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1 Introduction

This is the first of a series of papers devoted to the study of hyperbolic geometric flow and its
applications to geometry and physics. Hyperbolic geometric flow was first studied by Kong and
Liu in [11]. To introduce such flow we were partially motivated by the Einstein equations in general
relativity and the recent progress in the Hamilton’s Ricci flow, and by the possibility of applying
the powerful theory of hyperbolic partial differential equations to geometry. Hyperbolic geometric
flow is a system of nonlinear evolution partial differential equations of second order, it is very
natural to understand certain wave phenomena in nature as well as the geometry of manifolds, in
particular, it describes the wave character of the metrics and curvatures of manifolds. We will see
that the hyperbolic geometric flow carries many interesting features of both the Ricci flow as well
as the Einstein equations. It has many promising applications to both subjects.

The elliptic and parabolic partial differential equations have been successfully applied to dif-
ferential geometry and physics. Typical examples are the Hamilton’s Ricci flow and Schoen-Yau’s
solution of the positive mass conjecture. A natural and important question is if we can apply the
well-developed theory of hyperbolic differential equations to solve problems in differential geome-
try and theoretical physics. This series of papers is an attempt to apply the hyperbolic equation
techniques to study some geometrical problems and physical problems. One has found interesting
results in these directions, see for example [16] for the applications of the hyperbolic geometric
flow equations to physics. Our results already show that the hyperbolic geometric flow is a natural
and powerful tool to study some important problems arising from differential geometry and general
relativity such as singularities, existence and regularity. In this paper we study the basic properties
of the hyperbolic geometric flow such as the short-time existence, nonlinear stability and the wave
feature of the curvatures. In the sequel we will study several fundamental problems, for example,
long-time existence, formation of singularities, as well as the physical and geometrical applications.

Let .# be an n-dimensional complete Riemannian manifold with Riemannian metric g;;, the

Levi-Civita connection is given by the Christoffel symbols
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where g% is the inverse of g;;. The Riemannian curvature tensors read
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The Ricci tensor is the contraction

Ry, = ¢"' Rijui



and the scalar curvature is
The hyperbolic geometric flow under the consideration is the following evolution equation
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for a family of Riemannian metrics g;;(t) on .#. More general hyperbolic geometric flows were also
introduced in [11]. A natural and fundamental problem is the short-time existence and uniqueness
theorem of hyperbolic geometric flow (1.1). In the present paper, we prove the following short-time
existence and uniqueness theorem, the nonlinear stability theorem for Euclidean space, and derive
the corresponding wave equations for the curvatures. These results were announced in Kong and

Liu [11].
Theorem 1.1 Let (4, g;;(x)) be a compact Riemannian manifold. Then there exists a constant
h > 0 such that the initial value problem
2
Pm9i5(w, 1) = =2Ry;(x, 1),
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gij(x’()) = g?j(ﬂf), gt (I,O) = k?](x)v

has a unique smooth solution gi;(x,t) on # x [0, h], where ki;(x) is a symmetric tensor on A .

The main difficulty to prove this theorem is that, the hyperbolic geometric flow (1.1) is a system
of nonlinear weakly-hyperbolic partial differential equations of second order. The degeneracy of
the system is caused by the diffeomorphism group of .# which acts as the gauge group of the
hyperbolic geometric flow. Because the hyperbolic geometric flow (1.1) is only weakly hyperbolic,
the short-time existence and uniqueness result on a compact manifold does not come from the
standard PDEs theory directly. In order to prove the above short-time existence and uniqueness
theorem, using the gauge fixing idea as in the Ricci flow, we can derive a system of nonlinear
strictly-hyperbolic partial differential equations of second order, thus Theorem 1.1 comes from the
standard PDEs theory. On the other hand, we can reduce the hyperbolic geometric flow (1.1) to
a quasilinear symmetric hyperbolic system of first order, then using the Friedrich’s theory [5] of
symmetric hyperbolic system (more exactly, the quasilinear version [3]) we can also prove Theorem
1.1.

Noting an important result on nonlinear wave equations (see [10]), we will find its other inter-
esting application to geometry, by applying this result to the wave equations of curvatures. In the

present paper we first use it to prove the nonlinear stability of the flat solution of the hyperbolic



geometric flow defined on the Euclidean space with dimension larger than 4. More precisely, we

have
Theorem 1.2 The flat metric g;; = 0;; of the Euclidean space R™ with n > 5 is nonlinearly stable.

See Section 4 for the precise definition of nonlinear stability which is very important in general
relativity. The key point of the proof of this theorem is the global existence of classical solutions
of the Cauchy problem for the nonlinear wave equations.

Similar to Hamilton [6], we derive the corresponding wave equations for the curvatures, for

example, we have

Theorem 1.3 Under the hyperbolic geometric flow (1.1), the curvature tensor satisfies the evolu-
tion equation
82
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where By = gP" 99° Rpiqj Rrkst and A is the Laplacian with respect to the evolving metric.

The wave equations for the Ricci and scalar curvatures are stated and proved in Section 5. This
is similar to the Ricci flow equation, except that there are quadratic lower order terms involving
the connection coefficients. It turns out that there is a very rich theory in nonlinear wave equations
to deal with such terms, see [10].

From the above results we can already see that the hyperbolic geometric flow has many features
of the Ricci flow, therefore many well-developed techniques in the Ricci flow may be applied to
the study of this new kind of flow equations. On the other hand, the hyperbolic geometric flow
can also be viewed as the leading terms of the vacuum Einstein equations. Since the hyperbolic
geometric flow contains the major terms in the Einstein equations, it not only becomes simpler
and more symmetric, but also possesses rich and beautiful geometric properties. See Section 6 for
more detailed discussions on the relations between the hyperbolic geometric flow and the Einstein
equations, and more generally its relations with other important problems in general relativity.

The paper is organized as follows. In Section 2, using the gauge fixing idea as in the Ricci flow,
we derive a system of nonlinear strictly-hyperbolic partial differential equations of second order.
In Section 3 we reduce the hyperbolic geometric flow (1.1) to a quasilinear symmetric hyperbolic

system of first order, and give the proof of Theorem 1.1. Section 4 is devoted to the nonlinear



stability of the hyperbolic geometric flow defined on the Euclidean space with dimension larger
than 4. In Section 5, we derive the wave equations satisfied by the curvatures, and illustrate the

wave character of the curvatures. Some discussions are given in Section 6.

2 Strict hyperbolicity of hyperbolic geometric flow

In this section we consider a modified system of evolution equations of the hyperbolic geometric
flow, which is strictly hyperbolic so that we can get a solution for a short time by solving the
corresponding Cauchy problem. The solution of the system (1.1) then comes from the solution of
the modified equations.
Let .# be a compact n-dimensional manifold. We consider the hyperbolic geometric flow (1.1)

on ./, that is,
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wgij(m,t) = —2R;;(z,1). (2.1)
Suppose §;;(x,t) is a solution of the hyperbolic geometric flow (2.1), and v, : A4 — A is a family
of diffeomorphisms of .Z. Let

9ij(@,t) = 9ij (w,1)

be the pull-back metrics. We now want to find the evolution equations for the metrics g;;(x,t).

Denote by y(z,t) = pi(x) = (y'(x,t),y*(z,t), - ,y"(z,t)) in local coordinates. Then
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On the other hand,




and
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It follows from (2.3) that
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Let us choose the normal coordinates {z'} around a fixed point p € .# such that % =0 at
x

(2.4)

p. We next prove that, at p € .,
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So (2.5) holds.
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By (2.4) and (2.5), we have
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We define y(x,t) = ¢p(x) by the following initial value problem
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ya(x’ 0) = x“, &ya(x’ 0) = y(ll(x)

and define the vector filed

Vi = girg”" <F§l - F?z) :

where I‘?l and I‘?l are the connection coefficients corresponding to the metrics g;;(«,t) and g;;(z, 0),
respectively, y¢(z) (o =1,2,---,n) are arbitrary C* smooth functions on the manifold .#Z. We

get the following evolution equation for the pull-back metric
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the initial value problem (2.7) can be written as
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At the same time, in the normal coordinates {x'},

N 1 R 0 kl% . i kl agjl agll . aglj

9 |1 gp. | 0gq  Og
e @ )Lk (O9pt 99q1  O9pg
ORI g {2g <8xq o T ol

1
+gikgpq% {2gkl (gg;;?)g;zf - %g;;) } + (lower order terms)

_ kl{ 32%5 3293'5 32%1 329@‘ }

Oxidzi  Oxidz*  dxidxk | Oxkoxl
+ }gp‘l 0%gp; 02944 B 9 Gpq
2 Oxidx1 = Ozidrd  Ox'OxI
1 0%g,; 0%g,: 0%g
1 g pi qi pq
+ 5 g {

010zt | OxidxP  Oxidxi

k09
= Dk 8].1‘ ; + (lower order terms).

} + (lower order terms)

Thereby, the initial value problem (2.8) can be written as
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The nonlinear term G = G() = G(g, Dxg) in (2.10) is smooth and quadratic with respect to Dg.

We observe that both (2.9) and (2.10) are clearly strictly hyperbolic systems. Since the equa-
tions (2.9) and (2.10) are strictly hyperbolic and the manifold .# is compact, it follows from the
standard theory of hyperbolic equations (see [8], [9], [10]) that the system united by (2.9) and

(2.10) has a unique smooth solution for a short time. Thus, we have proved Theorem 1.1.

3 Symmetrization of hyperbolic geometric low — second

proof of Theorem 1.1

In this section we reduce the hyperbolic geometric flow (2.1) to a symmetric hyperbolic system.

Then we use the theory of symmetric hyperbolic system to give another proof of Theorem 1.1.



Let .# be a compact n-dimensional manifold and g¢;;(z,t) is a hyperbolic geometric flow on
A . We denote the corresponding connection coefficients, the Riemannian curvature tensor and
the Ricci curvature tensor by I‘fﬁ R;j11 and Ry, respectively.

We consider the space-time R x .# with the Lorentzian metric
ds® = —dt* + g;j(w,t)dz'da? (3.1)

and denote the corresponding connection coefficients, the Riemannian curvature tensor and the
Ricci curvature tensor by fl 5 ﬁam A and ﬁag, respectively. Here and hereafter, the Greek indices
run from 0 to n, Latin indices from 1 to n. The summation convention is employed. We also
denote 20 = t.

By direct computations,
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A direct computation gives (see, e.g., Fock [4], p.423; Fisher and Marsden [3], p.22)
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Similar to (3.3), we have
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Similar to the harmonic coordinates in the space-time (see [3]), here we make use of a new kind

of coordinates on the manifold .# defined by
I 2 gMTi, = 0. (3.5)
Such new coordinates are called elliptic coordinates on . .

10



Lemma 3.1 Let g;; be a C>* Riemannian metric on the manifold .#. There is a C™ local
coordinates transformation ¢ : M — M, x — T around a fized point p € M such that the
transformed metric g;; is a C>° Riemannian metric with fk(f) = 0 for all T in a neighborhood

around p € M and any k € {1,2,--- ,n}.

Proof. Consider the elliptic equation for the scalar 1,

A 0% - O
N ripi 9V _
¥ g Oz 0x; T Ox; 0

=1

The coefficients are C*°. Let Z'(x) be a solution with the condition Z*(p) = z*(p), 8—(]9) = Jj.
Ly

Then Z* is a C* local coordinates transformation ¢ : .# — .# around p and the transformed

metric g,; is a C* Riemannian metric.

Now the equation Ay = 0 is a tensorial (scalar) equation. In the barred coordinates, it becomes

2=k . A=k

9 omez, T om;
Therefore, g,; satisfies the elliptic condition (3.5). The proof of Lemma 3.1 is complete.
By Lemma 3.1, we can choose the elliptic coordinates around a fixed point p € .# and for a

fixed time ¢ € RT. After throwing off the bar sign, the geometric hyperbolic flow (3.1) can be

written as

329z’j kl 329@‘ 7 gl
g2 9 gakoq T i (g’“”axp>’ (36)

where

~ gk 9g 99

Hyj <gkz, Tgr ) = 20" 9a U5 — ( 9Treg™ g™ 52 + 9T 7 g7 g™ o (3.7)

0
are homogenous quadratic with respect to % and rational with respect to gg; with non-zero
x
93 90

denominator det(g) # 0. By introducing the new unknowns g;;, hi; = %, Gijk = 3?:2’57 the

system (3.6) can be reduced to a system of partial differential equations of first order. We now

1
consider such a quasi-linear (symmetric hyperbolic) system with in(n + 1)(n + 2) PDEs of first

order 5
gkl% — gkl Z}Zz’ (3.8)
% - g“% + Hiyj.

In the C? class, the system (3.8) is equivalent to (3.6).

11



1
Let u = (gij, gijk, hij)* be the in(n + 1)(n + 2)-dimensional unknown vector function. The

coefficient matrices A%, A7, B are given by

I 0 0 e 0 0
0 911] 9121 glnl 0
0 9211 g2QI . anI 0
A%(u) = A%gij, gijo hig) = | )
0 9”1] gnZI gnnI 0
0 0 0 0 1
0 0 0 0 0
0o 0 0 - 0 g
, , 0 0 o - 0 ¢
Al (u) = A (gkt, gt ps haet) = ,
0 0 0 - 0 g
0 ¢YI ¢¥I ... g¥I 0

1 1 1 1
where 0 is the <2n(n + 1)) X (2n(n + 1)) zero matrix, I is the <2n(n—|— 1)) X <2n(n + 1))

identity matrix,

hij
B(u) = B(9ij, 9ij,p» hij) = 0 |-
i,
in which 0 is the %nz (n + 1)-dimensional zero vector.
We observe that the symmetric hyperbolic system
Ao(u)% = Aj(u)% + B(u) (3.9)

is nothing but the system (3.8). So far, we have reduced the equation of the hyperbolic geometric
flow (3.1) to the symmetric hyperbolic system (3.9), which are equivalent to each other in the C?
class. Then, by the theory of the symmetric hyperbolic system, the smooth solution to (3.1) exists

uniquely for a short time (see [3]). Thus, the proof of Theorem 1.1 is completed.

Remark 3.1 The elliptic coordinates can also be used to prove the short-time existence for the

Ricci flow.

More generally, motivated by general Einstein equations and the rich theory of hyperbolic
equations, we may also consider the following field equations with the energy-momentum tensor
T;; under certain conditions:

9%9:; dg
2 4+ 2Rij + fij (g, > = HTij, (3.10)

o
7ot2 ot
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where «;; are certain smooth functions on .# which may also depend on ¢, .%;; are some given
smooth functions of the Riemannian metric g and its first order derivative with respect to ¢, and

K is a parameter. Similar results can be obtained.

4 Nonlinear stability for hyperbolic geometric flow

In this section we investigate the nonlinear stability of the hyperbolic geometric flow defined on
the Euclidean space with the dimension larger than 4.

We now state the definition of nonlinear stability of the hyperbolic geometric flow (1.1). Let
A be an n-dimensional complete Riemannian manifold. Given symmetric tensors gf; and gj; on

M , we consider the following initial value problem

82
(2,00 =7 0 093
Gig\ T, ) - gzg(x) + Egij<x)’ ot

(‘T7 0) = Egilj ('T)’

where € > 0 is a small parameter.

Definition 4.1 The Ricci flat Riemannian metric g;;(x) possesses the (locally) nonlinear stability
with respect to (g%,gl-lj), if there exists a positive constant g9 = so(g?j,gilj) such that, for any
¢ € (0,e0], the initial value problem (4.1) has a unique (local) smooth solution g;;(x,t);

g;j(z) is said to be (locally) nonlinearly stable, if it possesses the (locally) nonlinear stability

with respect to arbitrary symmetric tensors gg;(x) and gj;(x) with compact support.

In what follows, we consider the nonlinear stability of the flat metric of the Euclidean space

R™ with the dimension n > 5. We have

Theorem 4.1 The flat metric g;; = d;; of the Euclidean space R™ with n > 5 is nonlinearly stable.

Remark 4.1 Theorem 4.1 gives the nonlinear stability of the hyperbolic geometric flow on the
Euclidean space with dimension larger than 4. The situation for the 3-, 4-dimensional Euclidean
spaces is very different, and will be studied in the sequel by using null conditions. This is similar to
the proofs of the Poincaré conjecture in topology: the proofs for the three and four dimensional case
and n > 5 dimensional case are very different (see, for example, [6] and [1]). This motivates us to

understand the possibility of using hyperbolic geometric flow to understand Poincaré conjecture.
Proof of Theorem 4.1. Define a 2-tensor A in the following way
gij (l‘, t) = 5ij + hij (I, t)
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Let 6 be the inverse of §;;. Then, for small h
HY 2 gif = 51 = —p¥ 4 0" (h),

where hil = §%§7'hy; and O% (h?) vanishes to second order at h = 0.
As in Section 3, we choose the above elliptic coordinates {z?} around the origin in R”. Then

the initial value problem (4.1) can be written as

62 82h1 ~ 8hkl({£,t)
@hw(x,t) = (5kl + Hkl) 6xk8;l + Hz] <5k-l + hkl(x,t), 81‘?) s

0
hij(z,0) = egy; (x), gl (2,0) = €95 (x),

where

~ oh ’t . b 7t
Hij (5kl + hwa(2, 1), ]g$)> = H;j (gkz(%t), gkal(i)>

dg dg
- {Zlegqu” TS+ ginTreg™ g% 2 + 9Ty g™ g™ S B

Ohui | Ohat  Ohar) (Ohsy | Ohy Oy
oxk 3xi ozl ozJ Oxb

0
ahar as . 8hrs ahpq
8339 oz | OxJ
— (B Hya) (67 H) (5 + HO) 5 (3% + HM) (‘%‘” o %Z) S

ozt
Ohgi  Ohgg 8h1k> (8hbj N Ohy 8hﬂ>

1
—9.-. kil pa $qb L L
4 0 0pg 00 ( 0k | ozt 0ze ozt Oxd  Oab

= —2(6F + HY) (0pq + hypq) 1 (6p“ + HP*) (39 + H™?) (

(Gu + Hug) (677 + HPT) (8% + HO) L (5% 1 ko)

[\

oxs ox" ox®

1 oh oh Ohys\ Oh oh
_ = 5. sprsqs ska ar as TS pq kl
TR (axs T B aw) gzt ('h’“”* v

1 Ooh oh oh oh
L5 sprggsska ar as TS Pq
26”“(S oro ( * ) Oz’

)

_ _1 kl cab 8hai 8hak _ ahzk ahb_j ahbl _ 8hljl
= 300 (axk T ow T e )\t T 0w T Oab
1 Ohir  Ohis  Oh oh
pr §qS w s TS Dq
26 0 (8$S T o o > oxJ
qs Spr T Js TS Pq
26 o (8305 * Oxzm Ol > ozt 0 ('hm * ‘ OxP >

Furthermore, (4.2) can be written as
82 9%h; - Ohg 0*hy
t) . h
or? hij (&, Zawkax’“ ( M dar axpﬁxq)’

0
hij(xvo) = Eg?j(x)v ahij(‘%O) = Egilj(m)v
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where

2
Hij (h —8hkl 0" hy ) = HMZY O%hiy +sz (5kz ~+ hi, 8%)

Mo 9ar ) 9apdr Oxk !
_ _75k15ab 6haz ahak _ ]c ahbj 8hbl _ Bhﬂ
3$k ! 81‘l Oxi  Oxb
1 ahlr 1s ahrs h
—§Pryas —
2 ( 81‘5 " oxJ
15”’”6” 8hjr 8hrs Ohpqg
2 oz T o Oz
02h oh 2hi [\’
kl P kl Kkl
—h o kajl+0(|hkl+’ 89:p8xq) :

Let

s Ohy,  0%hy .
A= (hkl7 3%”’5‘:#’336‘1 (paqakal_172"'?n)'

The nonlinear term

— N = ahkl thkl
Hi i(A) = HZ il h ) )
i ]( M oar frrda

in (4.3) is smooth in a neighborhood about A = 0 and satisfies
H5(3) =0 (1A) (i =1,2-- ,m).

By the well-known global existence results for the nonlinear wave equation (e.g., see [2], [7], [8],
[10]), there exists a unique global smooth solution (h;;(x,t)) for the Cauchy problem (4.3) or (4.2).

Thus, the proof of Theorem 4.1 is complete. ¢

5 Wave character of the curvatures

The hyperbolic geometric flow is a system of hyperbolic evolution equations on the metrics. The
evolution of the metrics implies a system of nonlinear wave equations for the Riemannian curvature
tensor R;jxi, the Ricci curvature tensor R;; and the scalar curvature R which we will derive.
Let .# be an n-dimensional complete manifold. We consider the hyperbolic geometric flow on

A, that is,

52

ﬁgij(x,t) = —2Rij(.’£,t). (51)
We now want to find the evolution equations for the Riemannian curvature tensor R;;z;, the Ricci

curvature tensor [2;; and the scalar curvature R.
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Direct computations yield

rh 1 m (O9mi | Ogmi  Ogji
at 2 Ox! Oxi  Oxm )’
Oprn _ }ghm 02 gum; +529ml g 19g"™ (dgm; | Ogmi  gi
ot It 2 orlot  dxigt  dxmot) 2 ot \ ozl | dxi  dam )’
ﬁr’? _ 19%g"™ (g +89m1 _ Og5i 19" (g | Pgm  Pgp
or2 It 2 2 ozl ' Qxi  dzm 2 Ot \ 0xzlot ' Oxidot  Gxmot
Loy [ O (0?Gm; 9 (g 9 (gp
*39 (axz< o2 ) T\ "o ) " oem o2 )
arh  arh
Rijhl = 8acjil B ax;l +F?pF§l B F?pFZ7
2 o (0%, 0 (02 ,\ 02 s
@Rijl = o (Wrﬂ> T (atQFiz> + 92 (riprjl - FijZ)’
0? 02 b 9? . n O%gn Ognk 0
g o = g (o Be) = gnn s R+ R =55+ 25,7 5 P

o (9 o (07 02
= o g (5m) g5 (™) + g (T~

g [ 0 [0, o (0, O (hop  hop n O%gnk
20 [axi <8trﬂ) aw(atr“ + g (TLTR =T, Th ) |+ Rl s

We choose the normal coordinates around a fixed point p on .# such that

or, equivalently,
09i;
=0.
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Then we have

82

@szkl

829ml

O9mi _ 0 9ji
Oxiot  Oxz™mot

oxJ

1 62ghm <6gmj

o) 9g;1
Ink B [2 otz \ oal - >+2

ox™

. laghm 62gmj
2 Ot oxlot

o [L, [0 (0n; 0 (9% gmi o (g

ok |29 (axz < o2 ) "o \ "o ) T dam ( ot >)]

_ i _1 3ghm 6gmi agml _ agil +2. 1 3ghm 829mi 829ml _ 8292'1

Ik oei |2 02 \ ozl 0xi  9am 2 ot \ozlot ' dxiot  oxmot

- i _1 hm i 82gmz + 0 azgml _ 0 a2.gz'l

Ik oei 129 \ o2t \ o 9zt \ 0t azm \ o2

8. 0 o 8
+29nk <atr?p atréjl 8tF§LpatF€l)
2aghk 10 aghm agm] agml . ag]l li aghm agmi + 8gml _ agil
ot |20z ot oz! oz ox™ 2 Oz ot oz! oxt ox™
+9 6ghk 1 hm 0 i agm] i a ml 0 agjl
ot 27 ar\aa \ ot ) Tow ot ) T aam

509 L 4, O (O (Ogmi Ogmi 9 3911 n O gn

2ot 27 ou (axl < ot axz ot )~ oam TR e

1 92" [0 (O9m;  O9m _Ogu\ _ 0 (99" (0gmi  Ogm _ Ogu

29 T2 |axi \ ot T 9xi  dxm ) a9 \ ot \ 9zl | 9z 9z
o 29 (Ogmy  Ogmi - Dgu \ _  9%¢"™ (Ogmi . Ogmi _ _Oga

Ik prior \odlot ~ orior  oxmot) I orior \orlot T dxiot  dxmot
o 99 [0 (Ogms | Ogmi _ Ogu \ _ O (Ogmi  Pgmi _ Ogu

Ik =51 |9z \ 90t~ dwiot  dxmat)  oxi \ oLlot | oridor  dxmot

L1 9% [ 9%gy, n P (P P [(PPgp
2 | Ozioxt \ Ot2 OzidxI \ Ot2 Oztoxk \ Ot2

170 (g n * ([ Pgu\ P 8*gar
2 | 0zioxt \ Ot2 Ozioxt \ Ot2 Ozioxk \ Ot2

0 0 0 0

29 <atF?PatF];l atrypatrﬁ)

8ghk 8ghm 0 ag’mj 6gml o agjl 0 6977” + 6g'ml _ 891'1

ot ot |0zt \ Ox! oxi  dxm )  dxi \ Ozl oz’ oxm
+89hk wm | O (O9mi | Ogwmi  Ogy \ O [ Ogmi . gmi  Oga

ot Oxt \ 0x'0t = 0Ox90t Ox™Ot Ox \ Oz'ot  Oxiot OxmOt

9? 9hk
+R}, 5
(5.2)
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Noting g""™gmi = 07", we get

6ghm _ hp mqagpq
ot ot '’
2 hm
9 g — _ghpgmq (9gpq ,
Oxkot Oxkot
9% ghm N 0%g Ogpq Og
— _ghpymqZ P 2 hp rq sm >~ JIPq TS.
a2 A R 9"t o
Thus, it follows from (5.2) that
02 1 0% Ogrq Og
—R;; — __gpm_JIRP rq  pm ZJIR4 ZITP
g2 ik ( 29 o Y ot ot

% 9 (Ogm; n Ogmi g1 9 (0gmi | Ogmi  Oga
ox? AN dxrt  dxm

ox! oxI Ox™
_ gm0 (Pgmy P9t P \ Ly Pty (PGmi  gmi g
9 oriot \ oLlot T oriot  oxmot oziot \ oxlot  Oxidt  Ox™Ot

Jr} 9? D% gr; n 0? Pgu\ 9%g;1
2 | Ozioxt \ Ot? OzidxI \ Ot2 Ozioxk \ 0t2

170 (g n * ([ Pgu\ P 8*gar
2 | 0zioxt \ Ot? 0zi0xt \ Ot2 Oz oxk \ Ot?

0., O 0_, O n g
+20n <8tF”’ ol ol o ”>+R”l o

7ghpgmq 8gnk 89;0(] a agmy + agm,l - 8gjl 0 agml + agm,l o agzl
ot ot |0z 027 \ Ox! dx'  Oxz™

ox! oxi  Oz™
_ P <a,rf’ 0 Fp> +29’“q—ag’“’ %9y ( 9 v _ an)

otz \ ozt It ggi ¥ ot ot \oxi I Qggi ¥
~ Prp g (3 gmi | gm i ) 3> grp g <82gmi Pgmi  0*ga >

Dzi0t 0210t | dziot  owmor) | dwiot 0210t | 0zidt | 9ot
3 | (2u) + s (20 - 50 (2R
- L%?;xl (—2Ry) + %;ﬂ, (—2Ry) - 3?72% (—2Ril)}
s[4 G1-S e -5 (r- ) e 5
= % L%?;Il (—2Rx;) + 3T;Ij (—2Rp) — 3;?7;951@ (—Qle)}
-1 L?a:?;xl (—2Ry;) + ax?i;xﬂ (—2Rp1) — ax?i;)xk (—231‘1)}

_ P9 (Pgmy | P9 i \ |y OPrp (PGmi 0wt g
I ozior \ odlot T owiot  oxmot 9210t \ 0zlot | oxiot  dxmot

Orn O 9y 9
29k <8tr“’ ot g B )
(5.3)
On the one hand, we have
82
ik = ViR + Vil - Ry + ViTY, - R
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Then

On the

1 2 o2 52

2 {&c@xl (=2R;) + Oz OxI (=2Rk) - OxtOxk (_2le)}
1 2 o? 52

2 [ijaxl (=2Rki) + Ozt OxI (=2Rk) - OxI Oxk (_2Ril)]

—Vilekj — VikaR]p \Y F Rk-p V,»Vijl — Vifflep - Vz‘F?lep
+Vi ViR + ViFinl,, + ViFZlep + ViV Ry; + ijZlRip + VjFZPZ-Rkp

+V; ViR + VT Ry + V, T Ry — V,; Vi Ry — VT2, Ry — VT2 Ry,

5.4
—ViViRy; —ViVRy + ViV Ry +V;V Ry + V;iViRy; — V,; Vi Ry ( )
+Ri, (VI — VI3 + Rjp (= Vil + Vi)
+Rigp (=VilY, = Vil 4+ V5Th, + VT ) 4 Riy (=il + Vil}, + VT, = VT,
—Vilekj + Vivk;le + VleRki - vjkail
—Rijipg" Ry — Rijipg” I Rqr + Rpp ( QRm)
*Vilekj + Vikajl + VleRki - vjkail — gP4 (Rijlkaq + Rijkpqu) .
other hand, we have
_gm Pgip (P9my | Pgmi _ 911 \ | pm Ptw (PGmi | 0wt _ Ogu
Oziot \ Oz'ot  Oxiot  Ox™Ot Oziot \ Oxlot  Oxidt  Ox™Ot
1o} 0 0 0
2 rr._—r? — —_1h . TP
+2ghk (8t LT L Tk LT ”)
_gpma Ghp (Pgmj | Pgm  Pgy om P 9kp (0P gmi N Pgmi  Pgu
oziot \ Oz!ot  Oxiot  Ox™Ot Oxiot \ Ox'ot ~ Oxtot  Ox™Ot
—i—l om [ Poki  Parp  Pgip \ (Pgmi  Pgmi g
29" \ozrar T ozior  orkor ) \oxlar T dziot  dxmot
Lo (Pori | Parp  Pgip \ (Pgmi | g Pga
g Jkp _
2 OzPOt  Oxi0t Oxkot oxlot | 0xiot  Oxmot (5.5)
g 1 (9gm; L 0?Gmi B %1 Pgri Pgip  Pgip
ozlot  Oxiot  Ox™ot 0xPOt  Ozkdt  Oxiot

1 (g n Pgmi g Pgri  Pgip  Pgiy
2 \ 0z!'0t  Oziot  Ox™Ot OxPOt  Oxkot  OxIot

2gpq { 1gpr 0 (ag'r‘j + 0gri1 _ 6gjl> 1 qsé <8gki _ 0gis B 6gks>

27 ot ot T o 0 ) 27 wt\ o T 0k ox

1 prg 09y + 091 . g 1 qsg 8gkj B 8ng OGks
27 ot \ort T ar  ox ) 29 ot

o) 0 0 9]
29pq <atrfl : argk - QFZ : af?k) :

ozs ozk oxI
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Therefore, it follows from (5.3), (5.4) and (5.5) that

2

@Rijkl =—ViViRij + ViViRj; + V;ViRy; — V;ViRi — ¢"? (RijqRip + RijiqRip)

0 0 0 0
+ 20pq <6trfl : afik - @FZ : 8t%> .

Similar to Hamilton [6], we have

Theorem 5.1 Under the hyperbolic geometric flow (5.1), the Riemannian curvature tensor R;jp
satisfies the evolution equation

82
@Rijkz = ARy + 2 (Bijii — Bijik — Bijk + Bikji)
=97 (RpjriRgi + RipriRej + Rijpi Rk + RijipRqr) (5.6)
9., 9., 0., 0

q
+20pq <6tril otk T gt atrik) ;

where Bijx = g 99° Rpiqj Rrrst and A is the Laplacian with respect to the evolving metric.

0 0 0 0
Remark 5.1 In Theorem 5.1 and Theorem 5.2 below, the term 2gp,, ((%Ffl g = al"fl : (%I‘?k>

can be written in the covariant form. For the sake of simplicity, we omit it.

For the Ricci curvature tensor, we have

0? 92 .,
el = 3p (Rijrag’)
0? 0 0 02 gt
= = 2
g 2 Rz]kl + It g atRmkl +R1jkl 12
202 - Ogpg O 1009 Ogpq Og
— Jl Riipl — 2¢°P lg pq—Ri- _ inla9 9pg R; 2Jp rq sl ZIPq ”Ri, .
9" gtk = 297975, 5y ikl = 9 g" 2 jkl T 29 9 "5y o vk

Thus, we obtain

Theorem 5.2 Under the hyperbolic geometric flow (5.1), the Ricci curvature tensor satisfies

82
@Rik = AR, + 297" g¥ Rpiqr Rrs — 267 Rpyi Ryp,
, 0 0 0 0
l p p q
+297 gpq (8tF”8tFJ’“ 8trﬂatr““) (5.7)
pota 900 0 ; 99pq Ogr
—9girgla ZZP4 : 2¢iPgrigst =L 25 R
g9°"g ot ot Rijri +297Pg"g ot ot Luik
For the scalar curvature, we have
9?2 9%
oz = ge (9" )
x 02 0 0 0%g'
= —Rix +2=—Ri. - —g"* + R;
9" g Rin + 27 in - 5p™ + B =5 -
g 0 09pq ORik i» kq 029 ; 09pq Ogrs
— R _2 zp kq Pq R’L _ip kg Pq 2¢°P g4 sk Pq
9" 5z Rk ot ot R\ T g TR0 5
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On the other hand,

o 0 0 0 0
ik gl
20" am (T 5T~ i)
3 ik il rse (9955 gy 1 g ik 09ik ;19951
= 59799V V(5 7) = 597 Ve(9" 5 )Vs(9” 5 0)
j i1 09ik d9js ik g 09ij OGks ik g OGr 0915
rs gl ik J _ ik gl rs J _ ik gl _rsy7. .
+297g" V(9" 5 PV ) = 99"V (5 PIVI(=5 7)) = 20797 g Vi )V (0.
Then, we get

Theorem 5.3 Under the hyperbolic geometric flow (5.1), the scalar curvature satisfies
32

o oL 09i; 09 .00k 10951
3 ik jl rs ) J ) _1_rs . ik I § JL 293¢
+59"¢"'g VT(fat IVs( ot ) —39"°V.(g ot WVa(g 5 )
i % 09k d9js ik i 09ij Ogis
I v L J _ gtk il grsyy . J 58
+20" gV (g 2V — 9 gV (5= ) (5-8)
1 i agkr agls i i ag 0
—2g*kgilgTsV . . —9gkgirgla 2P ~ p. .
9" g7 9" Vi( 5t IVi( at) 9" 9Pg =5 o Rigk
o 0gpg ORGk ; 99pq 091
—9giPghka ZIPL T D i T g sk ZIPD ZITS
ot or T AHwgTeNIT Gy

Theorems 5.1-5.3 show that the curvatures of the hyperbolic geometric flow possess the wave
character. We will apply techniques from hyperbolic equations to the above wave equations of

curvatures to derive various geometric results.

6 Discussions

The hyperbolic geometric flow describes the wave character of the metrics and curvatures of mani-
folds. Many hyperbolic systems in nature provide natural singular sets, the typical example is the
Einstein equations in general relativity which form a hyperbolic system with a well-posed Cauchy
problem. If one starts with smooth initial data, one may end up with a singular space-time. One
of the most challenging problems is to describe the kind of natural singularity. The famous cosmic
censorship conjecture due to Penrose is an attempt to describe such singularities (see [12]). In
Kong and Liu [11], we construct some exact solutions of the hyperbolic geometric flow, these solu-
tions possess the singularities which are nothing but those described by Penrose’s conjecture. By
these examples, we believe that the hyperbolic geometric flow is a very natural and powerful tool
to understand the singularities in the nature, in particular, the singularity described by Penrose
cosmic censorship conjecture.

The Einstein equations play an essential role in general relativity. Consider a space-time with
Lorentzian metric

ds? = gudxtdz”  (p,v=0,1,2--- ,n). (6.1)
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The vacuum Einstein equations read

G =0, (6.2)
where G, is the Einstein tensor. We now consider the following metric with orthogonal time-axis
ds? = —dt® + g;j(z,t)dz’dz? . (6.3)

Substituting (6.3) into (6.2), we can obtain the equations satisfied by the metric g;;

52913‘
ot?

lgpq 891’]’ agpq gpq agip agjq '
2 ot 0Ot ot ot

— —2R;; — (6.4)

Neglecting the lower order terms gives the hyperbolic geometric flow (1.1). Therefore, in this sense,
the hyperbolic geometric flow can be viewed as the leading terms in the vacuum Einstein equations
with respect to the metric (6.3). Since the hyperbolic geometric flow only contains the main terms
in the Einstein equations, it not only becomes simpler and more symmetric, but also possesses
rich and beautiful geometric properties. In particular, in mathematics, its Cauchy problem is well-
posed and easier to handle some fundamental problems such as the global existence and formation of
singularities; on the other hand, it can be applied to re-understand the singularity of the universe
and other important problems in physics and cosmology (see [16]). We also believe that there
should be some relations between the solutions of the Einstein equations and the corresponding
hyperbolic geometric flows. On the other hand, from the above discussions we have seen that the
hyperbolic geometric flow also possesses many beautiful features similar to those of the Ricci flow,
and some of the techniques in the study of the Ricci flow can be directly used to understand the
hyperbolic geometric flow. The deep study on the hyperbolic geometric flow may open a new way
to understand the complicated Einstein equations.

It is well known, in general relativity there is a constraint system of equations involving an
asymptotically flat metric tensor and another symmetric tensor. There are four constraint equa-
tions and it is therefore over-determined. Unlike this, since the time axis is orthogonal to other
space axes, the hyperbolic geometric flow does not need to satisfy any additional constraint. More
precisely, for the Cauchy problem of the hyperbolic geometric flow, in order to determine the solu-
tion we need two initial conditions: one is the metric flow itself g;;(z,0), another is its derivative
%(x, 0), since the time axis is orthogonal to other axes, these initial data do not need to satisfy
any additional constraint, and therefore it is a determined system. This is another main new
feature of the hyperbolic geometric flow.

Many mathematicians, for example Shatah et al [13]-[15], have investigated the Cauchy problem

for some geometric wave equations. The model at hand is the harmonic map problem, which is
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the study of maps from the Minkowski space-time into complete Riemannian manifolds. This kind
of geometric wave equations is a system of partial differential equations of second order, which is
the Euler-Lagrange equations of the action integral of the harmonic map. It satisfies certain linear
matching condition, and then under suitable assumptions, has a unique small smooth solution
for all time, and possesses some interesting (decay, energy and regularity) estimates. On the
other hand, the hyperbolic geometric flow is determined by the Ricci curvatures of a family of
Riemannian metrics on the manifold under consideration. That is to say, the hyperbolic geometric
flow possesses itself intrinsic geometric structure and can be used to describe the wave character
of metrics and curvatures. This is essentially different from the above harmonic map problem.

As well-known, one can understand the heat kernel from the kernel of wave equation. This
indicates that we should be able to derive various information of the Ricci flow from that of the
hyperbolic geometric flow. Therefore it is also interesting to understand the relations between the
hyperbolic geometric flow and the Ricci flow, the singularities of its solutions and its relation with

the geometrization theorem. This will be another interesting topic in the sequel.
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