df denotes the differential of
f ; then

# Fix(f) =
2d∑

i=0

(−1)i tr(f∗ | Hi
ét(Y,Ql)).

We also have the comparison theorem with singular cohomology: if Y is smooth
and projective over C, then there are isomorphisms of C-vector spaces

Hi
ét(Y,Ql) ⊗Ql

C ∼= Hi(Y,C).

Let Frp denote the geometric Frobenius morphism of the Calabi-Yau manifold X
at p. We consider the induced action of Frp on the �-adic étale cohomology group
H3

ét(X,Ql), and define

P3,p(z) := det(1 − z Frp |H3
ét(X,Ql)).

If we assume that X is a rigid Calabi-Yau threefold, then the Hodge numbers
h2,1(XC) = h1,2(XC) = 0, and Pp,3(z) is an integral polynomial of degree deg(P3,p)
= 2 of the form:

P3,p(z) = 1 − a3(p)z + p3z2

where a3(p) is subject to the Riemann Hypothesis, |a3(p)| ≤ 2p3/2, as proved by
Deligne in [6] and [7]. The L–series L(H3

ét(X,Ql), s) is defined by

L(H3
ét(X,Ql), s) = (∗)

∏
p

P3,p(p−s)−1

where p runs over good primes and (∗) is the Euler factor corresponding to bad
primes. The L–series of a rigid Calabi-Yau threefold X is simply defined to be

L(X, s) := L(H3
ét(X,Ql), s).
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Now we recall the notions of modular forms and the associated L–series, following
[12]. First recall that the group SL(2,Z) acts on the complex upper half-plane H
by (

a b
c d

)
: τ �→ aτ + b

cτ + d
.

Define H = H ∪ P1(Q) by identifying the point (x : 1) ∈ P1(Q) with x ∈ Q ⊂ C
and the point (1 : 0) with the point at infinity i∞ along the complex axis. The
action of SL(2,Z) extends to H.

For a given integer N , one has the modular subgroup

Γ0(N) =
{(

a b
c d

)
∈ SL(2,Z); c ≡ 0 mod N

}
.

The quotient Y0(N)=Γ0(N)\H is a Riemann surface. Its compactification X0(N)=
Γ0(N)\H is called the modular curve of level N , and the points in X0(N) \ Y0(N)
are called cusps. It is easy to see that the action of SL(2,Z) permutes those cusps.

A modular form of weight k and level N is a holomorphic function f on H such
that it transforms as

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ ), for

(
a b
c d

)
∈ Γ0(N).

Consider the cusp i∞. Writing q = e2πiτ , we have the Fourier expansion f(τ ) =∑
n bnqn. The cusp i∞ corresponds to q = 0 and f is holomorphic at the cusp

i∞ if bn = 0 for n < 0. Such a function f is called a modular form if it is
holomorphic at all cusps. A cusp form is a modular form which vanishes at all
cusps. Recall that a Dirichlet character is a homomorphism χ : (Z/NZ)∗ −→ C∗

of abelian groups. More generally, modular forms with a Dirichlet character χ have
a modified transformation behavior given by

f

(
aτ + b

cτ + d

)
= χ(d)(cτ + d)kf(τ ).

The finite dimensional vector space of weight k cusp forms for Γ0(N) is denoted
by Sk(Γ0(N)). This space can be considered as the space of holomorphic sections
of a holomorphic line bundle on the modular curve X0(N). Similarly the vector
space of weight k cusp forms with character χ is denoted by Sk(Γ0(N), χ). On
Sk(Γ0(N), χ) there are the Hecke operators Tp for prime numbers p � N . They
generate the Hecke algebra.

The Hecke operators Tp and Tq commute for distinct primes p, q not dividing N ,
so we have their simultaneous eigenspaces. An eigenform is a simultaneous eigen-
vector for every element of the Hecke algebra. A Hecke newform is an eigenform
that does not come from a space of cusp forms of lower level and is normalized so
that the coefficient of q is 1. To a normalised Hecke newform f we can associate
an L–function L(f, s) by taking the Fourier expansion f =

∑
n bnqn and its Mellin

transform

L(f, s) =
∑

n

bnn−s.



4 BOOK REVIEWS

If f is a normalised Hecke newform with respect to the group Γ0(N), then its
Fourier coefficients satisfy the properties

bprbp = bpr+1 + pk−1bpr−1 for p prime, p � N

bpr = (bp)r for p prime, p | N

bnbm = bnm if (n, m) = 1

where k is the weight of the form f . It follows that the series L(f, s) has a product
expansion

(1) L(f, s) =
∑
n≥1

bnn−s =
∏
p

1
1 − bpp−s + χ(p)pk−1−2s

where χ(p) = 0 for p | N .
We remark that this can also be done by using �-adic semi-simple Galois repre-

sentation as in [5] and [19]. One can attach a Galois representation by using the
Eichler-Shimura theory or its extensions by Deligne and Serre.

With the above preparations we now can formulate the modularity conjecture
for rigid Calabi-Yau threefolds defined over Q.

The modularity conjecture. Any rigid Calabi-Yau threefold X defined over Q
is modular in the sense that its L–series of X coincides with the Mellin transform
of the L–series of a Hecke newform f of weight 4 on Γ0(N). Here N is a positive
integer divisible only by the primes of bad reduction. More precisely, we have, up
to finite Euler factors,

L(X, s) = L(f, s).
One can state a similar conjecture for higher dimensional Calabi-Yau manifolds.

Fontaine and Mazur [9] have conjectured that all irreducible odd 2–dimensional Ga-
lois representations coming from geometry should be modular up to a Tate twist.
The above modularity conjecture may be regarded as a concrete realization of the
Fontaine–Mazur conjecture. On the other hand, given X a projective variety of
odd dimension n over Q such that the n-th Betti number dim Hn(XC,C) = 2
and Hn(XC,C) has the Hodge decomposition of type (n, 0) + (0, n), Serre [19] has
formulated a modularity conjecture for the residual mod p 2-dimensional Galois
representation attached to X for all primes. For recent exciting results about the
proofs of these conjectures, see [13]. A related famous conjecture is the Beilinson-
Bloch conjecture, which asserts that the order of vanishing of the L-series of the
middle cohomology of a Calabi-Yau manifold X is equal to the dimension of coho-
mologically trivial Chow cycles of dimension 1 on X.

For one-dimensional Calabi-Yau manifolds, the elliptic curves over Q, we may
assume they have the Weierstrass form

y2 = x3 + ax + b, ∆ = 4a3 + 27b2 �= 0

where a, b ∈ Q. For an elliptic curve E and the good primes p, the Lefschetz fixed
point formula gives

Np = #Ep = 1 − ap + p

where
ap = tr(Frp | H1

ét(Ep,Ql)).
The following theorem of Wiles-Taylor-Breuil-Conrad-Diamond [2] is the famous

Taniyama-Shimura-Weil conjecture, which implies Fermat’s last theorem:
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Theorem 0.1. Let E be an elliptic curve defined over Q. Then E is modular; i.e.,
there exists a Hecke newform of weight two with Fourier expansion f(q) =

∑
n bnqn

whose level N is equal to the conductor of the elliptic curve such that for all primes
p of good reduction

ap = 1 − Np + p = bp.

A general modularity result for rigid Calabi-Yau threefolds has been proved in
[8].

Theorem 0.2. Let X be a rigid Calabi-Yau threefold defined over Q, and assume
that one of the following conditions holds:

(1) X has good reduction at 3 and 7 or
(2) X has good reduction at 5 or
(3) X has good reduction at 3 and the trace of Fr3 on H3

ét(X,Ql) is not divisible
by 3.

Then X is modular. More precisely

L(X, s) � L(f, s)

for some weight four modular form, where � means equality up to finitely many
Euler factors.

Very recently Dieulefait showed that X is modular if it has good reduction at 3.
So far very little is known about the Euler factors associated to the primes of bad
reduction. Note that the above theorem is an existence result and does not provide
a method to determine the form f explicitly. There is a method due to Faltings,
Serre and Livné which is very effective to check whether a modular form gives a
right candidate. We refer the reader to [12] and [18] for more advanced discussions
on the related topics.

We remark that a number of non-rigid Calabi-Yau varieties have been con-
structed for which modularity has been established. Most of these known examples
are either of Kummer type or contain elliptic ruled surfaces or both. In these cases
the middle cohomology of the varieties breaks up into two-dimensional pieces. See
[14] for an interesting example from resolving singularities of a quintic Calabi-Yau
threefold.

After presenting notations and facts about Calabi-Yau manifolds and their arith-
metic results, the book discusses many different constructions and hundreds of ex-
amples of rigid and non-rigid Calabi-Yau manifolds and studies their modularity in
detail. Many concrete examples of Calabi-Yau manifolds, like the rigid Calabi-Yau
in the mirror quintic family and double coverings of CP 3, are constructed. Ques-
tions about prime numbers which can occur in the levels of the weight 4 modular
forms and Calabi-Yau threefolds with same L–series are also discussed. Detailed
tables about these examples of Calabi-Yau’s and weight 2 and 4 newforms for Γ0(N)
are given in the appendices. This book serves as a good reference for researchers
and students who are interested in the subject.
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