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1 Introduction

This is the first of a series of papers devoted to the study of hyperbolic geometric flow and its

applications to geometry and physics. Hyperbolic geometric flow was first studied by Kong and

Liu in [11]. To introduce such flow we were partially motivated by the Einstein equations in general

relativity and the recent progress in the Hamilton’s Ricci flow, and by the possibility of applying

the powerful theory of hyperbolic partial differential equations to geometry. Hyperbolic geometric

flow is a system of nonlinear evolution partial differential equations of second order, it is very

natural to understand certain wave phenomena in nature as well as the geometry of manifolds, in

particular, it describes the wave character of the metrics and curvatures of manifolds. We will see

that the hyperbolic geometric flow carries many interesting features of both the Ricci flow as well

as the Einstein equations. It has many promising applications to both subjects.

The elliptic and parabolic partial differential equations have been successfully applied to dif-

ferential geometry and physics. Typical examples are the Hamilton’s Ricci flow and Schoen-Yau’s

solution of the positive mass conjecture. A natural and important question is if we can apply the

well-developed theory of hyperbolic differential equations to solve problems in differential geome-

try and theoretical physics. This series of papers is an attempt to apply the hyperbolic equation

techniques to study some geometrical problems and physical problems. One has found interesting

results in these directions, see for example [16] for the applications of the hyperbolic geometric

flow equations to physics. Our results already show that the hyperbolic geometric flow is a natural

and powerful tool to study some important problems arising from differential geometry and general

relativity such as singularities, existence and regularity. In this paper we study the basic properties

of the hyperbolic geometric flow such as the short-time existence, nonlinear stability and the wave

feature of the curvatures. In the sequel we will study several fundamental problems, for example,

long-time existence, formation of singularities, as well as the physical and geometrical applications.

Let M be an n-dimensional complete Riemannian manifold with Riemannian metric gij , the

Levi-Civita connection is given by the Christoffel symbols

Γk
ij =

1
2
gkl

{
∂gjl

∂xi
+

∂gil

∂xj
− ∂gij

∂xl

}
,

where gij is the inverse of gij . The Riemannian curvature tensors read

Rk
ijl =

∂Γk
jl

∂xi
− ∂Γk

il

∂xj
+ Γk

ipΓ
p
jl − Γk

jpΓ
p
il, Rijkl = gkpR

p
ijl.

The Ricci tensor is the contraction

Rik = gjlRijkl
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and the scalar curvature is

R = gijRij .

The hyperbolic geometric flow under the consideration is the following evolution equation

∂2gij

∂t2
= −2Rij (1.1)

for a family of Riemannian metrics gij(t) on M . More general hyperbolic geometric flows were also

introduced in [11]. A natural and fundamental problem is the short-time existence and uniqueness

theorem of hyperbolic geometric flow (1.1). In the present paper, we prove the following short-time

existence and uniqueness theorem, the nonlinear stability theorem for Euclidean space, and derive

the corresponding wave equations for the curvatures. These results were announced in Kong and

Liu [11].

Theorem 1.1 Let (M , g0
ij(x)) be a compact Riemannian manifold. Then there exists a constant

h > 0 such that the initial value problem




∂2

∂t2 gij(x, t) = −2Rij(x, t),

gij(x, 0) = g0
ij(x), ∂gij

∂t (x, 0) = k0
ij(x),

has a unique smooth solution gij(x, t) on M × [0, h], where k0
ij(x) is a symmetric tensor on M .

The main difficulty to prove this theorem is that, the hyperbolic geometric flow (1.1) is a system

of nonlinear weakly-hyperbolic partial differential equations of second order. The degeneracy of

the system is caused by the diffeomorphism group of M which acts as the gauge group of the

hyperbolic geometric flow. Because the hyperbolic geometric flow (1.1) is only weakly hyperbolic,

the short-time existence and uniqueness result on a compact manifold does not come from the

standard PDEs theory directly. In order to prove the above short-time existence and uniqueness

theorem, using the gauge fixing idea as in the Ricci flow, we can derive a system of nonlinear

strictly-hyperbolic partial differential equations of second order, thus Theorem 1.1 comes from the

standard PDEs theory. On the other hand, we can reduce the hyperbolic geometric flow (1.1) to

a quasilinear symmetric hyperbolic system of first order, then using the Friedrich’s theory [5] of

symmetric hyperbolic system (more exactly, the quasilinear version [3]) we can also prove Theorem

1.1.

Noting an important result on nonlinear wave equations (see [10]), we will find its other inter-

esting application to geometry, by applying this result to the wave equations of curvatures. In the

present paper we first use it to prove the nonlinear stability of the flat solution of the hyperbolic
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geometric flow defined on the Euclidean space with dimension larger than 4. More precisely, we

have

Theorem 1.2 The flat metric gij = δij of the Euclidean space Rn with n ≥ 5 is nonlinearly stable.

See Section 4 for the precise definition of nonlinear stability which is very important in general

relativity. The key point of the proof of this theorem is the global existence of classical solutions

of the Cauchy problem for the nonlinear wave equations.

Similar to Hamilton [6], we derive the corresponding wave equations for the curvatures, for

example, we have

Theorem 1.3 Under the hyperbolic geometric flow (1.1), the curvature tensor satisfies the evolu-

tion equation

∂2

∂t2
Rijkl = 4Rijkl + 2 (Bijkl −Bijlk −Biljk + Bikjl)

−gpq (RpjklRqi + RipklRqj + RijplRqk + RijkpRql)

+2gpq

(
∂Γp

il

∂t

∂Γq
jk

∂t
− ∂Γp

jl

∂t

∂Γq
ik

∂t

)
,

(1.2)

where Bijkl = gprgqsRpiqjRrksl and 4 is the Laplacian with respect to the evolving metric.

The wave equations for the Ricci and scalar curvatures are stated and proved in Section 5. This

is similar to the Ricci flow equation, except that there are quadratic lower order terms involving

the connection coefficients. It turns out that there is a very rich theory in nonlinear wave equations

to deal with such terms, see [10].

From the above results we can already see that the hyperbolic geometric flow has many features

of the Ricci flow, therefore many well-developed techniques in the Ricci flow may be applied to

the study of this new kind of flow equations. On the other hand, the hyperbolic geometric flow

can also be viewed as the leading terms of the vacuum Einstein equations. Since the hyperbolic

geometric flow contains the major terms in the Einstein equations, it not only becomes simpler

and more symmetric, but also possesses rich and beautiful geometric properties. See Section 6 for

more detailed discussions on the relations between the hyperbolic geometric flow and the Einstein

equations, and more generally its relations with other important problems in general relativity.

The paper is organized as follows. In Section 2, using the gauge fixing idea as in the Ricci flow,

we derive a system of nonlinear strictly-hyperbolic partial differential equations of second order.

In Section 3 we reduce the hyperbolic geometric flow (1.1) to a quasilinear symmetric hyperbolic

system of first order, and give the proof of Theorem 1.1. Section 4 is devoted to the nonlinear
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stability of the hyperbolic geometric flow defined on the Euclidean space with dimension larger

than 4. In Section 5, we derive the wave equations satisfied by the curvatures, and illustrate the

wave character of the curvatures. Some discussions are given in Section 6.

2 Strict hyperbolicity of hyperbolic geometric flow

In this section we consider a modified system of evolution equations of the hyperbolic geometric

flow, which is strictly hyperbolic so that we can get a solution for a short time by solving the

corresponding Cauchy problem. The solution of the system (1.1) then comes from the solution of

the modified equations.

Let M be a compact n-dimensional manifold. We consider the hyperbolic geometric flow (1.1)

on M , that is,
∂2

∂t2
gij(x, t) = −2Rij(x, t). (2.1)

Suppose ĝij(x, t) is a solution of the hyperbolic geometric flow (2.1), and ψt : M → M is a family

of diffeomorphisms of M . Let

gij(x, t) = ψ∗t ĝij(x, t)

be the pull-back metrics. We now want to find the evolution equations for the metrics gij(x, t).

Denote by y(x, t) = ϕt(x) = (y1(x, t), y2(x, t), · · · , yn(x, t)) in local coordinates. Then

gij(x, t) =
∂yα

∂xi

∂yβ

∂xj
ĝαβ(y, t) (2.2)

and

∂

∂t
gij(x, t) =

∂

∂t

[
ĝαβ(y, t)

∂yα

∂xi

∂yβ

∂xj

]

=
∂yα

∂xi

∂yβ

∂xj

d

dt
ĝαβ(y(x, t), t) + ĝαβ(y, t)

∂

∂t

(
∂yα

∂xi

∂yβ

∂xj

)
.

Furthermore, we have

∂2

∂t2
gij(x, t) =

∂yα

∂xi

∂yβ

∂xj

d2ĝαβ

dt2
(y(x, t), t) +

∂

∂xi

(
∂2yα

∂t2

)
∂yβ

∂xj
ĝαβ

+
∂yα

∂xi

∂

∂xj

(
∂2yβ

∂t2

)
ĝαβ + 2

∂

∂xi

(
∂yα

∂t

)
∂yβ

∂xj

dĝαβ

dt

+2
∂yα

∂xi

∂

∂xj

(
∂yβ

∂t

)
dĝαβ

dt
+ 2

∂

∂xi

(
∂yα

∂t

)
∂

∂xj

(
∂yβ

∂t

)
ĝαβ .

(2.3)

On the other hand,
dĝαβ

dt
(y(x, t), t) =

∂ĝαβ

∂yγ

∂yγ

∂t
+

∂ĝαβ

∂t
,

d2ĝαβ

dt2
(y(x, t), t) =

∂2ĝαβ

∂yγ∂yλ

∂yγ

∂t

∂yλ

∂t
+ 2

∂2ĝαβ

∂yγ∂t

∂yγ

∂t
+

∂2ĝαβ

∂t2
+

∂ĝαβ

∂yγ

∂2yγ

∂t2
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and
∂2ĝαβ

∂t2
(y, t) = −2R̂αβ(y, t).

It follows from (2.3) that

∂2gij

∂t2
(x, t) = −2R̂αβ(y, t)

∂yα

∂xi

∂yβ

∂xj
+

∂2ĝαβ

∂yγ∂yλ

∂yα

∂xi

∂yβ

∂xj

∂yγ

∂t

∂yλ

∂t

+2
∂2ĝαβ

∂yγ∂t

∂yα

∂xi

∂yβ

∂xj

∂yγ

∂t
+

∂

∂xi

(
ĝαβ

∂yβ

∂xj

∂2yα

∂t2

)
+

∂

∂xj

(
ĝαβ

∂yβ

∂xi

∂2yα

∂t2

)

+
[
∂ĝαβ

∂yγ

∂yα

∂xi

∂yβ

∂xj
− ∂

∂xi

(
∂yβ

∂xj
ĝβγ

)
− ∂

∂xj

(
∂yβ

∂xi
ĝβγ

)]
∂2yγ

∂t2

+2
∂

∂xi

(
∂yα

∂t

)
∂yβ

∂xj

(
∂ĝαβ

∂t
+

∂ĝαβ

∂yγ

∂yγ

∂t

)
+ 2

∂y2

∂xi

∂

∂xj

(
∂yβ

∂t

)(
∂ĝαβ

∂yγ

∂yγ

∂t
+

∂ĝαβ

∂t

)

+2ĝαβ
∂

∂xi

(
∂yα

∂t

)
∂

∂xj

(
∂yβ

∂t

)
.

(2.4)

Let us choose the normal coordinates {xi} around a fixed point p ∈ M such that
∂gij

∂xk
= 0 at

p. We next prove that, at p ∈ M ,

∂ĝαβ

∂yγ

∂yα

∂xi

∂yβ

∂xj
− ∂

∂xi

(
∂yβ

∂xj
ĝβγ

)
− ∂

∂xj

(
∂yβ

∂xi
ĝβγ

)
= 0, ∀ i, j, γ = 1, · · · , n. (2.5)

The left hand side of (2.5) is

∂ĝαβ

∂yγ

∂yα

∂xi

∂yβ

∂xj
− ∂

∂xi

(
∂yβ

∂xj
ĝβγ

)
− ∂

∂xj

(
∂yβ

∂xi
ĝαβ

)

=
∂

∂yγ

(
gmn

∂xm

∂yα

∂xn

∂yβ

)
∂yα

∂xi

∂yβ

∂xj
− ∂

∂xi

(
gmj

∂xm

∂yγ

)
− ∂

∂xj

(
gmi

∂xm

∂yγ

)

= gmn

[
∂

∂yγ

(
∂xm

∂yα

)
∂xn

∂yβ

∂yα

∂xi

∂yβ

∂xj
+

∂xm

∂yα

∂

∂yγ

(
∂xn

∂yβ

)
∂yα

∂xi

∂yβ

∂xj

]

−gmj
∂

∂xi

(
∂xm

∂yγ

)
− gmi

∂

∂xj

(
∂xm

∂yγ

)

= gmj
∂

∂yγ

(
∂xm

∂yα

)
∂yα

∂xi
+ gmi

∂

∂yγ

(
∂xm

∂yβ

)
∂yβ

∂xj
− gmj

∂

∂xi

(
∂xm

∂yγ

)
− gmi

∂

∂xj

(
∂xm

∂yγ

)

= gmj
∂

∂yα

(
∂xm

∂yγ

)
∂yα

∂xi
+ gmi

∂

∂yβ

(
∂xm

∂yγ

)
∂yβ

∂xj
− gmj

∂

∂xi

(
∂xm

∂yγ

)
− gmi

∂

∂xj

(
∂xm

∂yγ

)

= 0.

So (2.5) holds.
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By (2.4) and (2.5), we have

∂2gij

∂t2
(x, t) = −2Rij(x, t) +

∂

∂xi

(
gmj

∂xm

∂yα

∂2yα

∂t2

)
+

∂

∂xj

(
gmi

∂yα

∂xm

∂2yα

∂t2

)

+
∂2ĝαβ

∂yγ∂yλ

∂yα

∂xi

∂yβ

∂xj

∂yγ

∂t

∂yλ

∂t
+ 2

∂ĝαβ

∂yγ∂t

∂yγ

∂t

∂yα

∂xi

∂yβ

∂xj

+2
∂

∂xi

(
∂yα

∂t

)
∂yβ

∂xj

(
∂ĝαβ

∂t
+

∂ĝαβ

∂yγ

∂yγ

∂t

)
+ 2

∂yα

∂xi

∂

∂xj

(
∂yβ

∂t

)(
∂ĝαβ

∂t
+

∂ĝαβ

∂yγ

∂yγ

∂t

)

+2ĝαβ
∂

∂xi

(
∂yα

∂t

)
∂

∂xj

(
∂yβ

∂t

)
. (2.6)

We define y(x, t) = ϕt(x) by the following initial value problem




∂2yα

∂t2
=

∂yα

∂xk
gjl(Γk

jl −
◦
Γk

jl),

yα(x, 0) = xα,
∂

∂t
yα(x, 0) = yα

1 (x)
(2.7)

and define the vector filed

Vi = gikgjl

(
Γk

jl −
◦
Γk

jl

)
,

where Γk
jl and

◦
Γk

jl are the connection coefficients corresponding to the metrics gij(x, t) and gij(x, 0),

respectively, yα
1 (x) (α = 1, 2, · · · , n) are arbitrary C∞ smooth functions on the manifold M . We

get the following evolution equation for the pull-back metric




∂2gij

∂t2
(x, t) = −2Rij(x, t) +∇iVj +∇jVi +

∂2ĝαβ

∂yγ∂yλ

∂yα

∂xi

∂yβ

∂xj

∂yγ

∂t

∂yλ

∂t

+2
∂2ĝαβ

∂yγ∂t

∂yα

∂xi

∂yβ

∂xj

∂yγ

∂t
+ 2

∂

∂xi

(
∂yα

∂t

)
∂yβ

∂xj

(
∂ĝαβ

∂t
+

∂ĝαβ

∂yγ

∂yγ

∂t

)

+2
∂

∂xj

(
∂yβ

∂t

)
∂yα

∂xi

(
∂ĝαβ

∂t
+

∂ĝαβ

∂yγ

∂yγ

∂t

)

+2ĝαβ
∂

∂xi

(
∂yα

∂t

)
∂

∂xj

(
∂yβ

∂t

)

, −2Rij(x, t) +∇iVj +∇jVi + F (Dy, DtDxy),

gij(x, 0) = g0
ij(x),

∂

∂t
gij(x, 0) = k0

ij(x),

(2.8)

where

Dy =
(

∂yα

∂t
,
∂yα

∂xi

)
, DtDxy =

(
∂2yα

∂xi∂t

)
(α, i = 1, 2, · · · , n).

Let

λ̂ =
(

∂yα

∂t
,
∂yα

∂xi
,

∂2yα

∂xi∂t

)
(α, i = 1, 2, · · · , n).

The nonlinear term F = F (λ̂) = F (Dy, DtDxy) in (2.8) is smooth and F (λ̂) = O(|λ̂|2) holds.

Since

Γk
ji =

∂yα

∂xj

∂yβ

∂xi

∂xk

∂yγ
Γ̂γ

αβ +
∂xk

∂yα

∂2yα

∂xj∂xi
,
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the initial value problem (2.7) can be written as




∂2yα

∂t2
= gjl

(
∂2yα

∂xj∂xl
−

◦
Γk

jl

∂yα

∂xk
+ Γ̂α

βγ

∂yβ

∂xj

∂yγ

∂xi

)
,

yα(x, 0) = xα,
∂

∂t
yα(x, 0) = yα

1 (x).

(2.9)

At the same time, in the normal coordinates {xi},

−2Rij(x, t) +∇iVj +∇jVi =
∂

∂xi

{
gkl ∂gkl

∂xj

}
− ∂

∂xk

{
gkl

(
∂gjl

∂xi
+

∂gil

∂xj
− ∂gij

∂xl

)}

+gjkgpq ∂

∂xi

{
1
2
gkl

(
∂gpl

∂xq
+

∂gql

∂xp
− ∂gpq

∂xl

)}

+gikgpq ∂

∂xj

{
1
2
gkl

(
∂gpl

∂xq

∂gql

∂xp
− ∂gpq

∂xl

)}
+ (lower order terms)

= gkl

{
∂2gkl

∂xi∂xj
− ∂2gjl

∂xi∂xk
− ∂2gil

∂xj∂xk
+

∂2gij

∂xk∂xl

}

+
1
2
gpq

{
∂2gpj

∂xi∂xq
+

∂2gqj

∂xi∂xq
− ∂2gpq

∂xi∂xj

}

+
1
2
gpq

{
∂2gpi

∂xi∂xq
+

∂2gqi

∂xj∂xp
− ∂2gpq

∂xi∂xj

}
+ (lower order terms)

= gkl ∂2gij

∂xk∂xl
+ (lower order terms).

Thereby, the initial value problem (2.8) can be written as




∂2gij

∂t2
(x, t) = gkl ∂2gij

∂xk∂xl
+ F (Dy, DtDxy) + G(g, Dxg),

gij(x, 0) = g0
ij(x),

∂

∂t
gij(x, 0) = k0

ij(x),
(2.10)

where g = (gij), Dxg =
(

∂gij

∂xk

)
(i, j, k = 1, 2, · · · , n). Let

µ̂ =
(

gij ,
∂gij

∂xk

)
(i, j, k = 1, 2, · · · , n).

The nonlinear term G = G(µ̂) = G(g, Dxg) in (2.10) is smooth and quadratic with respect to Dxg.

We observe that both (2.9) and (2.10) are clearly strictly hyperbolic systems. Since the equa-

tions (2.9) and (2.10) are strictly hyperbolic and the manifold M is compact, it follows from the

standard theory of hyperbolic equations (see [8], [9], [10]) that the system united by (2.9) and

(2.10) has a unique smooth solution for a short time. Thus, we have proved Theorem 1.1.

3 Symmetrization of hyperbolic geometric flow — second

proof of Theorem 1.1

In this section we reduce the hyperbolic geometric flow (2.1) to a symmetric hyperbolic system.

Then we use the theory of symmetric hyperbolic system to give another proof of Theorem 1.1.
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Let M be a compact n-dimensional manifold and gij(x, t) is a hyperbolic geometric flow on

M . We denote the corresponding connection coefficients, the Riemannian curvature tensor and

the Ricci curvature tensor by Γk
ij , Rijkl and Rik, respectively.

We consider the space-time R×M with the Lorentzian metric

ds2 = −dt2 + gij(x, t)dxidxj (3.1)

and denote the corresponding connection coefficients, the Riemannian curvature tensor and the

Ricci curvature tensor by Γ̂γ
αβ , R̂αβγλ and R̂αβ , respectively. Here and hereafter, the Greek indices

run from 0 to n, Latin indices from 1 to n. The summation convention is employed. We also

denote x0 = t.

By direct computations,

Γ̂k
ij = Γk

ij , Γ̂0
ij =

1
2

∂gij

∂t
, Γ̂k

0l = Γ̂k
l0 =

1
2
gki ∂gil

∂t
, Γ̂0

0i = 0, Γ̂i
00 = 0, Γ̂0

00 = 0,

R̂k
ijl =

∂Γk
jl

∂xi
− ∂Γk

il

∂xj
+ Γ̂k

iαΓ̂α
jl − Γ̂k

jαΓ̂α
il = Rk

ijl +
1
4
gkm ∂gmi

∂t

∂gjl

∂t
− 1

4
gkm ∂gmj

∂t

∂gil

∂t
,

R̂l
0k0 =

1
2

∂gli

∂t

∂gik

∂t
+

1
2
gli ∂

2gik

∂t2
+

1
4
glmgpn ∂gmp

∂t

∂gnk

∂t
.

(3.2)

Then,

R̂ik = gαβR̂iαkβ = gαβgklR̂
l
iαβ = −gklR̂

l
i00 + gpqgklR̂

l
ipq

= −gkl

[
−1

2
∂glp

∂t

∂gip

∂t
− 1

2
glp ∂2gip

∂t2
− 1

4
glmgpn ∂gmp

∂t

∂gni

∂t

]

+gpqgkl

[
Rl

ipq +
1
4
glm ∂gmi

∂t

∂gpq

∂t
− 1

4
glm ∂gmp

∂t

∂giq

∂t

]

=
1
2

∂2gik

∂t2
+ Rik +

1
2
gkl

∂glp

∂t

∂gip

∂t
+

1
4
gpn ∂gkp

∂t

∂gni

∂t
+

1
4
gpq ∂gki

∂t

∂gpq

∂t
− 1

4
gpq ∂gkp

∂t

∂giq

∂t

=
1
2

∂2gik

∂t2
+ Rik +

1
4
gpq ∂gik

∂t

∂gpq

∂t
− 1

2
gpq ∂gip

∂t

∂gkq

∂t
. (3.3)

A direct computation gives (see, e.g., Fock [4], p.423; Fisher and Marsden [3], p.22)

R̂ij = R̂
(h)
ij +

1
2

(
giα

∂Γ̂α

∂xj
+ gjα

∂Γ̂α

∂xi

)
= R̂

(h)
ij +

1
2

(
gik

∂Γk

∂xj
+ gjk

∂Γk

∂xi

)
,

where

Γ̂α = gβγΓ̂α
βγ , i.e., Γ̂0 = gklΓ̂0

kl =
1
2
gkl ∂gkl

∂t
, Γ̂i = gklΓ̂i

kl = gklΓi
kl
4
= Γi,

R̂
(h)
ij = −1

2
gαβ ∂2gij

∂xα∂xβ
+ Ĥij

(
gαβ ,

∂gαβ

∂xλ

)
=

1
2

∂2gij

∂t2
− 1

2
gkl ∂2gij

∂xk∂xl
+ Ĥij

(
gαβ ,

∂gαβ

∂xλ

)

and

Ĥij

(
gαβ ,

∂gαβ

∂xλ

)
= gαβgeσΓ̂e

iβΓ̂σ
jα +

1
2

(
∂gij

∂xα
Γ̂α + gjλΓ̂λ

αβgαγgβg ∂gγg

∂xi
+ giλΓ̂λ

αβgαγgβg ∂gγg

∂xj

)
.

9



Similar to (3.3), we have

R̂
(h)
ij =

1
2

∂2gij

∂t2
− 1

2
gkl ∂2gij

∂xk∂xl
+ Hij

(
gkl,

∂gkl

∂xp
,
∂gkl

∂t

)

and

Hij

(
gkl,

∂gkl

∂xp
,
∂gkl

∂t

)
∆= Ĥij

(
gαβ ,

∂gαβ

∂xλ

)

= −gklΓ̂k
i0Γ̂

l
j0 + (−1)gklΓ̂0

ikΓ̂0
jl + gklgpqΓ

p
ikΓq

jl

+
1
2

(
∂gij

∂t

1
2
gkl ∂gkl

∂t
+

∂gij

∂xk
Γk

pqg
pq + gjkΓk

rs

∂gpq

∂xi
gprgqs + gikΓk

rsg
prgqs ∂gpq

∂xj

)

= −gkl
1
2
gkp ∂gip

∂t

1
2
glq ∂gjq

∂t
− gkl 1

2
∂gik

∂t

1
2

∂gjl

∂t
+ gklgpqΓ

p
ikΓq

jl

+
1
4
gkl ∂gkl

∂t

∂gij

∂t
+

1
2

∂gij

∂xk
Γk

pqg
pq

+
1
2

(
gikΓk

rsg
prgqs ∂gpq

∂xj
+ gjkΓk

rsg
prgqs ∂gpq

∂xi

)

= −1
2
gpq ∂gip

∂t

∂gjq

∂t
+

1
4
gkl ∂gkl

∂t

∂gij

∂t

+gklgpqΓ
p
ikΓq

jl +
1
2

∂gij

∂xk
Γk

pqg
pq

+
1
2

(
gikΓk

rsg
prgqs ∂gpq

∂xj
+ gjkΓk

rsg
prgqs ∂gpq

∂xi

)
.

It follows from (3.3) that

1
2

∂2gij

∂t2
+ Rij =

1
2

∂2gij

∂t2
− 1

2
gkl ∂2gij

∂xk∂xl
+

1
2

(
gik

∂Γk

∂xj
+ gjk

∂Γk

∂xi

)

+Hij

(
gkl,

∂gkl

∂xp
,
∂gkl

∂t

)
+

1
2
gpq ∂gip

∂t

∂gjq

∂t
− 1

4
gpq ∂gij

∂t

∂gpq

∂t
,

i.e.,

∂2gij

∂t2
+ 2Rij =

∂2gij

∂t2
− gkl ∂2gij

∂xk∂xl
+

(
gik

∂Γk

∂xj
+ gjk

∂Γk

∂xi

)

+2Hij

(
gkl,

∂gkl

∂xp
,
∂gkl

∂t

)
+ gpq ∂gip

∂t

∂gjq

∂t
− 1

2
gpq ∂gij

∂t

∂gpq

∂t

=
∂2gij

∂t2
− gkl ∂2gij

∂xk∂xl
+

(
gik

∂Γk

∂xj
+ gjk

∂Γk

∂xi

)

+2gklgpqΓ
p
ikΓq

jl +
∂gij

∂xk
Γk

pqg
pq

+
(

gikΓk
rsg

prgqs ∂gpq

∂xj
+ gjkΓk

rsg
prgqs ∂gpq

∂xi

)
. (3.4)

Similar to the harmonic coordinates in the space-time (see [3]), here we make use of a new kind

of coordinates on the manifold M defined by

Γi ∆= gklΓi
kl = 0. (3.5)

Such new coordinates are called elliptic coordinates on M .
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Lemma 3.1 Let gij be a C∞ Riemannian metric on the manifold M . There is a C∞ local

coordinates transformation φ : M −→ M , x −→ x around a fixed point p ∈ M such that the

transformed metric gij is a C∞ Riemannian metric with Γ
k
(x) = 0 for all x in a neighborhood

around p ∈ M and any k ∈ {1, 2, · · · , n}.

Proof. Consider the elliptic equation for the scalar ψ,

4ψ
4
= −gkl ∂2ψ

∂xk∂xl
+ gklΓj

kl

∂ψ

∂xj
= 0.

The coefficients are C∞. Let xi(x) be a solution with the condition xi(p) = xi(p),
∂xi

∂xj
(p) = δi

j .

Then xi is a C∞ local coordinates transformation φ : M −→ M around p and the transformed

metric gij is a C∞ Riemannian metric.

Now the equation4ψ = 0 is a tensorial (scalar) equation. In the barred coordinates, it becomes

0 = 4xk = −gij ∂2xk

∂xi∂xj
+ Γ

j ∂xk

∂xj
= Γ

k
.

Therefore, gij satisfies the elliptic condition (3.5). The proof of Lemma 3.1 is complete. ¶

By Lemma 3.1, we can choose the elliptic coordinates around a fixed point p ∈ M and for a

fixed time t ∈ R+. After throwing off the bar sign, the geometric hyperbolic flow (3.1) can be

written as
∂2gij

∂t2
= gkl ∂2gij

∂xk∂xl
+ H̃ij

(
gkl,

∂gkl

∂xp

)
, (3.6)

where

H̃ij

(
gkl,

∂gkl

∂xp

)
= −2gklgpqΓ

p
ikΓq

jl −
(

gikΓk
rsg

prgqs ∂gpq

∂xj
+ gjkΓk

rsg
prgqs ∂gpq

∂xi

)
(3.7)

are homogenous quadratic with respect to
∂gkl

∂xp
and rational with respect to gkl with non-zero

denominator det(g) 6= 0. By introducing the new unknowns gij , hij =
∂gij

∂t
, gij,k =

∂gij

∂xk
, the

system (3.6) can be reduced to a system of partial differential equations of first order. We now

consider such a quasi-linear (symmetric hyperbolic) system with
1
2
n(n + 1)(n + 2) PDEs of first

order 



∂gij

∂t
= hij ,

gkl ∂gij,k

∂t
= gkl ∂hij

∂xk
,

∂hij

∂t
= gkl ∂gij,k

∂xl
+ H̃ij .

(3.8)

In the C2 class, the system (3.8) is equivalent to (3.6).
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Let u = (gij , gij,k, hij)T be the
1
2
n(n + 1)(n + 2)-dimensional unknown vector function. The

coefficient matrices A0, Aj , B are given by

A0(u) = A0(gij , gij,k, hij) =




I 0 0 · · · 0 0

0 g11I g12I · · · g1nI 0

0 g21I g22I · · · g2nI 0
... · · ·
0 gn1I gn2I · · · gnnI 0

0 0 0 · · · 0 I




,

Aj(u) = Aj(gkl, gkl,p, hkl) =




0 0 0 · · · 0 0

0 0 0 · · · 0 gj1I

0 0 0 · · · 0 gj2I

· · · · · · · · ·
0 0 0 · · · 0 gjnI

0 g1jI g2jI · · · gnjI 0




,

where 0 is the
(

1
2
n(n + 1)

)
×

(
1
2
n(n + 1)

)
zero matrix, I is the

(
1
2
n(n + 1)

)
×

(
1
2
n(n + 1)

)

identity matrix,

B(u) = B(gij , gij,p, hij) =




hij

0

H̃ij


 ,

in which 0 is the
1
2
n2(n + 1)-dimensional zero vector.

We observe that the symmetric hyperbolic system

A0(u)
∂u

∂t
= Aj(u)

∂u

∂xj
+ B(u) (3.9)

is nothing but the system (3.8). So far, we have reduced the equation of the hyperbolic geometric

flow (3.1) to the symmetric hyperbolic system (3.9), which are equivalent to each other in the C2

class. Then, by the theory of the symmetric hyperbolic system, the smooth solution to (3.1) exists

uniquely for a short time (see [3]). Thus, the proof of Theorem 1.1 is completed.

Remark 3.1 The elliptic coordinates can also be used to prove the short-time existence for the

Ricci flow.

More generally, motivated by general Einstein equations and the rich theory of hyperbolic

equations, we may also consider the following field equations with the energy-momentum tensor

Tij under certain conditions:

αij
∂2gij

∂t2
+ 2Rij + Fij

(
g,

∂g

∂t

)
= κTij , (3.10)
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where αij are certain smooth functions on M which may also depend on t, Fij are some given

smooth functions of the Riemannian metric g and its first order derivative with respect to t, and

κ is a parameter. Similar results can be obtained.

4 Nonlinear stability for hyperbolic geometric flow

In this section we investigate the nonlinear stability of the hyperbolic geometric flow defined on

the Euclidean space with the dimension larger than 4.

We now state the definition of nonlinear stability of the hyperbolic geometric flow (1.1). Let

M be an n-dimensional complete Riemannian manifold. Given symmetric tensors g0
ij and g1

ij on

M , we consider the following initial value problem




∂2

∂t2
gij(x, t) = −2Rij(x, t),

gij(x, 0) = gij(x) + εg0
ij(x),

∂gij

∂t
(x, 0) = εg1

ij(x),
(4.1)

where ε > 0 is a small parameter.

Definition 4.1 The Ricci flat Riemannian metric gij(x) possesses the (locally) nonlinear stability

with respect to (g0
ij , g

1
ij), if there exists a positive constant ε0 = ε0(g0

ij , g
1
ij) such that, for any

ε ∈ (0, ε0], the initial value problem (4.1) has a unique (local) smooth solution gij(x, t);

gij(x) is said to be (locally) nonlinearly stable, if it possesses the (locally) nonlinear stability

with respect to arbitrary symmetric tensors g0
ij(x) and g1

ij(x) with compact support.

In what follows, we consider the nonlinear stability of the flat metric of the Euclidean space

Rn with the dimension n ≥ 5. We have

Theorem 4.1 The flat metric gij = δij of the Euclidean space Rn with n ≥ 5 is nonlinearly stable.

Remark 4.1 Theorem 4.1 gives the nonlinear stability of the hyperbolic geometric flow on the

Euclidean space with dimension larger than 4. The situation for the 3-, 4-dimensional Euclidean

spaces is very different, and will be studied in the sequel by using null conditions. This is similar to

the proofs of the Poincaré conjecture in topology: the proofs for the three and four dimensional case

and n ≥ 5 dimensional case are very different (see, for example, [6] and [1]). This motivates us to

understand the possibility of using hyperbolic geometric flow to understand Poincaré conjecture.

Proof of Theorem 4.1. Define a 2-tensor h in the following way

gij(x, t) = δij + hij(x, t).
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Let δij be the inverse of δij . Then, for small h

Hij 4= gij − δij = −hij + Oij(h2),

where hij = δikδjlhkl and Oij(h2) vanishes to second order at h = 0.

As in Section 3, we choose the above elliptic coordinates {xi} around the origin in Rn. Then

the initial value problem (4.1) can be written as





∂2

∂t2
hij(x, t) =

(
δkl + Hkl

) ∂2hij

∂xk∂xl
+ H̃ij

(
δkl + hkl(x, t),

∂hkl(x, t)
∂xp

)
,

hij(x, 0) = εg0
ij(x),

∂

∂t
hij(x, 0) = εg1

ij(x),
(4.2)

where

H̃ij

(
δkl + hkl(x, t),

∂hkl(x, t)
∂xp

)
= H̃ij

(
gkl(x, t),

∂gkl(x, t)
∂xp

)

= −
[
2gklgpqΓ

p
ikΓq

jl + gikΓk
rsg

prgqs ∂gpq

∂xj
+ gjkΓk

rsg
prgqs ∂gpq

∂xi

]

= −2
(
δkl + Hij

)
(δpq + hpq)

1
4

(δpa + Hpa)
(
δqb + Hqb

) (
∂hai

∂xk
+

∂hak

∂xi
− ∂hik

∂xa

)(
∂hbj

∂xl
+

∂hbl

∂xj
− ∂hjl

∂xb

)

− (δik + Hik) (δpr + Hpr) (δqs + Hqs)
1
2

(
δka + Hka

) (
∂har

∂xs
+

∂has

∂xr
− ∂hrs

∂xa

)
∂hpq

∂xj

− (δjk + Hjk) (δpr + Hpr) (δqs + Hqs)
1
2

(
δka + Hka

) (
∂har

∂xs
+

∂has

∂xr
− ∂hrs

∂xa

)
∂hpq

∂xi

= −2 · 1
4
· δklδpqδ

paδqb

(
∂hai

∂xk
+

∂hak

∂xi
− ∂hik

∂xa

)(
∂hbj

∂xl
+

∂hbl

∂xj
− ∂hjl

∂xb

)

−1
2
δikδprδqsδka

(
∂har

∂xs
+

∂has

∂xr
− ∂hrs

∂xa

)
∂hpq

∂xj

−1
2
δjkδprδqsδka

(
∂har

∂xs
+

∂has

∂xr
− ∂hrs

∂xa

)
∂hpq

∂xi
+ O

(
|hkl|+

∣∣∣∣
∂hkl

∂xp

∣∣∣∣
)3

= −1
2
δklδab

(
∂hai

∂xk
+

∂hak

∂xi
− ∂hik

∂xa

)(
∂hbj

∂xl
+

∂hbl

∂xj
− ∂hjl

∂xb

)

−1
2
δprδqs

(
∂hir

∂xs
+

∂his

∂xr
− ∂hrs

∂xi

)
∂hpq

∂xj

−1
2
δqsδpr

(
∂hjr

∂xs
+

∂hjs

∂xr
− ∂hrs

∂xj

)
∂hpq

∂xi
+ O

(
|hkl|+

∣∣∣∣
∂hkl

∂xp

∣∣∣∣
)3

.

Furthermore, (4.2) can be written as




∂2

∂t2
hij(x, t) =

n∑

k=1

∂2hij

∂xk∂xk
+ H̄ij

(
hkl,

∂hkl

∂xp
,

∂2hkl

∂xp∂xq

)
,

hij(x, 0) = εg0
ij(x),

∂

∂t
hij(x, 0) = εg1

ij(x),

(4.3)
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where

H̄ij

(
hkl,

∂hkl

∂xp
,

∂2hkl

∂xp∂xq

)
= Hkl ∂2hij

∂xkxl
+ H̃ij

(
δkl + hkl,

∂hkl

∂xp

)

= −1
2
δklδab

(
∂hai

∂xk
+

∂hak

∂xi
− ∂hik

∂xa

)(
∂hbj

∂xl
+

∂hbl

∂xj
− ∂hjl

∂xb

)

−1
2
δprδqs

(
∂hir

∂xs
+

∂his

∂xr
− ∂hrs

∂xi

)
∂hpq

∂xj

−1
2
δprδqs

(
∂hjr

∂xs
+

∂hjs

∂xr
− ∂hrs

∂xj

)
∂hpq

∂xi

−hkl ∂2hij

∂xk∂xl
+ O

(
|hkl|+

∣∣∣∣
∂hkl

∂xp

∣∣∣∣ +
∣∣∣∣

∂2hkl

∂xp∂xq

∣∣∣∣
)3

.

Let

λ̂ =
(

hkl,
∂hkl

∂xp
,

∂2hkl

∂xp∂xq

)
(p, q, k, l = 1, 2 · · · , n).

The nonlinear term

H̄ij(λ̂) = H̄ij

(
hkl,

∂hkl

∂xp
,

∂2hkl

∂xp∂xq

)

in (4.3) is smooth in a neighborhood about λ̂ = 0 and satisfies

H̄ij(λ̂) = O
(
|λ̂|2

)
(i, j = 1, 2, · · · , n).

By the well-known global existence results for the nonlinear wave equation (e.g., see [2], [7], [8],

[10]), there exists a unique global smooth solution (hij(x, t)) for the Cauchy problem (4.3) or (4.2).

Thus, the proof of Theorem 4.1 is complete. ¶

5 Wave character of the curvatures

The hyperbolic geometric flow is a system of hyperbolic evolution equations on the metrics. The

evolution of the metrics implies a system of nonlinear wave equations for the Riemannian curvature

tensor Rijkl, the Ricci curvature tensor Rij and the scalar curvature R which we will derive.

Let M be an n-dimensional complete manifold. We consider the hyperbolic geometric flow on

M , that is,
∂2

∂t2
gij(x, t) = −2Rij(x, t). (5.1)

We now want to find the evolution equations for the Riemannian curvature tensor Rijkl, the Ricci

curvature tensor Rij and the scalar curvature R.
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Direct computations yield

Γh
jl =

1
2
ghm

(
∂gmj

∂xl
+

∂gml

∂xj
− ∂gjl

∂xm

)
,

∂

∂t
Γh

jl =
1
2
ghm

(
∂2gmj

∂xl∂t
+

∂2gml

∂xj∂t
− ∂2gjl

∂xm∂t

)
+

1
2

∂ghm

∂t

(
∂gmj

∂xl
+

∂gml

∂xj
− ∂gjl

∂xm

)
,

∂2

∂t2
Γh

jl =
1
2

∂2ghm

∂t2

(
∂gmj

∂xl
+

∂gml

∂xj
− ∂gjl

∂xm

)
+ 2 · 1

2
∂ghm

∂t

(
∂2gmj

∂xl∂t
+

∂2gml

∂xj∂t
− ∂2gjl

∂xm∂t

)

+
1
2
ghm

(
∂

∂xl

(
∂2gmj

∂t2

)
+

∂

∂xj

(
∂2gml

∂t2

)
− ∂

∂xm

(
∂2gjl

∂t2

))
,

R h
ijl =

∂Γh
jl

∂xi
− ∂Γh

il

∂xj
+ Γh

ipΓ
p
jl − Γh

jpΓ
p
il,

∂2

∂t2
R h

ijl =
∂

∂xi

(
∂2

∂t2
Γh

jl

)
− ∂

∂xj

(
∂2

∂t2
Γh

il

)
+

∂2

∂t2
(
Γh

ipΓ
h
jl − Γh

jpΓ
p
il

)
,

∂2

∂t2
Rijkl =

∂2

∂t2
(
ghkRh

ijl

)
= ghk

∂2

∂t2
Rh

ijl + Rh
ijl

∂2ghk

∂t2
+ 2

∂ghk

∂t

∂

∂t
Rh

ijl

= ghk

[
∂

∂xi

(
∂2

∂t2
Γh

jl

)
− ∂

∂xj

(
∂2

∂t2
Γh

il

)
+

∂2

∂t2

(
Γh

ipΓ
p
jl − Γh

jpΓ
p
il

)]

+2
∂ghk

∂t

[
∂

∂xi

(
∂

∂t
Γh

jl

)
− ∂

∂xj

(
∂

∂t
Γh

il

)
+

∂

∂t

(
Γh

ipΓ
p
jl − Γh

jpΓ
p
il

)]
+ Rh

ijl

∂2ghk

∂t2
.

We choose the normal coordinates around a fixed point p on M such that

Γk
ij(p) = 0,

or, equivalently,
∂gij

∂xk
(p) = 0.
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Then we have

∂2

∂t2
Rijkl = ghk

∂

∂xi

[
1
2

∂2ghm

∂t2

(
∂gmj

∂xl
+

∂gml

∂xj
− ∂gjl

∂xm

)
+ 2 · 1

2
∂ghm

∂t

(
∂2gmj

∂xl∂t
+

∂2gml

∂xj∂t
− ∂2gjl

∂xm∂t

)]

+ghk
∂

∂xi

[
1
2
ghm

(
∂

∂xl

(
∂2gmj

∂t2

)
+

∂

∂xj

(
∂2gml

∂t2

)
− ∂

∂xm

(
∂2gjl

∂t2

))]

−ghk
∂

∂xj

[
1
2

∂ghm

∂t2

(
∂gmi

∂xl
+

∂gml

∂xi
− ∂gil

∂xm

)
+ 2 · 1

2
∂ghm

∂t

(
∂2gmi

∂xl∂t
+

∂2gml

∂xi∂t
− ∂2gil

∂xm∂t

)]

−ghk
∂

∂xj

[
1
2
ghm

(
∂

∂xl

(
∂2gmi

∂t2

)
+

∂

∂xi

(
∂2gml

∂t2

)
− ∂

∂xm

(
∂2gil

∂t2

))]

+2ghk

(
∂

∂t
Γh

ip

∂

∂t
Γp

jl −
∂

∂t
Γh

jp

∂

∂t
Γp

il

)

+2
∂ghk

∂t

[
1
2

∂

∂xi

(
∂ghm

∂t

(
∂gmj

∂xl
+

∂gml

∂xj
− ∂gjl

∂xm

))
− 1

2
∂

∂xj

(
∂ghm

∂t

(
∂gmi

∂xl
+

∂gml

∂xi
− ∂gil

∂xm

))]

+2
∂ghk

∂t

1
2
ghm ∂

∂xi

(
∂

∂xl

(
∂gmj

∂t

)
+

∂

∂xj

(
∂gml

∂t

)
− ∂

∂xm

(
∂gjl

∂t

))

−2
∂ghk

∂t

1
2
ghm ∂

∂xj

(
∂

∂xl

(
∂gmi

∂t

)
+

∂

∂xi

(
∂gml

∂t

)
− ∂

∂xm

(
∂gil

∂t

))
+ Rh

ijl

∂2ghk

∂t2

=
1
2
ghk

∂2ghm

∂t2

[
∂

∂xi

(
∂gmj

∂xl
+

∂gml

∂xj
− ∂gjl

∂xm

)
− ∂

∂xj

(
∂ghm

∂t

(
∂gmi

∂xl
+

∂gml

∂xi
− ∂gil

∂xm

))]

+ghk
∂2ghm

∂xi∂t

(
∂gmj

∂xl∂t
+

∂gml

∂xj∂t
− ∂gjl

∂xm∂t

)
− ghk

∂2ghm

∂xj∂t

(
∂gmi

∂xl∂t
+

∂gml

∂xi∂t
− ∂gil

∂xm∂t

)

+ghk
∂ghm

∂t

[
∂

∂xi

(
∂gmj

∂xl∂t
+

∂gml

∂xj∂t
− ∂gjl

∂xm∂t

)
− ∂

∂xj

(
∂2gmi

∂xl∂t
+

∂2gml

∂xi∂t
− ∂2gil

∂xm∂t

)]

+
1
2

[
∂2

∂xi∂xl

(
∂2gkj

∂t2

)
+

∂2

∂xi∂xj

(
∂2gkl

∂t2

)
− ∂2

∂xi∂xk

(
∂2gjl

∂t2

)]

−1
2

[
∂2

∂xj∂xl

(
∂2gki

∂t2

)
+

∂2

∂xj∂xi

(
∂2gkl

∂t2

)
− ∂2

∂xj∂xk

(
∂2gil

∂t2

)]

+2ghk

(
∂

∂t
Γh

ip

∂

∂t
Γp

jl −
∂

∂t
Γh

jp

∂

∂t
Γp

il

)

+
∂ghk

∂t

∂ghm

∂t

[
∂

∂xi

(
∂gmj

∂xl
+

∂gml

∂xj
− ∂gjl

∂xm

)
− ∂

∂xj

(
∂gmi

∂xl
+

∂gml

∂xi
− ∂gil

∂xm

)]

+
∂ghk

∂t
ghm

[
∂

∂xi

(
∂gmj

∂xl∂t
+

∂gml

∂xj∂t
− ∂gjl

∂xm∂t

)
− ∂

∂xj

(
∂gmi

∂xl∂t
+

∂gml

∂xi∂t
− ∂gil

∂xm∂t

)]

+Rh
ijl

∂2ghk

∂t2
.

(5.2)

17



Noting ghmgml = δh
l , we get

∂ghm

∂t
= −ghpgmq ∂gpq

∂t
,

∂2ghm

∂xk∂t
= −ghpgmq ∂gpq

∂xk∂t
,

∂2ghm

∂t2
= −ghpgmq ∂2gpq

∂t2
+ 2ghpgrqgsm ∂gpq

∂t

∂grs

∂t
.

Thus, it follows from (5.2) that

∂2

∂t2
Rijkl =

(
−1

2
gpm ∂2gkp

∂t2
+ grqgpm ∂gkq

∂t

∂grp

∂t

)

×
[

∂

∂xi

(
∂gmj

∂xl
+

∂gml

∂xj
− ∂gjl

∂xm

)
− ∂

∂xj

(
∂gmi

∂xl
+

∂gml

∂xi
− ∂gil

∂xm

)]

−gpm ∂2gkp

∂xi∂t

(
∂2gmj

∂xl∂t
+

∂2gml

∂xj∂t
− ∂2gjl

∂xm∂t

)
+ gpm ∂2gkp

∂xj∂t

(
∂2gmi

∂xl∂t
+

∂2gml

∂xi∂t
− ∂2gil

∂xm∂t

)

+
1
2

[
∂2

∂xi∂xl

(
∂2gkj

∂t2

)
+

∂2

∂xi∂xj

(
∂2gkl

∂t2

)
− ∂2

∂xi∂xk

(
∂2gjl

∂t2

)]

−1
2

[
∂2

∂xj∂xl

(
∂2gki

∂t2

)
+

∂2

∂xj∂xi

(
∂2gkl

∂t2

)
− ∂2

∂xj∂xk

(
∂2gil

∂t2

)]

+2ghk

(
∂

∂t
Γh

ip ·
∂

∂t
Γp

jl −
∂

∂t
Γh

jp ·
∂

∂t
Γp

il

)
+ Rh

ijl

∂2ghk

∂t2

−ghpgmq ∂gnk

∂t

∂gpq

∂t

[
∂

∂xi

(
∂gmj

∂xl
+

∂gml

∂xj
− ∂gjl

∂xm

)
− ∂

∂xj

(
∂gmi

∂xl
+

∂gml

∂xi
− ∂gil

∂xm

)]

= −∂2gkp

∂t2

(
∂

∂xi
Γp

jl −
∂

∂xj
Γp

il

)
+ 2grq ∂gkq

∂t

∂grp

∂t

(
∂

∂xi
Γp

jl −
∂

∂xj
Γp

il

)

−∂2gkp

∂xi∂t
· gpm

(
∂2gmj

∂xl∂t
+

∂2gml

∂xj∂t
− ∂2gjl

∂xm∂t

)
+

∂2gkp

∂xj∂t
· gpm

(
∂2gmi

∂xl∂t
+

∂2gml

∂xi∂t
− ∂2gil

∂xm∂t

)

+
1
2

[
∂2

∂xi∂xl
(−2Rkj) +

∂2

∂xi∂xj
(−2Rkl)− ∂2

∂xi∂xk
(−2Rjl)

]

−1
2

[
∂2

∂xj∂xl
(−2Rik) +

∂2

∂xi∂xj
(−2Rkl)− ∂2

∂xj∂xk
(−2Ril)

]

+2ghk

[
∂

∂t
Γh

ip ·
∂

∂t
Γp

jl −
∂

∂t
Γh

jp ·
∂

∂t
Γp

il

]
− ∂ghk

∂t

∂gpq

∂t
ghp · 2

(
∂

∂xi
Γq

jl −
∂

∂xj
Γq

il

)
+ Rh

ijl

∂2ghk

∂t2

=
1
2

[
∂2

∂xi∂xl
(−2Rkj) +

∂2

∂xi∂xj
(−2Rkl)− ∂2

∂xi∂xk
(−2Rjl)

]

−1
2

[
∂2

∂xj∂xl
(−2Rki) +

∂2

∂xi∂xj
(−2Rkl)− ∂2

∂xj∂xk
(−2Ril)

]

−gpm ∂2gkp

∂xi∂t

(
∂2gmj

∂xl∂t
+

∂2gml

∂xj∂t
− ∂2gjl

∂xm∂t

)
+ gpm ∂2gkp

∂xj∂t

(
∂2gmi

∂xl∂t
+

∂2gml

∂xi∂t
− ∂2gil

∂xm∂t

)

+2ghk

(
∂

∂t
Γh

ip ·
∂

∂t
Γp

jl −
∂

∂t
Γh

jp ·
∂

∂t
Γp

il

)
.

(5.3)

On the one hand, we have

∂2

∂xi∂xl
Rjk = ∇i∇lRjk +∇iΓ

p
lk ·Rjp +∇iΓ

p
lj ·Rkp.
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Then

1
2

[
∂2

∂xi∂xl
(−2Rkj) +

∂2

∂xi∂xj
(−2Rkl)− ∂2

∂xi∂xk
(−2Rjl)

]

−1
2

[
∂2

∂xj∂xl
(−2Rki) +

∂2

∂xi∂xj
(−2Rkl)− ∂2

∂xj∂xk
(−2Ril)

]

= −∇i∇lRkj −∇iΓ
p
lkRjp −∇iΓ

p
ljRkp −∇i∇jRkl −∇iΓ

p
jkRlp −∇iΓ

p
jlRkp

+∇i∇kRjl +∇iΓ
p
kjRlp +∇iΓ

p
klRjp +∇i∇lRki +∇jΓ

p
klRip +∇jΓ

p
liRkp

+∇j∇iRkl +∇jΓ
p
ikRlp +∇jΓ

p
ilRkp −∇j∇kRil −∇jΓ

p
kiRpl −∇jΓ

p
klRpi

= −∇i∇lRkj −∇i∇jRkl +∇i∇kRjl +∇j∇lRki +∇j∇iRki −∇j∇kRil

+Rip (∇jΓ
p
lk −∇jΓ

p
kl) + Rjp (−∇iΓ

p
lk +∇iΓ

p
kl)

+Rkp

(
−∇iΓ

p
lj −∇iΓ

p
jl +∇jΓ

p
li +∇jΓ

p
il

)
+ Rlp

(
−∇iΓ

p
jk +∇iΓ

p
kj +∇jΓ

p
ik −∇jΓ

p
ki

)

= −∇i∇lRkj +∇i∇kRjl +∇j∇lRki −∇j∇kRil

−Rijlpg
pqRqk −Rijkpg

pqRql + Rkp

(
−2Rp

ijl

)

= −∇i∇lRkj +∇i∇kRjl +∇j∇lRki −∇j∇kRil − gpq (RijlpRkq + RijkpRlq) .

(5.4)

On the other hand, we have

−gpm ∂2gkp

∂xi∂t

(
∂2gmj

∂xl∂t
+

∂2gml

∂xj∂t
− ∂2gjl

∂xm∂t

)
+ gpm ∂2gkp

∂xj∂t

(
∂2gmi

∂xl∂t
+

∂2gml

∂xi∂t
− ∂2gil

∂xm∂t

)

+2ghk

(
∂

∂t
Γh

ip ·
∂

∂t
Γp

jl −
∂

∂t
Γh

jp ·
∂

∂t
Γp

il

)

= −gpm ∂2gkp

∂xi∂t

(
∂2gmj

∂xl∂t
+

∂2gml

∂xj∂t
− ∂2gjl

∂xm∂t

)
+ gpm ∂2gkp

∂xj∂t

(
∂2gmi

∂xl∂t
+

∂2gml

∂xi∂t
− ∂2gil

∂xm∂t

)

+
1
2
gpm

(
∂2gki

∂xp∂t
+

∂2gkp

∂xi∂t
− ∂2gip

∂xk∂t

)(
∂2gmj

∂xl∂t
+

∂2gml

∂xj∂t
− ∂2gjl

∂xm∂t

)

−1
2
gpm

(
∂2gkj

∂xp∂t
+

∂2gkp

∂xj∂t
− ∂2gjp

∂xk∂t

)(
∂2gmi

∂xl∂t
+

∂2gml

∂xi∂t
− ∂2gil

∂xm∂t

)

= gpm

{
1
2

(
∂2gmj

∂xl∂t
+

∂2gml

∂xj∂t
− ∂2gjl

∂xm∂t

)(
∂2gki

∂xp∂t
− ∂2gip

∂xk∂t
− ∂2gkp

∂xi∂t

)

−1
2

(
∂2gmi

∂xl∂t
+

∂2gml

∂xi∂t
− ∂2gil

∂xm∂t

)(
∂2gkj

∂xp∂t
− ∂2gjp

∂xk∂t
− ∂2gkp

∂xj∂t

)}

= 2gpq

{
1
2
gpr ∂

∂t

(
∂grj

∂xl
+

∂grl

∂xj
− ∂gjl

∂xr

)
· 1
2
gqs ∂

∂t

(
∂gki

∂xs
− ∂gis

∂xk
− ∂gks

∂xi

)

−1
2
gpr ∂

∂t

(
∂gri

∂xl
+

∂grl

∂xi
− ∂gil

∂xr

)
· 1
2
gqs ∂

∂t

(
∂gkj

∂xs
− ∂gjs

∂xk
− ∂gks

∂xj

)}

= 2gpq

(
∂

∂t
Γp

il ·
∂

∂t
Γq

jk −
∂

∂t
Γp

jl ·
∂

∂t
Γq

ik

)
.

(5.5)
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Therefore, it follows from (5.3), (5.4) and (5.5) that

∂2

∂t2
Rijkl =−∇i∇lRkj +∇i∇kRjl +∇j∇lRki −∇j∇kRil − gpq (RijqlRkp + RijkqRkp)

+ 2gpq

(
∂

∂t
Γp

il ·
∂

∂t
Γq

jk −
∂

∂t
Γp

jl ·
∂

∂t
Γq

ik

)
.

Similar to Hamilton [6], we have

Theorem 5.1 Under the hyperbolic geometric flow (5.1), the Riemannian curvature tensor Rijkl

satisfies the evolution equation

∂2

∂t2
Rijkl = 4Rijkl + 2 (Bijkl −Bijlk −Biljk + Bikjl)

−gpq (RpjklRqi + RipklRqj + RijplRqk + RijkpRql)

+2gpq

(
∂

∂t
Γp

il ·
∂

∂t
Γq

jk −
∂

∂t
Γp

jl ·
∂

∂t
Γq

ik

)
,

(5.6)

where Bijkl = gprgqsRpiqjRrksl and 4 is the Laplacian with respect to the evolving metric.

Remark 5.1 In Theorem 5.1 and Theorem 5.2 below, the term 2gpq

(
∂

∂t
Γp

il ·
∂

∂t
Γq

jk −
∂

∂t
Γp

jl ·
∂

∂t
Γq

ik

)

can be written in the covariant form. For the sake of simplicity, we omit it.

For the Ricci curvature tensor, we have

∂2

∂t2
Rik =

∂2

∂t2
(
Rijklg

jl
)

= gjl ∂2

∂t2
Rijkl + 2

∂

∂t
gjl · ∂

∂t
Rijkl + Rijkl

∂2gjl

∂t2

= gjl ∂2

∂t2
Rijkl − 2gjpglq ∂gpq

∂t

∂

∂t
Rijkl − gjpglq ∂2gpq

∂t2
Rijkl + 2gjpgrqgsl ∂gpq

∂t

∂grs

∂t
Rijkl.

Thus, we obtain

Theorem 5.2 Under the hyperbolic geometric flow (5.1), the Ricci curvature tensor satisfies

∂2

∂t2
Rik = 4Rik + 2gprgqsRpiqkRrs − 2gpqRpiRqk

+2gjlgpq

(
∂

∂t
Γp

il

∂

∂t
Γq

jk −
∂

∂t
Γp

jl

∂

∂t
Γq

ik

)

−2gjpglq ∂gpq

∂t

∂

∂t
Rijkl + 2gjpgrqgsl ∂gpq

∂t

∂grs

∂t
Rijkl.

(5.7)

For the scalar curvature, we have

∂2

∂t2
R =

∂2

∂t2
(
gikRik

)

= gik ∂2

∂t2
Rik + 2

∂

∂t
Rik · ∂

∂t
gik + Rik

∂2gik

∂t2

= gik ∂2

∂t2
Rik − 2gipgkq ∂gpq

∂t

∂Rik

∂t
+ Rik

(
−gipgkq ∂2gpq

∂t2
+ 2gipgrqgsk ∂gpq

∂t

∂grs

∂t

)
.
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On the other hand,

2gikgjlgpq

(
∂

∂t
Γp

il

∂

∂t
Γq

jk −
∂

∂t
Γp

jl

∂

∂t
Γq

ik

)

=
3
2
gikgjlgrs∇r(

∂gij

∂t
)∇s(

∂gkl

∂t
)− 1

2
grs∇r(gik ∂gik

∂t
)∇s(gjl ∂gjl

∂t
)

+2grsgjl∇r(gik ∂gik

∂t
)∇l(

∂gjs

∂t
)− gikgjlgrs∇r(

∂gij

∂t
)∇l(

∂gks

∂t
)− 2gikgjlgrs∇i(

∂gkr

∂t
)∇j(

∂gls

∂t
).

Then, we get

Theorem 5.3 Under the hyperbolic geometric flow (5.1), the scalar curvature satisfies

∂2

∂t2
R = 4R + 2|Ric|2

+ 3
2gikgjlgrs∇r(

∂gij

∂t
)∇s(

∂gkl

∂t
)− 1

2grs∇r(gik ∂gik

∂t
)∇s(gjl ∂gjl

∂t
)

+2grsgjl∇r(gik ∂gik

∂t
)∇l(

∂gjs

∂t
)− gikgjlgrs∇r(

∂gij

∂t
)∇l(

∂gks

∂t
)

−2gikgjlgrs∇i(
∂gkr

∂t
)∇j(

∂gls

∂t
)− 2gikgjpglq ∂gpq

∂t

∂

∂t
Rijkl

−2gipgkq ∂gpq

∂t

∂Rik

∂t
+ 4Rikgipgrqgsk ∂gpq

∂t

∂grs

∂t
.

(5.8)

Theorems 5.1-5.3 show that the curvatures of the hyperbolic geometric flow possess the wave

character. We will apply techniques from hyperbolic equations to the above wave equations of

curvatures to derive various geometric results.

6 Discussions

The hyperbolic geometric flow describes the wave character of the metrics and curvatures of mani-

folds. Many hyperbolic systems in nature provide natural singular sets, the typical example is the

Einstein equations in general relativity which form a hyperbolic system with a well-posed Cauchy

problem. If one starts with smooth initial data, one may end up with a singular space-time. One

of the most challenging problems is to describe the kind of natural singularity. The famous cosmic

censorship conjecture due to Penrose is an attempt to describe such singularities (see [12]). In

Kong and Liu [11], we construct some exact solutions of the hyperbolic geometric flow, these solu-

tions possess the singularities which are nothing but those described by Penrose’s conjecture. By

these examples, we believe that the hyperbolic geometric flow is a very natural and powerful tool

to understand the singularities in the nature, in particular, the singularity described by Penrose

cosmic censorship conjecture.

The Einstein equations play an essential role in general relativity. Consider a space-time with

Lorentzian metric

ds2 = gµνdxµdxν (µ, ν = 0, 1, 2 · · · , n). (6.1)
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The vacuum Einstein equations read

Gµν = 0, (6.2)

where Gµν is the Einstein tensor. We now consider the following metric with orthogonal time-axis

ds2 = −dt2 + gij(x, t)dxidxj . (6.3)

Substituting (6.3) into (6.2), we can obtain the equations satisfied by the metric gij

∂2gij

∂t2
= −2Rij − 1

2
gpq ∂gij

∂t

∂gpq

∂t
+ gpq ∂gip

∂t

∂gjq

∂t
. (6.4)

Neglecting the lower order terms gives the hyperbolic geometric flow (1.1). Therefore, in this sense,

the hyperbolic geometric flow can be viewed as the leading terms in the vacuum Einstein equations

with respect to the metric (6.3). Since the hyperbolic geometric flow only contains the main terms

in the Einstein equations, it not only becomes simpler and more symmetric, but also possesses

rich and beautiful geometric properties. In particular, in mathematics, its Cauchy problem is well-

posed and easier to handle some fundamental problems such as the global existence and formation of

singularities; on the other hand, it can be applied to re-understand the singularity of the universe

and other important problems in physics and cosmology (see [16]). We also believe that there

should be some relations between the solutions of the Einstein equations and the corresponding

hyperbolic geometric flows. On the other hand, from the above discussions we have seen that the

hyperbolic geometric flow also possesses many beautiful features similar to those of the Ricci flow,

and some of the techniques in the study of the Ricci flow can be directly used to understand the

hyperbolic geometric flow. The deep study on the hyperbolic geometric flow may open a new way

to understand the complicated Einstein equations.

It is well known, in general relativity there is a constraint system of equations involving an

asymptotically flat metric tensor and another symmetric tensor. There are four constraint equa-

tions and it is therefore over-determined. Unlike this, since the time axis is orthogonal to other

space axes, the hyperbolic geometric flow does not need to satisfy any additional constraint. More

precisely, for the Cauchy problem of the hyperbolic geometric flow, in order to determine the solu-

tion we need two initial conditions: one is the metric flow itself gij(x, 0), another is its derivative
∂gij

∂t (x, 0), since the time axis is orthogonal to other axes, these initial data do not need to satisfy

any additional constraint, and therefore it is a determined system. This is another main new

feature of the hyperbolic geometric flow.

Many mathematicians, for example Shatah et al [13]-[15], have investigated the Cauchy problem

for some geometric wave equations. The model at hand is the harmonic map problem, which is
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the study of maps from the Minkowski space-time into complete Riemannian manifolds. This kind

of geometric wave equations is a system of partial differential equations of second order, which is

the Euler-Lagrange equations of the action integral of the harmonic map. It satisfies certain linear

matching condition, and then under suitable assumptions, has a unique small smooth solution

for all time, and possesses some interesting (decay, energy and regularity) estimates. On the

other hand, the hyperbolic geometric flow is determined by the Ricci curvatures of a family of

Riemannian metrics on the manifold under consideration. That is to say, the hyperbolic geometric

flow possesses itself intrinsic geometric structure and can be used to describe the wave character

of metrics and curvatures. This is essentially different from the above harmonic map problem.

As well-known, one can understand the heat kernel from the kernel of wave equation. This

indicates that we should be able to derive various information of the Ricci flow from that of the

hyperbolic geometric flow. Therefore it is also interesting to understand the relations between the

hyperbolic geometric flow and the Ricci flow, the singularities of its solutions and its relation with

the geometrization theorem. This will be another interesting topic in the sequel.
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