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Abstract

Given a right G-set X, S.J.Witherspoon in [11] has introduced a k-algebra DX(G)

and give an equivalent description of the category modDX(G).

In this paper, the authors firstly define one special kind of quivers QX(G) with

relations ρX such that DX(G) is isomorphic to k(QX(G), ρX), a factor of the path

algebra, and hence the category modDX(G) can be described by the representation

of such quivers with relations. Then, under some certain conditions when X is also

a group, they show that DX(G) admits a Hopf algebra structure; isomorphically,

k(QX(G), ρX) admits a Hopf algebra structure although QX(G) is not a covering

quiver, which means that the quantum double D(G) is isomorphic to a factor of a

path algebra. They also find a sufficient and necessary condition under which DX(G)

becomes a quasi-triangular Hopf algebra, generalizing the classical quantum double

D(G) for a finite group G. In this case, DX(G) is called a non-balanced quantum

double. Finally, some common properties held by DX(G) and kG are considered, such

as the semisimplicity, the unimodularity and the representation type, which indicated

that DX(G) still keeps some nice properties which are true for kG.

2000 Mathematics Subject Classifications: 16W35, 16W30, 16G60, 16G20

1 Introduction and Preliminaries

In this paper, k is a field, modules are always finitely generated right modules over an

k-algebra and tensor products are over k unless otherwise indicated. All concepts about

quantum doubles and Hopf algebras can be found in [6] and [9], while the concepts about
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path algebras and representations of quivers can be found in [1] and [2]. And, G always

denotes a finite group and X a finite right G-set. For a k-algebra A, denote by modA the

category of finitely generated right A-modules.

Firstly, let us recall the Hopf algebra structure of the quantum double D(G) of the

group G. D(G) = (kGop)∗ ⊗ kG as k-vector spaces. If denote by {φg}g∈G the k-basis of

(kGop)∗ dual to {g}g∈G, then D(G) has a k-basis consisting of all elements φg ⊗ h, which

is briefly written as φgh, for g, h ∈ G. On this basis, the multiplication is defined by

φghφg′h
′ = φgφhg′h−1hh′, which is nonzero if and only if g = hg′h−1. Thus the unit is

1D(G) =
∑

g∈G φg1G, where 1G is the identity of G. The comultiplication is given by

∆(φgh) =
∑

x∈G

φx−1gh⊗ φxh,

the counit by ε(φgh) = δ1,g, and the antipode by S(φgh) = φh−1g−1hh−1. Moreover, it is

known that D(G) is a quasi-triangular Hopf algebra with the universal R-matrix

R =
∑

g∈G

g ⊗ φg ∈ D(G)⊗D(G).

As well-known, the theory of quantum double and quantum group play an important

role in the field of mathematical physics, especially for its quasi-triangularity which pro-

vides a way to construct solutions for the Yang-Baxter equation. In the classical quantum

double D(G) = (kGop)∗ ⊗ kG, the two groups on both sides of ⊗ are coincide. In this

paper, we hope to consider the possibility of the similar theory when the balance between

the left and the right G’s is destroyed. For this aim, we will generalize the quantum double

to the so-called non-balanced quantum double by replacing D(G) by DX(G) where X is

a right G-set, and in some special cases X need to be a normal subgroup. Furthermore,

as one of the motivations of this theory, we plan to consider, in our other preparing pa-

per, how non-balanced quantum double arises in conformal field theory, specifically, in

the theory of holomorphic orbifolds, as similarly in [8] for the quantum double of a finite

group.

S.J.Witherspoon in [11] gave the algebraic structure on DX(G) = (kX)∗ ⊗ kG and

found an equivalent description of modDX(G) through vect(X, G), the category of finite

dimensional G-equivalent k-vector bundles.

In Section 2, we mainly give two k-algebras which are isomorphic to DX(G), one

is a factor of the path algebra k(QX , ρX) and the other is the smash product algebra

(kX)∗#kG. Hence we get another important equivalent description of modDX(G) by the

quiver representations of (QX , ρX).

In Section 3, under some certain conditions on the right G-set X and on the G-action,

we make DX(G) to become a Hopf algebra. Hence we accidently find a special class of

quivers QX , which are not covering quivers, i.e. there is no Hopf algebra structure on

the path algebra kQX , but there is a Hopf algebra structure on its factor k(QX , ρX).
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Moreover, we consider some properties of the Hopf algebras DX(G) and k(QX , ρX), such

as semisimplicity, unimodularity and the cohomology groups of the trivial module k. They

indicate that DX(G) still keeps some nice properties which are true for kG.

In Section 4, when X is a subgroup of G, we give a sufficient and necessary condition

under which it can become a quasi-triangular Hopf algebra, generalizing the classical

quantum double D(G) of the group G. We give such quasi-triangular Hopf algebra a new

name, non-balancd quantum double, since X can be a proper normal subgroup of G.

In the last section, we consider the representation type of DX(G) by proving that

DX(G) and kG have the same representation types when the ground field k is algebraically

closed.

2 Algebraic Structure of DX(G)

Throughout this section, G is a finite group and X is a finite right G-set with the action

written as xg. In [11], S.J.Witherspoon introduced the associative algebra DX(G) and

found an equivalent description of modDX(G) through vect(X, G), the category of finite

dimensional G-equivalent k-vector bundles. In this section, we firstly give two k-algebras

which are both isomorphic to DX(G), one is a factor of a path algebra and the other is

a smash product algebra. Hence we get another important equivalent description of the

category modDX(G) via representations of quivers.

Recall that in [11], as a vector space over k, DX(G) = (kX)∗ ⊗ kG has a basis {φx ⊗
g}x∈X,g∈G where φx is the dual element of x in (kX)∗. Write φx ⊗ g briefly by φxg. Then

DX(G) becomes into an associative algebra with the multiplication φxgφyh = φxφ
yg−1gh

and the unit 1DX(G) =
∑

x∈X φx1G. In case X is the G-set G under conjugation, then

DX(G) = D(G), the classical quantum double of G.

A G-equivalent k-vector bundle U on X defined in [11] is a collection of finite dimen-

sional vector spaces {Ux}x∈X , together with a representation of G on their direct sum
∑

x∈X Ux satisfying Ux · g = Uxg for x ∈ X, g ∈ G, where Ux is called the x-component or

fiber of U . If u is an element of the kG-module
∑

x∈X Ux, we write u =
∑

x∈X ux, where

ux ∈ Ux for each x ∈ X.

If U and V are two G-vector bundles on X, a morphism f : U → V is a kG-module

map f :
∑

x∈X Ux →
∑

x∈X Vx which preserves fibers, that is f(Ux) ⊆ Vx for all x ∈ X.

An isomorphism is an invertible morphism.

Denote by vect(X, G) the category of all finite-dimensional G-equivalent k-vector bun-

dles, which is an abelian category.

One of the main results in [11] is the following:

Theorem 2.1. ([11]) There is an equivalence between the category modDX(G) and the

category vect(X, G).
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Now, we give some other ways to describe the category modDX(G) by finding out two

new k-algebras which are both isomorphic to DX(G) as algebras.

For a finite right G-set X, define a quiver Q = QX(G) (write QX briefly) by setting

the vertex set Q0 = X and the arrow set Q1 = {x −→ xg : x ∈ X, g ∈ G}. Here we think

any two arrows (x −→ xg) = (y −→ yh) if and only if x = y and g = h.

Clearly, the number of arrows from x to y equals to the carditional number of the set

{g : y = xg, g ∈ G}. Since G is a group, it can be easily checked that:

(i) there is a loop x −→ x1G for every vertex x ∈ Q0;

(ii) there is an arrow x −→ y if and only if there is an arrow y −→ x;

(iii) if there are two arrows x −→ y and y −→ z, then there is an arrow x −→ z,

(iv) the number of arrows starting from (or ending at) any vertex is equal to |G|.
By (i), (ii) and (iii), the arrow −→ in fact defines an equivalent relation on X. Each

equivalent class is corresponding to one G-orbit, and is corresponding to a connected

component of the quiver Q. Hence Q is connected if and only if there is a unique G-orbit.

Moreover, given a G-set X and a G′-set X ′, denote their corresponding quivers by

Q = QX(G) and Q′ = QX′(G′) respectively, then we have:

Proposition 2.2. Q ∼= Q′ as quivers if and only if there is a bijection ϕ : G → G′ and a

bijection ψ : X → X ′ satisfying ψ(xg) = ψ(x)ϕ(g).

Proof. (⇐): ψ is considered as a bijective map between the vertex sets Q0 and Q′
0,

then we can extend ψ onto the whole quiver Q by defining

ψ(x −→ xg) = ψ(x) −→ ψ(xg) = ψ(x) −→ ψ(x)ϕ(g) ∈ Q′
1,

for any arrow x −→ xg in Q1. Then, it is easy to check that ψ is also bijective on Q1,

then it is an isomorphism from Q to Q′ as quivers.

(⇒): Let π be a bijection from Q to Q′, then ψ = π |Q0 is a bijection from X to X ′.

Since π(x −→ xg) = π(x) −→ π(xg) ∈ Q′
1 for any arrow x −→ xg in Q1, there must exist

a unique g′ ∈ G′ such that π(xg) = π(x)g′ . Define a map ϕ : G → G′ by setting ϕ(g) = g′,

then ψ(xg) = ψ(x)ϕ(g). Obviously, ϕ is a bijection from G to G′ since π is an isomorphism

between Q and Q′.

The End.

Define a set of relations as

ρX = {(x −→ xg −→ xgh)− (x −→ xgh), (x −→ x1G)− ex : x ∈ X, g, h ∈ G},

where ex is the trivial path of length 0 corresponding to the vertex x ∈ Q0. In the

following, we call this kind quivers with such relations (QX , ρX) the associated quiver to

the G-set X. Consider the k-algebra k(QX , ρX) = kQX/ < ρX >, where < ρX > denotes

the ideal of the path algebra kQX generated by the set of relations ρX . For simplicity, for

a path p in kQX , we still write p to stand for its image p̄ in k(QX , ρX). Thus, we find the

following fact:
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Theorem 2.3. For a finite group G and its finite right G-set X, DX(G) ∼= k(QX , ρX) as

algebras, hence the category modDX(G) is isomorphic to the category modk(QX , ρX).

Proof. Define a k-map F : DX(G) → k(QX , ρX) by sending φxg to the arrow x −→ xg,

then F (φxgφyh) = F (φxg)F (φyh), for any x, y ∈ X and g, h ∈ G. Indeed,

F (φxgφyh) = F (φxφ
yg−1gh)

=

{
F (φxgh), x = yg−1

0, x 6= yg−1

=

{
x −→ xgh, xg = y

0, xg 6= y

F (φxg)F (φyh) = (x −→ xg)(y −→ yh)

=

{
x −→ xg −→ xgh, xg = y

0, xg 6= y

=

{
x −→ xgh, xg = y

0, xg 6= y

And F (1DX(G)) = F (
∑

x∈X φx1G) =
∑

x∈X(x −→ x1G) =
∑

x∈X ex = 1k(QX , ρX).

So F is an algebra homomorphism.

Clearly, F is an isomorphism with the inverse homomorphism

F−1(x −→ xg) = φxg.

The End.

Corollary 2.4. If there is a group isomorphism ϕ : G → G′ and a bijection ψ : X → X ′

such that ψ(xg) = ψ(x)ϕ(g), then k(QX(G), ρX) ∼= k(QX′(G′), ρX′) as algebras, equiva-

lently DX(G) ∼= DX′(G′) as algebras.

Proof. We only prove the result k(QX(G), ρX) ∼= k(QX′(G′), ρX′) as algebras. By

Proposition 2.2, QX(G) ∼= QX′(G′) as quivers under the extended map of ψ. It can also

be extended to an isomorphism of algebras from kQX(G) to kQX′(G′), which we also

denote by ψ. The left thing we need to do is proving the isomorphism preserves relations.

Indeed,

ψ(x −→ x1G) = ψ(x) −→ ψ(x)ϕ(1G) = ψ(x) −→ ψ(x)1G′ = eψ(x) = ψ(ex),

and
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ψ(x −→ xg −→ xgh) = ψ(x −→ xg)ψ(xg −→ xgh)

= (ψ(x) −→ ψ(x)ϕ(g))(ψ(x)ϕ(g) −→ ψ(x)ϕ(g)ϕ(h))

= ψ(x) −→ ψ(x)ϕ(g) −→ ψ(x)ϕ(g)ϕ(h)

= ψ(x) −→ ψ(x)ϕ(g)ϕ(h)

= ψ(x) −→ ψ(x)ϕ(gh)

= ψ(x −→ xgh)

The End.

Denote by rep(QX , ρX) the category of finite dimensional representations of (QX , ρX).

It is well-known [1] and [2] that rep(QX , ρX) is equivalent to the category modk(QX , ρX).

Therefore we have the second corollary of Theorem 2.3, which gives an interesting way to

describe DX(G)-modules:

Corollary 2.5. The category modDX(G) is equivalent to the category rep(QX , ρX),

where (QX , ρX) is the quiver with relations associated to the G-set X.

To see the correspondence clearly, we give the equivalent functor on objects. For any

DX(G)-module U , define a k-space Ux = U · φx for each vertex x ∈ Q0, and a k-map

Ux−→xg : Ux −→ Uxg by Ux−→xg(ux) = ux · g for each arrow x −→ xg. Then one can check

that Ux−→x1G = idUx and Uxg−→xghUx−→xg = Ux−→xgh . Hence Urep = {(Ux), (Ux−→xg)} is

a representation of (QX , ρX). Conversely, for any representation U = {(Ux), (Ux−→xg)} of

(QX , ρX), let UDX(G) =
∑

x∈X Ux with the action (
∑

x∈X ux) · φyh = Uy−→yh(uy). Then

UDX(G) is the corresponding module in modDX(G).

In the final part of this section, we give another equivalent description of the algebra

DX(G) by smash product algebra.

Theorem 2.6. There is a left kG-module algebra structure on (kX)∗ such that DX(G) ∼=
(kX)∗#kG as algebras. Hence, the category modDX(G) is isomorphic to the category

mod(kX)∗#kG.

Proof. Define a left kG-action on (kX)∗ by g · φx = φ
xg−1 . Then it is easy to check

that:

(i) 1G · φx = φx,

(ii) (gh) · φx = g · (h · φx),

(iii) g · 1(kX)∗ = ε(g)1(kX)∗ ,

(iv) g · (φxφy) = (g · φx)(g · φy).

Indeed, (i) and (ii) are trivial; (iii) and (iv) are from the following equalities:

g · 1(kX)∗ = g · (
∑

x∈X

φx) =
∑

x∈X

φ
xg−1 =

∑

x∈X

φx = 1(kX)∗ = ε(g)1(kX)∗
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and

(g · φx)(g · φy) = φ
xg−1φ

yg−1 = δ
xg−1

, yg−1φ
xg−1 = δx, y(g · φx) = g · (φxφy),

then (kX)∗ becomes a left kG-module algebra. The equality

φxgφyh = φxφ
yg−1gh = φx(g · φy)gh

implies that the multiplication in DX(G) coincides with that in (kX)∗#kG, which means

that DX(G) ∼= (kX)∗#kG as algebras.

The End.

3 Hopf Algebra Structure of DX(G)

In this section, for a finite group G and its right G-set X, we will find a Hopf algebra

structure on DX(G) and then on k(QX , ρX). For this aim, we always suppose in this

section, the right G-set X is also a finite group, and any g-action is a group automorphism

of X. That is, (xy)g = xgyg, 1g
X = 1X for any x, y ∈ X, g ∈ G due to the invertibility of

the group action.

A classical example will be given in Section 4, when X is a normal subgroup of G and

the action of G on X is the conjugation.

Under the assumption as above, we have:

Theorem 3.1. DX(G) has a Hopf algebra structure with

(a) the multiplication: φxgφyh = φxφ
yg−1gh,

(b) the unit: 1DX(G) =
∑

x∈X φx1G,

(c) the comultiplication: ∆(φxg) =
∑

a∈X φa−1xg ⊗ φag,

(d) the counit: ε(φxg) = δ1X ,x,

(e) the antipode: S(φxg) = φ(x−1)gg−1 = φ(xg)−1g−1.

Proof. It is easy to check that DX(G) = (kXop)∗ ⊗ kG becomes into a coalgebra with

the comultiplication and the counit given in (c) and (d). Here, we need only to prove the

following:

(i) ∆ is an algebra map.

Indeed, for any x, y ∈ X and g, h ∈ G,
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∆(φxg)∆(φyh) = (
∑

a∈X

φa−1xg ⊗ φag)(
∑

b∈X

φb−1yh⊗ φbh)

=
∑

a∈X

∑

b∈X

φa−1xgφb−1yh⊗ φagφbh

=
∑

a∈X

∑

b∈X

φa−1xφ
(b−1y)g−1gh⊗ φaφbg−1gh

=
∑

a∈X

∑

b∈X

φa−1xφ
(b−1)g−1

yg−1gh⊗ φaφbg−1gh

=
∑

a∈X

φa−1xφ
a−1yg−1gh⊗ φagh

=

{ ∑
a∈X φa−1xgh⊗ φagh, x = yg−1

0, x 6= yg−1

=

{
∆(φxgh), x = yg−1

0, x 6= yg−1

= ∆(φxφ
yg−1gh)

= ∆(φxgφyh)

where the forth and fifth equalities hold due to the assumption that any g-action is a

group automorphism of X.

∆(1DX(G)) = ∆(
∑

x∈X

φx1G)

=
∑

x∈X

∑

a∈X

φa−1x1G ⊗ φa1G

=
∑

a∈X

(
∑

x∈X

φa−1x1G)⊗ φa1G

=
∑

a∈X

(
∑

b∈X

φb1G)⊗ φa1G

= (
∑

b∈X

φb1G)⊗ (
∑

a∈X

φa1G)

= 1DX(G) ⊗ 1DX(G).

(ii) ε is an algebra map.

Indeed, for any x, y ∈ X and g, h ∈ G,

ε(1DX(G)) = ε(
∑

x∈X

φx1G) =
∑

x∈X

δ1X , x = 1,

and
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ε(φxgφyh) =

{
ε(φxgh), x = yg−1

0, x 6= yg−1

=

{
δ1X , x, x = yg−1

0, x 6= yg−1

=

{
1, x = yg−1

= 1X

0, otherwise

=

{
1, x = y = 1X

0, otherwise

= δ1X , xδ1X , y

= ε(φxg)ε(φyh).

(iii) S ∗ id = id ∗ S = ηε.

Indeed, For any x ∈ X and g ∈ G,

(S ∗ id)(φxg) =
∑

a∈X

S(φa−1xg)φag

=
∑

a∈X

φ(x−1a)gg−1φag

=
∑

a∈X

φ(x−1a)gφag1G

=
∑

a∈X

φ(x−1)gagφag1G

= δ1X , (x−1)g

∑

a∈X

φag1G

= δ1X , x

∑

a∈X

φa1G

= ε(φxg)1DX(G).

Similarly, one can prove that (id ∗ S)(φxg) = ε(φxg)1DX(G).

The End.

Under the algebra isomorphism F defined in Theorem 2.3, we can define a Hopf algebra

structure on the factor k(QX , ρX) of the path algebra kQX , and show that it is isomorphic

to DX(G) as Hopf algebras.

Theorem 3.2. Isomorphic to DX(G) as Hopf algebras, there is a Hopf algebra structure

on k(QX , ρX) as follows:

∆(x −→ xg) =
∑

a∈X

(a−1x −→ (a−1x)g)⊗ (a −→ ag)

∆(ex) =
∑

a∈X

ea−1x ⊗ ea
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ε(x −→ xg) = δ1X , x

ε(ex) = δ1X , x

S(x −→ xg) = (x−1)g −→ x−1 = (xg)−1 −→ x−1

S(ex) = ex−1

where (QX , ρX) is the quiver with relations associated to the G-set X.

Proof. Using the algebra isomorphism F defined in Theorem 2.3, we need only to prove

the following facts:

(i) F is a coalgebra map.

Indeed, For any x ∈ X and g ∈ G,

∆F (φxg) = ∆(x −→ xg)

=
∑

a∈X

(a−1x −→ (a−1x)g)⊗ (a −→ ag)

= (F ⊗ F )(
∑

a∈X

φa−1xg ⊗ φag)

= (F ⊗ F )∆(φxg),

εF (φxg) = ε(x −→ xg) = δ1X , x = ε(φxg)

(ii) FS = SF .

Indeed, For any x ∈ X and g ∈ G,

FS(φxg) = F (φ(x−1)gg−1) = (x−1)g −→ x−1 = S(x −→ xg) = SF (φxg).

The End.

Remark 3.3. Similarly, there is an isomorphic Hopf algebra structure on smash product

algebra (kXop)∗#kG.

Next, we consider some common properties held by DX(G), k(QX(G), ρX) and kG,

such as semisimplicity, unimodularity and the cohomology groups of the trivial module.

It is well known that kG is a semisimple Hopf algebra if and only if the characteristic

of k does not divide the order | G | of G. Similarly, we have the same result for DX(G).

Proposition 3.4. (a) The Hopf algebra DX(G) defined in Theorem 3.1 is semisimple if

and only if the characteristic of k does not divide the order | G | of G.

(b) The Hopf algebra k(QX , ρX) defined in Theorem 3.2 is semisimple if and only if

the characteristic of k does not divide the order | G | of G.

Proof. We need only to prove the case for DX(G).

Take t =
∑

g∈G φ1g, where 1 is the identity 1X of the group X. Then for any

φxh ∈ DX(G), we have t(φxh) =
∑

g∈G φ1gφxh =
∑

g∈G φ1φxg−1gh = δ1, x
∑

g∈G φ1gh =
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δ1, x
∑

g∈G φ1g = ε(φxh)t, so t is a right integral in DX(G). Furthermore, ε(t) = ε(
∑

g∈G φ1g)

=
∑

g∈G ε(φ1g) =| G |. By Maschke’s theorem for finite-dimensional Hopf algebra, DX(G)

is semisimple if and only if ε(t) 6= 0 for some right integral t in DX(G), equivalently, if

and only if the characteristic of k does not divide the order | G | of G, since the space of

right integals is of dimension one.

The End.

By [9], a finite dimensional semisimple Hopf algebra must be unimodular. But here,

without any restriction, kG is always unimodular with t =
∑

g∈G g generating both the

space of left integrals and the space of right integals. Similarly we have the same result

for DX(G).

Proposition 3.5. The Hopf algebras DX(G) and k(QX , ρX) are unimodular.

Proof. We need only to prove the case for DX(G). Take t =
∑

g∈G φ1g, where 1

is the identity 1X of the group X. Then for any φxh ∈ DX(G), we have (φxh)t =
∑

g∈G φxhφ1g =
∑

g∈G φxφ1hg = δ1,x
∑

g∈G φ1hg = δ1,x
∑

g∈G φ1g = ε(φxh)t, so t is a left

integral in DX(G). From the proof of Proposition 3.4, t is also a right integral in DX(G).

Then the space of left integrals coincides with the space of right integrals since they are

both of one dimension. Therefore the Hopf algebra DX(G) is unimodular.

The End.

Finally, we discuss the cohomology groups Hn(DX(G), k) and Hn(k(QX , ρX), k) of

the trivial modules k.

Proposition 3.6. For each natural number n,

(a) the cohomology groups Hn(DX(G), k) and Hn(kG, k) are isomorphic, where the

former k is the trivial DX(G)-module and the latter is the trivial kG-module;

(b) the cohomology groups Hn(k(QX , ρX), k) and Hn(kG, k) are isomorphic, where

the former k is the trivial k(QX , ρX)-module and the latter is the trivial kG-module.

Proof. We need only to prove the case for DX(G).

Let I1 be the subspace
∑

g∈G kφ1X g and I2 the subspace
∑

1X 6=x∈X, h∈G kφxh. Then

I1 and I2 are two ideals of DX(G) such that DX(G) = I1⊕ I2. Obviously, I1 is isomorphic

to kG as algebras. In this way, any kG-module M has a DX(G)-module structure as

m · φxg =

{
m · g, x = 1X

0, otherwise

Indeed, it can be checked that

m · 1DX(G) = m ·
∑

x∈X

φx1G = m · 1G = m
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and

m · (φxgφyh) = m · φxφ
yg−1gh

=

{
m · φxgh, x = yg−1

0, otherwise

=

{
m · gh, x = yg−1

= 1X

0, otherwise

=

{
(m · g) · h, x = y = 1X

0, otherwise

= (m · φxg) · φyh

So modkG can be embedded into modDX(G) as a full subcategory and this embedding

preserves projectivity. Indeed, for P a projective kG-module, there exist a kG-module

Q and a positive integer n such that P ⊕ Q ∼= kG(⊕n) as kG-module, and hence as the

induced DX(G)-module. Then we have

P ⊕Q⊕ I
(⊕n)
2

∼= kG(⊕n) ⊕ I
(⊕n)
2

∼= I
(⊕n)
1 ⊕ I

(⊕n)
2

∼= DX(G)(⊕n)

as the induced DX(G)-module. So the induced DX(G)-module P is also projective.

Under this embedding the trivial DX(G)-module k is the image of the trivial kG-

module k. Indeed for any λ ∈ k and φxg ∈ DX(G),

λ · φxg = ε(φxg)λ

=

{
λ, x = 1X

0, otherwise

=

{
ε(g)λ, x = 1X

0, otherwise

=

{
λ · g, x = 1X

0, otherwise
.

Thus a projective resolution of the trivial kG-module may be considered to be a projec-

tive resolution of the trivial DX(G)-module, hence the cohomology groups Hn(DX(G), k)

and Hn(kG, k) are isomorphic for each natural number n.

The End.

4 Non-Balanced Quantum Double DX(G)

As said in the introduction, we hope to consider on D(G) = (kGop)∗ ⊗ kG what would

happen when the balance between the left and right G’s is destroyed. In this section,
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we shall find out some suitable conditions under which the Hopf algebra structures of

DX(G) and k(QX , ρX) are quasi-triangular. We call such quasi-triangular Hopf algebras

Non-balanced Quantum Double when X is not isomorphic to G.

Hence, throughout this section we suppose that the right G-set X is also a group and

any g-action is a group automorphism of X such that DX(G) and k(QX , ρX) respectively

has a Hopf algebra structure as in Theorem 3.1 and Theorem 3.2.

Theorem 4.1. When X is a subgroup of G, then

(a) the Hopf algebra structure on DX(G) given in Theorem 3.1 is quasi-triangular

with the universal R−matrix R1 =
∑

x∈X x⊗ φx if and only if X is a normal subgroup of

G and the G-action is given by conjugation;

(b) the Hopf algebra structure on k(QX , ρX) given in Theorem 3.2 is quasi-triangular

with the universal R−matrix R2 =
∑

x,y∈X(y −→ yx) ⊗ ex if and only if X is a normal

subgroup of G and the G-action is given by conjugation.

Moreover, they are isomorphic as quasi-triangular Hopf algebras since R2 = (F⊗F )R1.

Proof. We only need to show the case for DX(G).

Firstly R = R1 ∈ DX(G)⊗DX(G) since X is a subgroup of G. Moreover,

(i) R is invertible with R−1 =
∑

x∈X x−1 ⊗ φx.

Indeed,

RR−1 = (
∑

x∈X

x⊗ φx)(
∑

x∈X

x−1 ⊗ φx)

=
∑

x∈X

∑

y∈X

xy−1 ⊗ φxφy

=
∑

x∈X

1X ⊗ φx

= 1DX(G) ⊗ 1DX(G),

since 1X = 1G. Similarly, R−1R = 1DX(G) ⊗ 1DX(G).

(ii) (∆⊗ id)R = R13R23, (id⊗∆)R = R13R12, where R12 =
∑

x∈X x⊗ φx ⊗ 1DX(G),

R13 =
∑

x∈X x⊗ 1DX(G) ⊗ φx, and R23 =
∑

x∈X 1DX(G) ⊗ x⊗ φx.

Indeed,

(id⊗∆)R =
∑

a∈X

∑

x∈X

x⊗ φa−1x ⊗ φa

=
∑

a∈X

∑

x∈X

aa−1x⊗ φa−1x ⊗ φa

=
∑

a∈X

∑

y∈X

ay ⊗ φy ⊗ φa

= (
∑

a∈X

a⊗ 1DX(G) ⊗ φa)(
∑

y∈X

y ⊗ φy ⊗ 1DX(G))

= R13R12
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(∆⊗ id)R =
∑

x∈X

x⊗ x⊗ φx

=
∑

x∈X

∑

y∈X

x⊗ y ⊗ φxφy

= (
∑

x∈X

x⊗ 1DX(G) ⊗ φx)(
∑

y∈X

1DX(G) ⊗ y ⊗ φy)

= R13R23.

(iii) The left thing we need to do is to find out the condition under which R∆(φyh) =

∆op(φyh)R for any φyh ∈ DX(G).

Indeed,

∆op(φyh)R = (
∑

a∈X

φah⊗ φa−1yh)(
∑

x∈X

x⊗ φx)

=
∑

a∈X

∑

x∈X

φahx⊗ φa−1yφxh−1h

=
∑

a∈X

φah(a−1y)h ⊗ φa−1yh

=
∑

x∈X

φyx−1hxh ⊗ φxh.

R∆(φyh) = (
∑

x∈X

x⊗ φx)(
∑

a∈X

φa−1yh⊗ φah)

=
∑

x∈X

∑

a∈X

φ
(a−1y)x−1xh⊗ φxφah

=
∑

x∈X

φ
(x−1y)x−1xh⊗ φxh

Hence, since {φxg : x ∈ X, g ∈ G} is a k-basis of DX(G), R∆(φyh) = ∆op(φyh)R

for any φyh ∈ DX(G) if and only if φ
(x−1y)x−1xh = φyx−1hxh for any φyh ∈ DX(G) and

x ∈ X, if and only if xh = h−1xh for any x ∈ X and h ∈ G.

The End.

Since {1G} and G is two special G-sets under conjugation, note that:

(i) When X = {1G}, the non-balanced quantum double is just the group algebra kG,

which is a trivial quasi-triangular Hopf algebra with the universal R-matrix R1 = 1G⊗1G.

Correspondingly, k(Q{1G}, ρ{1G}) is also a trivial quasi-triangular Hopf algebra with the

universal R-matrix R2 = (1G → 1G)⊗ (1G → 1G), where the quiver (Q{1G}, ρ{1G}) is just

a unique vertex with |G| loops.

(ii) When X = G, DX(G) is just the classical quantum double D(G) with the universal

R-matrix R1 =
∑

g∈G g ⊗ φg. Correspondingly, k(QG, ρG) is also a quasi-triangular Hopf

algebra with the universal R-matrix R2 =
∑

g∈Q0

∑
h∈Q0

(h −→ g−1hg)⊗ eg.

We know [10] that a quasi-triangular Hopf algebra is called minimal if it has no

proper quasi-triangular Hopf subalgebra. It is obvious by [10] that the unique minimal



4 NON-BALANCED QUANTUM DOUBLE DX(G) 15

quasi-triangular Hopf subalgebra contained in DX(G) is the quantum double D(X). Thus,

we have:

Corollary 4.2. The quasi-triangular Hopf algebra DX(G) given in Theorem 4.1 is mini-

mal if and only if X = G.

As a part of the theory of representations of non-balanced quantum double, we have

the following property about its representation ring:

Corollary 4.3. When X is a normal subgroup of G and the the action is given by xg =

g−1xg, the representation rings R(DX(G)) and R(k(QX , ρX)) are both commutative.

Proof. We only need to show the case for DX(G).

For any two right DX(G)-modules U and V , define a k-map Φ : U ⊗ V → V ⊗ U by

sending u⊗ v to
∑

x∈X v · x⊗ u · φx. It is bijective since R =
∑

x∈X x⊗ φx is invertible.

Furthermore, Φ is a DX(G)-module homomorphism. In fact, for any φyh ∈ DX(G), we

have:

Φ((u⊗ v) · φyh) = Φ(
∑

a∈X

u · φa−1yh⊗ v · φah)

=
∑

a∈X

∑

x∈X

(v · φah) · x⊗ (u · φa−1yh) · φx

=
∑

x∈X

∑

a∈X

(v · x) · φa−1yh⊗ (u · φx) · φah

= (
∑

x∈X

v · x⊗ u · φx) · φyh

= Φ(u⊗ v) · φyh

where the third equality is from the fact that R∆(φyh) = ∆op(φyh)R by Theorem 4.1.

The End.

About the non-balanced quantum double DX(G) in Theorem 4.1, we only consider

the case that X is a subgroup of G. It is natural for us to discuss the opposite side, i.e.

when G is a subgroup of X. Unfortunately, we can not find a suitable universial R-matrix.

Actually, we have the following statements as remarks:

Remark 4.4. When G is a subgroup of X, set R =
∑

g∈G g ⊗ φg ∈ DX(G)⊗DX(G).

(a) Although R is non-invertible, there exists an element R̄ =
∑

g∈G g−1 ⊗ φg ∈
DX(G) ⊗ DX(G) satisfying RR̄R = R and R̄RR̄ = R̄, that is, R is regular under the

meaning of von Neumann’s.

(b) Similarly as the proof of Theorem 4.1, it can be checked that DX(G) is almost co-

commutative with the regular element R ∈ DX(G)⊗DX(G), or say R∆(φyh) = ∆op(φyh)R

for any φyh ∈ DX(G), if and only if the G-action is given by conjugation when restricted

onto G.
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(c) In general, (∆ ⊗ id)R = R13R23 and (id ⊗∆)R = R13R12 do not hold. However

we can show that R12R13R23 = R23R13R12 if and only if G is an abelian group and the

restriction of the G-action on G is just the identity map on G, which means that under

this special case R is a solution of the quantum Yang-Baxter equation.

Of course, the similar conclusions on k(QX(G), ρX) also hold under isomorphism.

5 Representation Type of DX(G)

In this section we shall consider the relation between the representation types of DX(G)

and of kG, under the assumption that the right G-set X is also a group and any g-action

is a group automorphism of X, i.e. such that DX(G) and k(QX , ρX) respectively has a

Hopf algebra structure as in Theorem 3.1 and Theorem 3.2.

Firstly, let us recall some concepts from [4] and [5]:

(a) A k-algebra A is said to be of finite representation type if there are only finitely

number of non-isomorphic finitely generated indecomposable A-modules;

(b) A k-algebra A is said to be of tame type if it is not of finite representation type,

and for any positive integer d, there are a finite number of k[T ]-A-bimodules Mi which are

free as left k[T ]-modules such that all but a finite number of indecomposable A-modules

of dimension d are isomorphic to some k[T ]/(T − λ)⊗k[T ] Mi as A-modules for λ ∈ k;

(c) A k-algebra A is said to be of wild type if there is a finitely generated k < X, Y >-A-

bimodule M which is free as a left k < X, Y >-module such that the functor −⊗k<X,Y >M

from the category modk < X, Y > to the category modA preserves indecomposability

and reflects isomorphisms.

The famous tame-and-wild theorem of Drozd’s in [4] and [5] states that a finite di-

mensional algebra over an algebraically closed field k, which is not of finite representation

type, is either of tame type or of wild type, but not of the both types. Therefore it gives

the classification of finite dimensional algebras over an algebraically closed field k due to

the representation type.

In order to discuss when DX(G) is of finite representation type, we cite the following

three results from [2]. About the definitions of hereditary, preinjective and preprojective,

one can also find in [2].

Lemma 5.1. ([2]) A finite dimension hereditary k-algebra A is of finite representation

type if and only if all A-modules are both preinjective and preprojective.

Lemma 5.2. ([2]) Let A be a k-subalgebra of a finite dimensional k-algebra B.

(a) Suppose A is a two-sided summand of B, i.e. B = A⊕C as two-sided A-modules for

some C. Then A is of finite representation type if B is of finite representation type.

(b) Suppose M is a B-summand of M ⊗A B for any M in modB, i.e. M ⊗A B =
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M ⊕N as B-module for some N . Then B is of finite representation type if A is of finite

representation type.

Lemma 5.3. ([2]) Suppose G is a finite group whose order is dividing by chark = p.

Then kG is of finite representation type if and only if every Sylow p-subgroup of G is a

cyclic group.

Firstly, we give the following result about finite representation type:

Theorem 5.4. DX(G) is of finite representation type if and only if kG is of finite repre-

sentation type.

Proof. From [9], we know that every finite-dimensional Hopf algebra is free over any of

its Hopf subalgebra. Consider kG ∼= εkG as a Hopf subalgebra of DX(G), then DX(G) ∼=
kG(⊗n) as kG-bimodules for some positive integer n. By Lemma 5.2 (a), kG is of finite

representation type if DX(G) is of finite representation type.

Conversely for any M in modDX(G), it has a induced kG-module structure by re-

striction. We claim that M is a DX(G)-direct summand of M ⊗kG DX(G), where the

DX(G)-action on M ⊗kG DX(G) is given by right multiplication.

In fact, define a k-map ϕ : M⊗kG DX(G) → M by sending m⊗φxg to m ·φxg. Clearly

ϕ is DX(G)-epimorphism. Define a k-map ψ : M → M ⊗kG DX(G) by sending m to
∑

x∈X m · φx ⊗ φx. Then for any φyh ∈ DX(G),

ψ(m · φyh) =
∑

x∈X

(m · φyh) · φx ⊗ φx

=
∑

x∈X

m · (φyhφx)⊗ φx

=
∑

x∈X

m · (φyφxh−1h)⊗ φx

= m · φyh⊗ φyh

= m · φy ⊗ hφyh

= m · φy ⊗ φyh,

ψ(m) · φyh = (
∑

x∈X

m · φx ⊗ φx) · φyh

=
∑

x∈X

m · φx ⊗ φxφyh

= m · φy ⊗ φyh.

Hence ψ is also a DX(G)-homomorphism. Furthermore,

ϕψ(m) = ϕ(
∑

x∈X

m · φx ⊗ φx) =
∑

x∈X

(m · φx) · φx =
∑

x∈X

m · (φxφx) =
∑

x∈X

m · φx = m,

so ψ is a split monomorphism and M is a DX(G)-direct summand of M ⊗kG DX(G).
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By Lemma 5.2 (b), DX(G) is of finite representation type if kG is of finite representa-

tion type.

The End.

Corollary 5.5. (a) If the characteristic of k does not divide | G |, then DX(G) is of

finite representation type,

(b) If the characteristic p of k divides | G |, then DX(G) is of finite representation

type if and only if every Sylow p-subgroup of G is a cyclic group.

Proof. (a) By Proposition 3.4, DX(G) is semisimple. So all DX(G)-modules are both

projective and injective, hence also both preprojective and preinjective. In particular its

radical radDX(G) = 0 is projective. Therefore DX(G) is hereditary algebra. By Lemma

5.1, DX(G) is of finite representation type.

(b) It is directly from Lemma 5.3 and Theorem 5.4.

The end.

About the tame type, we need the following result in [7]:

Lemma 5.6. ([7]) For a finite dimensional k-algebra A, let M be k[T ]-A-bimodule which

is free over k[T ]. Then M is indecomposable as k[T ]-A-bimodule if and only if k[T ]/(T −
λ)⊗k[T ] M is indecomposable as k[T ]/(T − λ)-A-bimodule for λ ∈ k.

Theorem 5.7. DX(G) is of tame type if and only if kG is of tame type.

Proof. (i) kG is of tame type if DX(G) is of tame type.

For any indecomposable right kG-module M in modkG, it has a right DX(G)-module

structure, denoted by MDX(G), given by m · φxg = δ1, xm · g. If MDX(G) = M ′ ⊕M ′′ is a

nontrivial decomposition in modDX(G), restricting onto kG, we have

M = (MDX(G)) ↓kG= M ′ ↓kG ⊕M ′′ ↓kG

a nontrivial decomposition of M in modkG since kG, as a Hopf subalgebra, has the

same unit to DX(G). This contradicts to that M is indecomposable as kG-module. Thus

MDX(G) is indecomposable in modDX(G).

For any positive integer d, since DX(G) is of tame type, there are a finite number of

k[T ]-DX(G)-bimodules M1, M2, · · · , Mn which are free as left k[T ]-module such that all,

but a finite number, of indecomposable DX(G)-modules of dimension d are isomorphic to

k[T ]/(T − λ) ⊗k[T ] Mj as DX(G)-modules for some 1 ≤ j ≤ n and some λ ∈ k. Hence

all, but a finite number, of indecomposable kG-modules M of dimension d satisfying

MDX(G)
∼= k[T ]/(T − λ)⊗k[T ] Mj as DX(G)-modules for some 1 ≤ j ≤ n and some λ ∈ k.

Restricting onto kG, we have M = (MDX(G)) ↓kG
∼= k[T ]/(T − λ) ⊗k[T ] (Mj ↓kG) as kG-

modules. Each Mj ↓kG must be free over k[T ] since the left module structure has not been

changed. Then {Mj ↓kG: j = 1, 2, · · · , n} is a finite set of k[T ]-kG-bimodules which are
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free as left k[T ]-modules such that all, but a finite number, of indecomposable kG-modules

of dimension d are isomorphic to k[T ]/(T − λ) ⊗k[T ] (Mj ↓kG) as kG-modules for some

1 ≤ j ≤ n and some λ ∈ k. Hence kG is of tame type.

(ii) DX(G) is of tame type if kG is of tame type.

For any positive integer d′, since kG is of tame type, there are a finite set of k[T ]-kG-

bimodules {Md′
j : j ∈ Jd′} indexed by a finite set Jd′ , all of which are free as left k[T ]-

module such that all but a finite number of indecomposable kG-modules of dimension d′

are isomorphic to k[T ]/(T −λ)⊗k[T ] M
d′
j as kG-modules for some j ∈ Jd′ and some λ ∈ k.

Since any Md′
j is finitely generated over kG, Md′

j ⊗kG DX(G) is finitely generated over

DX(G). From the freeness of Md′
j over k[T ], one can deduce the freeness of Md′

j ⊗kGDX(G)

over k[T ] since DX(G) is free over kG. Hence we get a finite direct sum decomposition

Md′
j ⊗kG DX(G) =

⊕
l∈Lj

Md′
j, l with Md′

j, l indecomposable k[T ]-DX(G)-bimodules and free

over k[T ]. Then {Md′
j, l : j ∈ Jd′ , l ∈ Lj} is a finite set of indecomposable k[T ]-DX(G)-

bimodules which are free as left k[T ]-modules. By Lemma 5.6, each k[T ]/(T−λ)⊗k[T ]M
d′
j, l

is indecomposable as k[T ]/(T −λ)-DX(G)-bimodules, hence is indecomposable as DX(G)-

module since k[T ]/(T − λ) ∼= k as algebras.

For any indecomposable N in modDX(G) of dimension d, let N ↓kG= N1 ⊕ · · · ⊕Nm

be a direct sum of indecomposable kG-modules. By the claim in the proof of Theorem

5.4, N is a DX(G)-direct summand of N ⊗kG DX(G). But N ⊗kG DX(G) = (N1 ⊗kG

DX(G))⊕· · ·⊕ (Nm⊗kG DX(G)), by Krull-Schmidt theorem, there exists a t (1 ≤ t ≤ m)

such that N is a DX(G)-direct summand of Nt ⊗kG DX(G). Let dimNt = µ(t), then

µ(t) ≤ d. Since kG is tame, for all but a finite number of such N and Nt, it satisfies that

Nt
∼= k[T ]/(T − λ)⊗k[T ] M

µ(t)
jt

for some jt ∈ Jµ(t) and λ ∈ k. Moreover,

Nt ⊗kG DX(G) ∼= k[T ]/(T − λ)⊗k[T ] M
µ(t)
jt

⊗kG DX(G)

= k[T ]/(T − λ)⊗k[T ] (
⊕

l∈Ljt

M
µ(t)
jt, l

)

=
⊕

l∈Ljt

(k[T ]/(T − λ)⊗k[T ] M
µ(t)
jt, l

).

We have known above that each k[T ]/(T − λ) ⊗k[T ] M
µ(t)
jt, l

is indecomposable as DX(G)-

module, hence there must exist some s ∈ Ljt such that N ∼= k[T ]/(T − λ) ⊗k[T ] M
µ(t)
jt, s

as

DX(G)-modules.

Then for any positive integer d, {M i
j, l | 1 ≤ i ≤ d, j ∈ Ji, l ∈ Lj} is a finite set of

k[T ]-DX(G)-bimodules whose members are all free as left k[T ]-modules and such that all

but a finite number of indecomposable DX(G)-modules of dimension d are isomorphic to

some k[T ]/(T − λ)⊗k[T ] M i
j, l for λ ∈ k. Hence DX(G) is of tame type.

The End.

By Theorem 5.4 and 5.7, due to the Drozd’s tame-and-wild theorem, we obtain the

following:
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Corollary 5.8. When k is a algebraically closed field, DX(G) and kG has the same

representation type. In particular, the classical quantum double D(G) and the non-balanced

quantum doubles DX(G) have the same representation type as the group algebra kG.

An interesting fact given from the above discussion is that the representation type of

the Hopf algebra DX(G) is independent of the property of the finite group X. The same

result also hold for k(QX(G), ρX) under isomorphism.
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