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Abstract

The original Novikov conjecture concerns the (oriented) homotopy invariance of higher sig-
natures of manifolds and is equivalent to the rational injectivity of the assembly map in surgery
theory. The integral injectivity of the assembly map is important for other purposes and is called
the integral Novikov conjecture. There are also assembly maps in other theories and hence re-
lated Novikov and integral Novikov conjectures. In this paper, we discuss several results on the
integral Novikov conjectures for all torsion free arithmetic subgroups of linear algebraic groups
and all S-arithmetic subgroups of reductive linear algebraic groups over number fields. For re-
ductive linear algebraic groups over function fields of rank 0, the integral Novikov conjecture
also holds for all torsion-free S-arithmetic subgroups. Since groups containing torsion elements
occur naturally and frequently, we also discuss a generalized integral Novikov conjecture for
groups containing torsion elements, and prove it for all arithmetic subgroups of reductive linear
algebraic groups over number fields and S-arithmetic subgroups of reductive algebraic groups of
rank 0 over function fields.

1 Introduction

In the study of topology of manifolds, an important conjecture is the Novikov conjecture on oriented
homotopy invariance of higher signatures. This conjecture is equivalent to the rational injectivity
of the assembly map in surgery theory (or L-theory). Assembly maps occur naturally in other
theories, and the rational injectivity of the assembly map is called the Novikov conjecture in that
theory, and the (integral) injectivity of the assembly map is called the integral Novikov conjecture.
Each of them is important for different purposes, but the assembly map is the common thread
which unites all these conjectures.

In general, the Novikov conjectures are formulated in terms of discrete groups, which can be
taken to be the fundamental group of manifolds. For each abstract group Γ (usually assumed to
be finitely generated), there are several versions of Novikov conjecture corresponding to different
theories.
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An important class of groups consists of arithmetic groups of linear algebraic groups defined over
Q. They are finitely presented and also enjoy many other finiteness properties (see [Bo1] [Bo5]).
Their cohomology groups and other properties have been studied by many people (see [Bo3], [Sch]
and [LS]).

The Novikov conjectures have been studied by different methods. One approach consists of large
scale geometry (or geometry at infinity) of Γ. One important large scale invariant of an infinite
group Γ is its asymptotic dimension, introduced by Gromov in [Gr]. An important result in [Yu]
[Ba] [CG] [CFY] [DFW] (see Proposition 3.1 below) says that if Γ has finite asymptotic dimension
and a finite BΓ-space, then the integral Novikov conjecture holds for Γ.

In [Ji1], we showed the following result.

Theorem 1.1 Let G be any linear algebraic group defined over Q, and Γ ⊂ G(Q) any arithmetic
subgroup. Then the asymptotic dimension asdim Γ of Γ is finite.

Combined with the Borel-Serre compactification in [BS1], we obtained the following result as a
corollary.

Corollary 1.2 Assume that Γ is a torsion free arithmetic subgroup of a linear algebraic group
defined over Q. Then the integral Novikov conjectures hold for Γ.

In the above corollary, the assumption that Γ is torsion free is important. Otherwise, the
integral injectivity of the assembly map will fail in general (see Remark 2.7). It might be helpful
to note that the existence of a finite BΓ implies that Γ is torsion-free [Br2].

For groups that contain nontrivial torsion elements, there is a generalized integral Novikov
conjecture for the surgery theory, K-theory etc (see Equation 2.9 near the end of §2), which is
closely related to the Farrell-Jones isomorphism conjecture (see [FJ1] [LR] and the discussions
after Equation 2.9).

By combining Corollary 1.2 with [LR, Proposition 66] (or Proposition 2.10 in its preprint form),
we obtain the following result.

Corollary 1.3 Assume that Γ is a torsion free arithmetic subgroup of a linear algebraic group
defined over Q. Then the map in the Farrell-Jones isomorphism conjecture in both K-theory and
L-theory is injective.

An important generalization of arithmetic subgroups is the class of S-arithmetic subgroups (see
[Bo2] [Bo4] [BS2] [PR]). For example, SL(n,Z) and its congruence subgroups are typical examples
of arithmetic subgroups. For a finite set of primes p1, · · · , pm, the subgroup SL(n,Z[ 1

p1
, · · · , 1

pm
])

and its subgroups of finite index are S-arithmetic subgroups. One obvious difference between them
is that SL(n,Z) is a discrete subgroup of the real Lie group SL(n,R), but SL(n,Z[ 1

p1
, · · · , 1

pm
]) is

not. Instead, SL(n,Z[ 1
p1
, · · · , 1

pm
]) is a discrete subgroup of SL(n,R)×SL(n,Qp1)×· · ·×SL(n,Qpm)

under the diagonal embedding.
For many problems such as those concerning rigidity questions in [Mar] and other applications

in number theory [PR], it is important and fruitful to treat S-arithmetic subgroups on the same
footing as arithmetic subgroups.

Arithmetic subgroups can not be defined for algebraic groups over the function field of a pro-
jective curve over a finite field. On the other hand, S-arithmetic subgroups can also be defined for
such algebraic groups.

Unlike the case of arithmetic subgroups, if the group G over a number field is not reductive, its
S-arithmetic subgroups may not have some finiteness properties (see [Ab2] [Br1, Chap. VII]). If the
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group G is over a function field, its S-arithmetic subgroups have even fewer finiteness properties
(see [Br1, Chap. VII], [Be1] [Be2] [Ab1] [Ab2]).

In the above discussion of arithmetic groups, we have assumed that the field of definition is equal
to Q. The reason is that consideration of algebraic groups defined over general number fields, i.e.,
finite extensions of Q, does not give more examples of arithmetic groups. On the other hand, for
S-arithmetic subgroups, the consideration of algebraic groups over number fields leads to a larger
class of S-arithmetic subgroups.

Another approach to Novikov conjecture uses suitable compactifications of EΓ, where EΓ is the
universal covering space of the classifying space BΓ, i.e., a contractible space with a free Γ-action.
By using this approach, we proved in [Ji3] the following result.

Theorem 1.4 Let G be a linear reductive algebraic group over a global field k, i.e., either a number
field or the function field of a projective curve over a finite field. If the k-rank of G is equal to 0,
then the integral Novikov conjectures hold for every torsion free S-arithmetic subgroup of G(k), and
the generalized integral Novikov conjectures hold for S-arithmetic subgroups of G(k) that contain
torsion elements.

In the function field case, the zero rank assumption in Theorem 1.4 is necessary in order to
get torsion free S-arithmetic subgroups. On the other hand, it is natural to expect that the rank
0 condition in the case of number field can be removed. In fact, in [Ji4], we proved the following
result.

Theorem 1.5 Let G be a linear reductive algebraic group over a number field k. Then the integral
Novikov conjectures hold for every torsion free S-arithmetic subgroup of G(k).

For the generalized integral Novikov conjectures, we proved the following result in [Ji6].

Theorem 1.6 If G is a reductive algebraic group defined over a number field k and Γ ⊂ G(k) is
any arithmetic subgroup that may contain torsion elements, then the generalized integral Novikov
conjectures hold for Γ.

We also observed [Ji6] that the main theorem in [BHM] implies the following result.

Proposition 1.7 Let G be a linear reductive group as in the above theorem, and Γ ⊂ G(k) an
S-arithmetic subgroup that contains torsion elements. Then the (rational) Novikov conjecture in
K-theory holds for Γ.

In fact, Γ contains a torsion-free subgroup Γ′ of finite index. Using the Borel-Serre compact-
ification, it can be shown that Γ′ admits a finite BΓ′ and hence is of type FL, in particular of
type FP∞. By [Br2, Proposition VIII.5.1], Γ is also of type FP∞, which implies that for every i,
Hi(Γ,Z) is finitely generated.

It is natural to conjecture that the generalized integral Novikov conjectures also hold for every
S-arithmetic subgroup of G(k) when G is reductive and k is a number field. In fact, when the
symmetric space associated with G is the real hyperbolic space, the generalized integral conjectures
are true and proved in [Ji4, Theorem 3.2].

Remark 1.8 As in Corollary 1.3, the map in the Farrell-Jones conjecture is also injective for
torsion-free Γ satisfying the conditions in Theorems 1.4 and 1.5.
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Remark 1.9 After this paper was submitted and revised, the author proved in [Ji7] that the
generalized integral Novikov conjecture holds for every finitely generated subgroup of GL(n, k),
where k is a global field and k its algebraic closure, and also for every S-arithmetic subgroup of
a reductive algebraic group over a global field. In particular, the conjecture above Remark 1.8 is
true.

The Novikov conjectures have been proved for various classes of groups. The Novikov conjecture
in the surgery theory is often called the Novikov conjecture in L-theory. For surveys of the status
of the Novikov conjectures and the Farrell-Jones isomorphism conjecture, see [FRR], [LR] and
[We]. For the class of discrete subgroups of Lie groups, the earlier results on the integral Novikov
conjectures are listed as follows:

1. The integral analytic (or C∗-algebras) Novikov conjecture for all discrete subgroups of con-
nected Lie groups was proved by Kasparov (see [FRR]), finitely generated subgroups of
GL(n,Q) by Kasparov and Skandalis [KS], and all finitely generated subgroups of GL(n,K),
where K is any field, by Guentner, Higson and Weinberger [GHW]. Hence, the original
Novikov conjecture holds for all these groups.

2. The integral Novikov conjecture in L-theory for all torsion-free discrete subgroups of GL(n,C)
and the fundamental group of nonpositively curved manifolds was proved by Farrell-Hsiang,
Ferry-Weinberger, and Farrell-Jones (see [FJ2, p. 217, p. 220]).

3. The integral K-theoretic Novikov conjecture was known only for the following classes of
discrete subgroups of Lie groups:

(a) co-compact lattices in connected Lie groups by Carlsson [Ca] (see also [FJ1]),

(b) arithmetic subgroups of semisimple linear algebraic groups G defined over Q of R-rank
equal to 1 by Goldfarb [Go2],

(c) arithmetic subgroups of G = SL(3), and more general arithmetic subgroups of G when
G is semisimple and the Q-rank of G is equal to the R-rank of G by Goldfarb [Go3]
[Go1]. (See Remark 6.9 below for comments on the proofs in these papers.)

4. The (rational) Novikov conjecture in K-theory holds for every group Γ such that in every
degree i ≥ 0, Hi(Γ,Z) is finitely generated, by the celebrated result in [BHM]. An impor-
tant class of groups that satisfy this condition consists of arithmetic subgroups of any linear
algebraic groups defined over number fields and S-arithmetic subgroups of reductive linear al-
gebraic groups defined over number fields. Hence, the Novikov conjecture in K-theory holds
for these groups.

The rest of this paper is organized as follows. In §2, we recall the original Novikov conjecture
and the reformulation in terms of the assembly map in L-theory. Then we state the other Novikov
conjectures in K-theory, A-theory and the theory of C∗-algebras; we also mention the Farrell-Jones
isomorphism conjecture. In §3, we discuss two approaches to prove the integral Novikov conjectures
for torsion-free groups and the generalized integral Novikov conjecture for groups containing torsion
elements. In §4, we define and discuss basic properties of arithmetic and S-arithmetic subgroups.
In §5, we outline proofs of Theorem 1.1 and Corollary 1.2, and a generalization to geometrically
finite Kleinian groups. In §6, we outline proofs of Theorem 1.4, Theorem 1.5 and Theorem 1.6.

Acknowledgments: I would like to thank S.Weinberger for helpful explanations about the torsion
free assumption on the group in the integral Novikov conjectures, and K.Brown for pointing out
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the results [Br2, Proposition VIII. 5.1] and [Br3, Proposition 1.1]. I would also like to thank the
anonymous referees for their careful reading of a preliminary version of this paper and several
constructive suggestions.

2 Statements of Novikov conjectures

In this section, we recall the original Novikov conjecture and state other versions of Novikov con-
jecture. In particular, we explain the important notions of assembly maps. After studying the case
for torsion-free groups, we state the generalized integral Novikov conjectures for groups containing
torsion elements.

To motivate the Novikov conjectures, we first recall the Hirzebruch index theorem. Let M4k

be a compact oriented manifold (without boundary) of dimension 4k. The cup product defines a
non-degenerate quadratic form on the middle dimension cohomology group:

Q : H2k(M,Q)×H2k(M,Q) → H4k(M,Q) = Q. (2.1)

This quadratic form can be diagonalized over R to the form Diag(1, · · · , 1;−1, · · · ,−1), and the
number of +1 minus the number of −1 is called the signature of M and denoted by Sgn(M). Since
the identification H4k(M,Q) = Q depends on the orientation of M , the signature Sgn(M) depends
on the orientation and is an oriented homotopy invariant of M .

The Hirzebruch class L(M) is a power series in Pontrjagin classes P1, P2, · · · , with rational
coefficients,

L(M) = 1 + L1 + L2 + · · · ,

where L1 = 1
3P1, L2 = 1

45(7P2 − P 2
1 ), · · · .

Then the Hirzebruch index theorem is the following equality:

Sgn(M) = 〈L(M), [M ]〉, (2.2)

where the right hand side is the evaluation of L(M) on the fundamental class [M ].
The Hirzebruch class L(M) depends on the characteristic classes of the tangent bundle of M

and a priori depends on the differential structure of M . (In fact, these rational classes in H∗(M,Q)
are homeomorphism invariants of M). As pointed out earlier, the left side is an oriented homotopy
invariant, and hence the above equality shows that 〈L(M), [M ]〉 only depends on the oriented
homotopy type of M .

To get more homotopy invariants, Novikov introduced the higher signatures. Let Γ = π1(M).
Let BΓ be a classifying space of the discrete group Γ, i.e., a K(Γ, 1)-space,

π1(BΓ) = Γ, πi(BΓ) = {1}, i ≥ 2.

The universal covering space EΓ of BΓ is contractible and admits a free Γ-action. Equivalently, we
can reverse this process and define first EΓ as a contractible space with a free Γ-action, and then
define BΓ as the quotient Γ\EΓ. For example, when Γ = Z, it acts freely by translation on R and
hence EΓ = R and BΓ = R/Z = S1.

For each group Γ, the spaces EΓ and BΓ are unique up to homotopy. The universal covering
map M̃ →M determines a classifying map f : M → BΓ, which is unique up to homotopy.

For any α ∈ H∗(BΓ,Q), f∗α ∈ H∗(M,Q), and define a higher signature

Sgnα(M) = 〈f∗α ∪ L(M), [M ]〉. (2.3)

The original Novikov conjecture is stated as follows:
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Conjecture 2.1 (Novikov conjecture) For any α ∈ H∗(BΓ,Q), the higher signature Sgnα(M)
is an oriented homotopy invariant of M , i.e., if N is another oriented manifold and g : N →M is
an orientation preserving homotopy equivalence, then

〈(g ◦ f)∗α ∪ L(N), [N ]〉 = 〈f∗α ∪ L(M), [M ]〉.

Wall [Wa, §17 H] [Ra3, §24] [Ra2, p.274] reformulated this Novikov conjecture in terms of
rational injectivity of the assembly map in surgery theory.

The surgery obstruction groups L∗(Z[Γ]), or L-groups of Z[Γ], were first introduced in [Wa]
and we will use the free quadratic L-groups as in [Ra2]. Briefly, for m = 2k, Lm(Z[Γ]) is the Witt
group of stable isomorphism classes (−1)k-quadratic forms on finitely generated free modules over
the group ring Z[Γ], and L2k+1(Z[Γ]) a stable automorphism group of hyperbolic (−1)k-quadratic
forms on finitely generated free modules over Z[Γ]. Since (−1)k is 4-periodic in m, the groups
Lm(Z[Γ]) are 4-periodic in m.

Remarks 2.2 (1) In fact, the group L2k+1(Z[Γ]) is more conveniently defined in terms of (−1)k-
quadratic formations on finitely generated free modules over Z[Γ]. The relation to the description
in terms of automorphisms of hyperbolic (−1)k-quadratic forms is that each such automorphism
gives a (−1)k-quadratic formation. See [Lu, §4.5] and [Ra1, §12.3] for details.

(2) A uniform definition of the groups Lm(Z[Γ]) in terms of m-dimensional quadratic Poincaré
chain complexes in the category of finitely generated free Z[Γ]-modules is given in [Ra3, p.32].

Remark 2.3 To understand these groups, it might be helpful to recall that the algebraic K-group
K0(Z[Γ]) is the group obtained from the monoid of stable equivalence classes of finitely projective
(or free) modules over Z[Γ], and K1(Z[Γ]) is defined in terms of automorphisms of finitely generated
free modules over Z[Γ], i.e., K1(Z[Γ]) = GL(Z[Γ])/[GL(Z[Γ]), GL(Z[Γ])]. Due to this similarity, the
L-groups are often called Hermitian K-groups. On the other hand, the definition of higher algebraic
K-groups Km(Z[Γ]) is more complicated, and Km(Z[Γ]) are not periodic in m.

Let L(Z) be the surgery spectrum:

πm(L(Z)) = Lm(Z), m ∈ Z.

The spectrum L(Z) defines a general homology theory with coefficient in L(Z). For any topo-
logical space X, there are general homology groups H∗(X; L(Z)) = π∗(X+ ∧ L(Z)), where X+ is
the disjoint union of X and a point.

There is an important notion of assembly map:

A : H∗(X; L(Z)) → L∗(Z[π1(X)]). (2.4)

Proposition 2.4 The Novikov conjecture, i.e., the oriented homotopy invariance of the higher
signatures in Conjecture 2.1, is equivalent to the rational injectivity of the assembly map in Equation
(2.4), i.e., the following rational assembly map is injective:

A⊗Q : H∗(BΓ; L(Z))⊗Q → L∗(Z[Γ])⊗Q.

For a proof of this statement, see [Wa, §17 H] [Ra3, §24] [Ra2, Proposition 6.6]. The surgery
exact sequence is used in the proof. We explain briefly why the rational injectivity of the assembly
map implies the Novikov conjecture on the homotopy invariance of higher signatures. The manifold
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M has a canonical L(Z)-homology fundamental class [M ]L(Z) ∈ H∗(M ; L(Z)). Under the classifying
map f : M → BΓ and the identification

H∗(BΓ; L(Z))⊗Q = ⊕k∈ZH∗−4k(BΓ; Q),

the class [M ]L(Z) is mapped to f∗([M ] ∩ L(M)). Clearly, the homotopy invariance of all higher
signatures is equivalent to homotopy invariance of the class f∗([M ] ∩ L(M)). So the class [M ]L(Z)

is an integral version of the L-class of M , or rather [M ] ∩ L(M). An important fact about the
assembly map is that the image A([M ]L(Z)) in L∗(Z[π1(X)]) is an oriented homotopy invariant of
M . Hence the injectivity of the rational assembly map A ⊗ Q implies that f∗([M ] ∩ L(M)) and
hence all the higher signatures are oriented homotopy invariants of M .

Remarks 2.5 (1) The notion of assembly map was first introduced by Quinn in his thesis [Qu].
Elements in H∗(X; L(Z)) are represented by certain cycles, and the image under A is obtained (or
assembled) from these cycles by gluing along faces. So this map is an assemblage from local parts
to global invariants, and is hence called an assembly map.

(2) There are several other ways to view or define the assembly map. In [Ra2] [Ra3], it is
defined as follows. Let p : X̃ → X be the projection map from the universal cover. An element in
H∗(X; L(Z)) is represented by a cycle c of quadratic Poincaré chain complex over X. Under the
map p, it is pulled back to p!c, a cycle over X̃. Let pt. be the trivial Γ-space consisting of one point.
The pushforward q!p

!c under the map q : X̃ → pt. gives a quadratic Poincaré chain complex over
Z[Γ], which is mapped to an element in L∗(Z[π1(X)]).

(3) Another point of view is to use equivariant homology groups (see [LR] for details and refer-
ences). Briefly, the homology group H∗(BΓ; L(Z)) can be identified with the equivariant homology
group HΓ

∗ (EΓ; L(Z)). Note that HΓ
∗ (pt.; L(Z)) = L∗(Z[Γ]). The projection EΓ → pt. defines a map

HΓ
∗ (EΓ; L(Z)) → HΓ

∗ (pt.; L(Z)), and the composition

H∗(BΓ; L(Z)) ∼= HΓ
∗ (EΓ; L(Z)) → HΓ

∗ (pt.; L(Z)) = L∗(Z[Γ]) (2.5)

is the assembly map.
(4) It will be seen later that the assembly maps in other theories can be defined more directly

or interpreted concretely.

Conjecture 2.6 (Integral Novikov conjecture) If Γ is torsion free, then the assembly map
A : H∗(BΓ; L(Z)) → L∗(Z[Γ]) is injective.

This conjecture is also called the L-theory (or surgery theory) integral Novikov conjecture.

Remark 2.7 In the integral Novikov conjecture, the torsion free assumption on Γ is important.
In fact, it is known that the conjecture is often false for finite groups. One reason is that if G is a
finite group of odd order, H∗(BΓ; L(Z)) often contains torsion elements of odd order, but L∗(Z[Γ])
only contains 2-torsion elements. Hence A can not be injective. See [We, p. 286] [Ra1, Remark
7.4. (i)].

Remark 2.8 Conjecture 2.6 also implies the oriented homotopy invariance of the image in K∗(BΓ)
under the classifying map f : M → BΓ of the element in K∗(M) determined by the signature oper-
ator of M , and of the higher Morgan-Sullivan L-classes in the 2-local homology group H∗(BΓ,Z(2)).
On the other hand, for linear lens spaces, this homotopy invariance fails. This is another indication
that Conjecture 2.6 often fails for groups containing torsion elements.
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Clearly, the integral Novikov conjecture implies the rational Novikov conjecture and gives an
integral version of homotopy invariance of higher signature. There are also several other reasons to
consider the integral, rather than the original (rational) Novikov conjecture:

1. Relation to the rigidity of manifolds, in particular, the Borel conjecture for rigidity of aspher-
ical manifolds.

2. Computation of the L-groups L∗(Z[Γ]) in terms of a generalized homology theory.

The Borel conjecture states that if M,N are two closed aspherical manifolds, i.e., πi(M) =
πi(N) = {1}, for i ≥ 2, then any homotopy equivalence between M and N is homotopic to a
homeomorphism. The h-cobordism version of the Borel conjecture [FRR, p. 17] says that any
homotopy equivalence between two closed aspherical manifolds M and N is h-corbordant to a
homeomorphism. The Borel conjecture was related to and in fact motivated by the Mostow strong
rigidity of locally symmetric spaces (or rather his earlier work on the rigidity of solvable manifolds).

The following equivalence is known [FRR, p.28]:

Proposition 2.9 The h-corbordism Borel conjecture is equivalent to the conjecture that the integral
assembly map A : H∗(BΓ; L(Z)) → L∗(Z[Γ]) is an isomorphism for Γ = π1(M).

Basically this follows from the surgery exact sequence. It is also known that the injectivity of
A implies that any manifold homotopy equivalent to M with π1(M) = Γ is normally cobordant to
it [We, p. 286].

The left-hand side H∗(BΓ; L(Z)) is a generalized homology theory and hence can be computed
relatively easily. On the other hand, the groups L∗(Z[Γ]) are important but difficult to compute.
If the assembly map is an isomorphism, this allows one to compute L∗(Z[Γ]) using H∗(BΓ; L(Z)).
Clearly the injectivity of the assembly map is an important step in this direction. In fact, it is
worthwhile to point out that in many cases where the injectivity of the assembly map A is proved
to true, the proof, for example using Theorems 3.1, 3.2 below (and also Theorems 3.5, 3.6 for the
generalized integral Novikov conjectures), yields the stronger conclusion that A is split injective,
and hence H∗(BΓ;L(Z)) is a direct summand of L∗(Z[Γ]).

Assembly map in algebraic K-theory.

Once formulated in terms of the assembly map, there are also other versions of Novikov con-
jecture. For any associative ring with unit R, there is a family of algebraic K-groups Ki(R), i ∈ Z.
For example, as mentioned above in Remark 2.3, K0(R) is defined by stable equivalence classes of
finitely generated projective modules, and K1(R) = GL(R)/[GL(R), GL(R)]. The higher K-groups
Ki(R), i ≥ 2, are defined to be the homotopy groups of the space BGL(R)+, where BGL(R) is the
classifying space of GL(R) considered as a discrete group, and BGL(R)+ is the space by applying
the Quillen +-construction to the perfect subgroup E(R) = [GL(R), GL(R)], in particular, the
homology groups of BGL(R)+ and BGL(R) are equal to each other under the inclusion (see [Ro2,
§5.2] [Lo, §11.2]). The K-theory spectrum K(R) with πi(K(R)) = Ki(R), i ∈ Z, is given by the
delooping of the infinite loop space BGL(R)+ ×K0(R). (See [Ro2, p. 269] [Lo, p. 355, p.396] [Lu]
and the references there.)

Let Γ be a group as above, and H∗(BΓ; K(Z)) the generalized homology of BΓ with coefficient
in K(R). There is also an assembly map

A : H∗(BΓ; K(Z)) → K∗(Z[Γ]). (2.6)

Besides the approach via equivariant homology groups in [LR] as mentioned in Remarks 2.5,

H∗(BΓ; K(Z)) = HΓ
∗ (EΓ; K(Z)) → HΓ

∗ (pt.; K(Z)) = K∗(Z[Γ]),
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this assembly map can be described explicitly as follows [Lo, p. 396] [Ca, p. 6]. Multiplication by
elements of Γ defines an inclusion Γ → GL1(Z[Γ]), which in turn defines a map

j : Γ×GLn(Z) → GL1(Z[Γ])×GLn(Z) → GLn(Z[Γ]).

Passing to the limit as n→ +∞, we obtain a map

(j, id.) : Γ×GL(Z) → GL(Z[Γ])×GL(Z).

Applying the classifying space functor B and Quillen’s +-construction gives

BΓ+ ∧BGL(Z)+ → BGL(Z[Γ])+ ∧BGL(Z)+ → BGL(Z[Γ])+,

where the second map follows from the multiplicative structure of algebraic K-theory [Lo, p. 396,
p. 357]. Delooping BGL(·)+, we obtain the assembly map on the spectrum level,

A : BΓ+ ∧K(Z) → K(ZΓ).

Taking the homotopy groups gives the assembly map

A : H∗(BΓ; K(Z)) → K∗(Z[Γ]).

It is clear from this description that both parts BΓ and K(Z) are used together to produce the
assembly map.

Conjecture 2.10 (Integral Novikov conjecture in algebraic K-theory) Assume that Γ is
torsion free. Then the assembly map

A : H∗(BΓ; K(Z)) → K∗(Z[Γ])

is injective.

As pointed out in Remark 2.7, the torsion free assumption is important. On the other hand,
for any group, it is conjectured that the rational assembly map

A : H∗(BΓ; K(Z))⊗Q → K∗(Z[Γ])⊗Q

is injective. It is called the Novikov conjecture in algebraic K-theory.
If Γ is torsion free, it is believed that the assembly map A in the above conjecture is an

isomorphism,

H∗(BΓ; K(Z)) ∼= K∗(Z[Γ]).

This is also called the Borel conjecture in algebraic K-theory in view of Proposition 2.9.
If the map A is an isomorphism, then the group K∗(Z[Γ]) can be described in terms of two

parts: the space BΓ+ and the spectrum K(Z). As mentioned earlier, generalized homology theories
such as H∗(BΓ; K(Z)) are relatively easier to compute. On the other hand, if Γ is non-abelian, Z[Γ]
is a non-abelian ring, and there are very few general techniques to compute its algebraic K-groups,
unlike the case of commutative rings (see [Ca, p. 5]).

Assembly map in A-theory of topological spaces
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Closely related to the algebraic K-theory of rings is the A-theory, i.e., the algebraic K-theory of
topological spaces. In fact, when the topological space is EΓ, the A-groups A∗(BΓ) are rationally
isomorphic to the algebraic K-groups of the ring Z[Γ]:

A∗(BΓ)⊗Q = K∗(Z[Γ])⊗Q.

See [Ro3] for a summary of the A-theory and its applications.
Besides the above relation, there are several reasons why this is called the algebraic K-theory

of spaces. First, for each topological space, there is a ring up to homotopy; and the A-groups
are basically the algebraic K-groups of this ring up to homotopy. Second, the A-groups can be
constructed from a category with cofibration and weak equivalence which is built up from the
topological space. This construction is closely related to the Q-construction of Quillen for algebraic
K-groups of rings.

From this description, the algebraic K-groups of a topological space are clearly different from
the topological K-groups of the space, which are constructed from the monoid of equivalence classes
of vector bundles on the topological space and its suspensions. On the other hand, these A-groups
(or algebraic K-groups) of manifolds can be used to describe the space of pseudo-isotopies of the
manifolds, an important notion in geometric topology.

Let W be a topological space and W+ the union of W with a disjoint point. Then there is an
assembly map:

A : H∗(W+; A(pt.)) → A∗(W ).

This map is shown to be split injective when W is a complete Riemannian manifold of nonpos-
itive sectional curvature in [FW2].

The A-groups are easier to compute due to the cyclotomic trace, which maps the A-groups to
the topological cyclic homology groups. In fact, this technique is used in [BHM] to prove that
for any discrete group Γ, if in every degree i, Hi(BΓ,Z) is finitely generated, then the (rational)
Novikov conjecture in algebraic K-theory holds for Γ.

Assembly map in C∗-algebras

There is also an assembly map in the theory of C∗-algebras. The group algebra C[Γ] acts on
`2(Γ) by the left translation. The completion of C[Γ] in the Hilbert space of bounded operators on
`2(Γ) with respect to the norm topology is the reduced C∗-algebra C∗r (Γ) associated with Γ.

Let K∗(C∗r (Γ)) be the topological K-groups of C∗r (Γ). There is an assembly map

A : K∗(BΓ) → K∗(C∗r (Γ)). (2.7)

Besides a description in terms of equivariant homology groups in [LR] (see Remarks 2.5),

K∗(BΓ) = H∗(BΓ; Ktop) = HΓ
∗ (EΓ; Ktop) → HΓ

∗ (pt.; Ktop) = K∗(C∗r (Γ)),

this assembly map is essentially given by taking the index of elliptic pseudo-differential opera-
tors. Briefly, the K-homology groups K∗(BΓ) are the duals of the more common K-cohomology
groups K∗(BΓ), and cycles in these homology groups can be described in terms of elliptic pseudo-
differential operators on BΓ. The tensor product of these operators with C∗r (Γ) gives operators on
C∗r (Γ)-bundles, and their indexes give elements in K∗(C∗r (Γ)) (see [LR] and the references there for
details).

Conjecture 2.11 (Integral analytic Novikov conjecture) If Γ is torsion free, then the as-
sembly map

A : K∗(BΓ) → K∗(C∗r (Γ))

is injective.
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Similarly, there is also a rational version about the injectivity of A⊗Q. This analytic Novikov
conjecture implies the original Novikov conjecture on homotopy invariance of higher signatures. In
fact, the rational injectivity of this assembly map is equivalent to the rational injectivity of the
assembly map in surgery theory. Because of this, the analytic Novikov conjecture is often called
strong Novikov conjecture. On the other hand, the integral analytic Novikov conjecture does not
imply the integral Novikov conjecture in surgery (i.e., L-) theory, and there are no other direct
implications between these many versions of Novikov conjectures.

A stronger conjecture is the following one.

Conjecture 2.12 (Baum-Connes conjecture) If Γ is torsion free, then the assembly map

A : K∗(BΓ) → K∗(C∗r (Γ))

is an isomorphism.

This is an analogue of the Borel conjecture (see Proposition 2.9), and also implies some rigidity
results. For many applications of the analytic Novikov conjecture and the Baum-Connes conjecture,
see [LR] and the references cited there.

Generalized Integral Novikov Conjecture for groups with torsion.

Many natural groups such as (maximal) arithmetic groups SL(n,Z), S-arithmetic subgroups
SL(n,Z[ 1

p1
, · · · , 1

pl
]), and the mapping class groups etc all contain torsion elements. In general,

suppose a group Γ contains a torsion-free subgroup Γ′ of finite index. It is not easy to compute the
global groups such as L∗(Z[Γ]) and K∗(Z[Γ]) from L∗(Z[Γ′]) and K∗(Z[Γ′]). Since one motivation of
the integral Novikov conjecture is to compute such global groups, a natural question is to formulate
a generalized integral Novikov conjecture in each theory for groups containing torsion elements.

Let EΓ be the universal covering space of BΓ. Then it is the universal space for proper and
fixed-point free actions of Γ. It is known that

H∗(BΓ) = HΓ
∗ (EΓ).

Assume that Γ contains torsion elements. Let F be the family of all finite subgroups of Γ.
Then there is a universal (or classifying) space EFΓ, unique up to homotopy, which is a Γ-space
satisfying the following properties:

1. For any element H ∈ F , its set of fixed points (EFΓ)H is nonempty and contractible. In
particular, EFΓ is contractible.

2. For any point x ∈ EFΓ, its stabilizer in Γ belongs to F .

Note that EFΓ is the universal space for proper actions of Γ.
Then the generalized integral Novikov conjecture in L-theory says that the following assembly

map is injective:
A : HΓ

∗ (EF ; L(Z)) → HΓ
∗ (pt.; L(Z)) = L∗(Z[Γ]), (2.8)

which is defined by the equivariant projection from EFΓ to the trivial one point Γ-space pt. It
should be pointed out that the rational injectivity of this assembly map is the same as the rational
injectivity map of the earlier usual assembly map H∗(BΓ; L(Z)) → L∗(Z[Γ]).

For any family C of subgroups of Γ which are closed under taking subgroups and conjugates,
there is an associated classifying space ECΓ characterized by the same properties as above when F
is replaced by C. Similarly, there is an assembly map

A : HΓ
∗ (ECΓ; L(Z)) → L∗(Z[Γ]).

11



Another important family of subgroups is the the family VCY of virtually cyclic sbgroups of Γ.
The conjecture that this assembly map for the family VCY is an isomorphism when the L-theory is
given the −∞ decoration is called the Farrell-Jones isomorphism conjecture [FJ1] [LR, Conjecture
2.2].

The generalized integral Novikov conjectures in algebraic K-theory and the theory of C∗-
algebras can be similarly formulated in terms of EFΓ, for example, in K-theory,

A : HΓ
∗ (EFΓ; K(Z)) → K∗(Z[Γ]). (2.9)

There are also analogues of the Farrell-Jones isomorphism conjecture.
In both L-theory and K-theory, the assembly maps in Equations (2.8) and (2.9) are in general

not expected to be surjective. In fact, they already fail for some virtually cyclic groups [Fa]. This is
the reason to use the larger family VCY instead of F in the Farrell-Jones isomorphism conjecture.
(Note that if C is taking to be the family of all subgroups of Γ, then ECΓ = pt., and the associated
assembly map is the identity map, which is not helpful to understand or compute L∗(Z[Γ]). Hence,
it is better in some sense to choose a smaller family C.)

On the other hand, in the theory of C∗-algebras, the assembly map

A : KΓ
∗ (EFΓ) → K∗(C∗r (Γ))

is conjectured to be both injective and surjective. This is the Baum-Connes conjecture for groups
containing torsion elements.

3 Approaches to proving Novikov conjectures

In this section, we first recall two methods (or criterions) to prove the integral Novikov conjectures.
They are related to global (or large scale) geometry of the group Γ and its related spaces BΓ and
EΓ. Then we recall similar criterions for the generalized integral Novikov conjectures.

Motivated by a result of Yu in [Yu] for the analytic Novikov conjecture, Carlsson and Goldfarb
[CG1, main Theorem], Bartels [Ba, Theorems 1.1 and 7.2], Dranishnikov, Ferry and Weinberger
[DFW], and Chang, Ferry and Yu [CFY] proved the following result.

Theorem 3.1 If a finitely generated group Γ has finite asymptotic dimension, asdim Γ <∞, and
has a finite BΓ, i.e., its classifying space BΓ can be realized as a finite CW-complex, then the
integral Novikov conjectures in K-theory and L-theory hold for Γ.

We recall that the definition of as-dim Γ from [Gr]. First, given a non-compact metric space
(M,d), its asymptotic dimension, asdim (M,d), is defined as the smallest integer n, which could
be ∞, such that for every r > 0, there exists a cover C = {Ui}i∈I of M by uniformly bounded sets
Ui with the r-multiplicity less than or equal to n+ 1, i.e., every ball in M of radius r intersects at
most n+ 1 sets in C. (Note that this is similar to the definition of dimension of a topological space
via coverings of smaller and smaller sets).

For any finitely generated group Γ, a choice of a symmetric generating set S, i.e., S−1 = S,
defines a word metric dS on Γ. Define asdim Γ = asdim (Γ, dS), which is known to be independent
of the choice of the generating set S.

Briefly, in the proof of Theorem 3.1, the assumption that asdim Γ < +∞ is used to construct
a suitable family of coverings of EΓ. The assumption that BΓ can be taken to be a finite CW
complex is also very important in the proof.

Another method by Carlsson-Pedersen [CP3] is to use a suitable compactification of EΓ.
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Theorem 3.2 Suppose that BΓ is finite CW-complex, and the universal cover EΓ has a con-
tractible, metrizable Γ-compactification EΓ such that the action of Γ on EΓ is small at infinity.
Then the integral Novikov conjecture in K-theory and L-theory holds for Γ.

Recall that by a small action of Γ at the infinity of a compactification EΓ of EΓ, it means
that for every boundary point y ∈ EΓ − EΓ and every compact subset K ⊂ EΓ, and every small
neighborhood U of y in EΓ, there exists another small neighborhood V of y such that if g ∈ Γ and
gK ∩ V 6= ∅, then gK ⊂ U .

Basically it says that for a sequence gj ∈ Γ going to infinity, if a point of gjK is contained in a
boundary neighborhood, then the whole set gjK is contained a neighborhood of the same boundary
point. Hence, gjK are shrunk to points near the boundary.

Suppose that EΓ is given a Γ-invariant metric d, and the compactification EΓ has the property
that sequences within bounded distance converges to the same limit, i.e., for any two unbounded
sequences xj , x

′
j in EΓ with limj→+∞ xj = y and limj→+∞ x′j = y, if lim supj→+∞ d(xj , x

′
j) < +∞,

then y = y′. Then the action of Γ on EΓ is small at infinity. Such a compactification exists when
BΓ is given by a compact manifold M with nonpositive curvature. In this case, EΓ = M̃ is simply
connected and nonpositively curved and admits the known geodesic compactification M̃ ∪ M̃(∞),
where M̃(∞) is the set of equivalence classes of geodesics. The above condition that sequences
within bounded distance converges to the same limit point is easily seen to be satisfied. It is clear
from the definition of the topology (or convergence of unbounded sequences in M̃) that the Γ-action
on M̃ extends to M̃∪M̃(∞). Hence it is a compactification with small Γ-action at infinity. It is also
clear that M̃ ∪ M̃(∞) is homeomorphic to a closed unit ball and hence is contractible. (We note
that the one point compactification EΓ ∪ {∞} is always a Γ-compactification with small Γ-action
at infinity, but it is not contractible in general.)

The basic idea of the proof of Theorem 3.2 is that the assembly map can be interpreted as a
“forget some control” functor from a continuously controlled category to a boundedly controlled
category [Pe, Proposition 10, Theorem 15]. The assumption that the action of Γ at the compact-
ification EΓ is small allows us to regain control, i.e., to get a continuous control from a bounded
control. See [Pe] and [Ro1] for details of such explanations of the proof in [CP3].

Remark 3.3 A related result is given by Ferry-Weinberger [FW1], where the boundary ∂EΓ of
a compactification EΓ is required to be a Z-set, i.e., there exists a homotopy ht : ∂EΓ → EΓ,
t ∈ [0, 1], such that h0 is the identity map (or the inclusion), and ht(∂EΓ) ⊂ EΓ for t > 0; and
EΓ is small in the sense that every continuous bounded map f : EΓ → EΓ extends by the identity
map to a continuous map f : EΓ → EΓ.

Remark 3.4 Carlsson-Pedersen [CP1] [Go2] has a generalization of Theorem 3.2, relaxing the
smallness of the Γ-action at infinity, which requires a Γ-equivariant compactification EΓ which is
Cech-acyclic whose boundary is covered by a Γ-invariant collection of boundedly saturated open sets
satisfying a weak homotopy equivalence between the inverse limit of the nerve and the boundary.

Generalized Integral Novikov conjectures.

To study the generalized integral Novikov conjectures for groups containing torsion elements,
the above criterions in Theorems 3.1 and 3.2 can not be used. In fact, the existence of a finite
CW-complex BΓ implies that Γ is torsion-free. We present generalizations of these criterions in
Theorems 3.1 and 3.2.

Recall that a Γ-CW-complex E is called a Γ-cofinite CW-complex (or Γ-cofinite) if the quotient
Γ\E is a finite CW -complex. Rosenthal [Ros] generalized the method of [CP3] and proved the
following generalization of Theorem 3.2.
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Theorem 3.5 Assume that EFΓ is a cofinite Γ-CW-complex and admits a compactification EFΓ
such that

1. The Γ-action on EFΓ extends to a continuous action on the compactification EFΓ.

2. EFΓ is metrizable.

3. For any finite subgroup H of Γ, the fixed point set EFΓH is nonempty and contractible and
contains the fixed point set EFΓH in EFΓ as a dense subset. In particular, the compactifica-
tion EFΓ is contractible.

4. The Γ-action of Γ on EFΓ is small at infinity.

Then the generalized integral Novikov conjecture in K- and L-theories hold for Γ, i.e., the assembly
maps in Equations (2.8) and (2.9) are injective.

A generalization of Theorem 3.1 is given in [Ji6]

Theorem 3.6 Assume that Γ has finite asymptotic dimension and admits a Γ-co-finite EFΓ. For
any pair of finite subgroups H, I of Γ, I ⊂ H, let NH(I) be the normalizer of I in H. Assume
that for any such a pair H, I, the set of fixed points (EFΓ)I and the quotient NH(I)\(EFΓ)I are
uniformly contractible and of bounded geometry. Then the generalized integral Novikov conjecture
in both K- and L-theories holds for Γ.

Comments.

In order to apply these methods to study the integral Novikov conjectures, it is important to
find groups satisfying the assumptions. In fact, the known classes are quite limited. For example,
groups Γ with asdim Γ < +∞ have been intensively studied. The following is a list of such groups:

1. hyperbolic groups [Gr],

2. Coxeter groups, standard constructions from groups with finite asymptotic dimension (see
[BD] and [Dr]),

3. uniform discrete subgroups of Lie groups [CG2],

4. arithmetic groups [Ji1].

5. S-arithmetic subgroups of reductive algebraic groups over global fields [Mat] [Ji4].

It is a nontrivial problem to decide when a group Γ has a finite CW-complex as BΓ, i.e., Γ
is of type F . If Γ is the fundamental group of an aspherical closed manifold, it is of type F .
There are also necessary and sufficient cohomological conditions. See [Br2] and [Da] for details.
The further condition that the universal covering space EΓ of a finite BΓ admits a contractible Γ-
compactification with small Γ-action at infinity is not easy to satisfy. See [Go2] for some discussions
about this issue.

A basic point of this paper is that the class of arithmetic subgroups of linear algebraic groups
and the class of S-arithmetic groups of reductive algebraic groups are natural and important classes
which satisfy the conditions in Theorems 3.1, 3.2, 3.5 and 3.6.
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4 Definition of arithmetic and S-arithmetic subgroups

In this section, we recall very briefly definitions and basic properties of arithmetic groups and
S-arithmetic subgroups.

Let G ⊂ GL(n) be a linear algebraic group defined over a number field k. Let Ok be the ring of
integers of k. Any subgroup Γ ⊂ G(k) commensurable with G(Ok) = G(k) ∩GL(n,Ok) is called
an arithmetic subgroup of G.

Remark 4.1 For arithmetic subgroups, there is no loss of generality in considering only the case
k = Q. In fact, the functor of restriction of scalars reduces the general case of number fields to the
special case of Q. On the other hand, for S-arithmetic subgroups, the general number fields give a
larger class of S-arithmetic groups [Se1]. That’s why we start with general number fields.

An important example of arithmetic subgroups is given by Γ = SL(n,Z) and its subgroups of
finite index.

Some of the basic properties of arithmetic groups are listed in the following (see [Bo1] [Bo2]
[Bo5]).

Proposition 4.2 Let Γ be an arithmetic subgroup of a linear algebraic group G defined over k.

1. Γ is finitely presented.

2. Γ admits a torsion free subgroup of finite index.

Now we recall the definition of S-arithmetic groups. Let k be a global field, i.e., either a number
field (a finite extension of Q), or the function field of a smooth projective curve over a finite field
Fq (a finite separable extension of Fq(t)).

For each place p, let νp be the associated valuation of k. Let S be a finite set of places of k
including all archimedean places, which exist if and only if k is a number field. Define the ring Ok,S

of S-integers by
Ok,S = {x ∈ k | νp(x) ≥ 0, p 6∈ S}.

If k is a number field and S consists of precisely all the archimedean places, then Ok,S = Ok,
the usual ring of integers in k. If k = Q and S = {p1, · · · , pm}, then

OQ,S = Z[
1
p1
, · · · , 1

pm
].

If k is a function field over a finite field Fq and S = ∅, then Ok,S = Fq and hence is finite. (Recall
that any regular function on a smooth projective curve is constant.) To get nontrivial rings of S-
integers, we need to assume that S is nonempty, or equivalently contains non-archimedean places.
Then Ok,S is the ring of functions on the curve regular outside the set of points corresponding to
S.

Let G ⊂ GL(n) be a linear algebraic group defined over a global field k. A subgroup Γ of G(k)
is called an S-arithmetic subgroup if it is commensurable with G(k) ∩GL(n,Ok,S).

Important examples are given by SL(n,Z[ 1
p1
, · · · , 1

pm
]) and its subgroups of finite index. When

k is a number field and S consists of precisely all the archimedean places, an S-arithmetic subgroup
is an arithmetic subgroup as defined earlier. From this point of view, it is natural to consider
S-arithmetic subgroups together with the rather special arithmetic subgroups.

In the following, by an S-arithmetic subgroup, we assume that S contains some non-archimedean
places unless indicated otherwise.
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Unlike arithmetic subgroups, S-arithmetic subgroups do not have the usual cohomological finite-
ness unless G is reductive. Over function fields, the cohomological finiteness results are even more
restricted (see [Br1, Chap. VII], [Be1] [Be2] [Ab1] [Ab2]).

Proposition 4.3 (1) Assume that G is a reductive algebraic group defined over a number field.
Then any S-arithmetic subgroup Γ is finitely presented and admits torsion free subgroups of finite
index. (2) Assume that G is a reductive algebraic group defined over a function field k of k-rank 0.
Then any S-arithmetic subgroup Γ is finitely presented and admits torsion free subgroups of finite
index.

In the above proposition, the rank 0 assumption in the case of function fields is important. See
[Se2] [Bo2] [Br1, Chap. VII] for more discussions about S-arithmetic subgroups.

5 Novikov conjectures for arithmetic subgroups

In this section, we first outline a proof of Theorem 1.1 and Corollary 1.2 by applying Theorem 3.1.
Then we discuss a generalization to the class of geometrically finite Kleinian groups.

To prove Corollary 1.2, we need to check the following two conditions:

1. There exists a finite BΓ, i.e., given by a finite CW-complex.

2. asdim Γ < +∞, i.e., Theorem 1.1 holds.

We first discuss Condition (1). Let G = G(R) be the real locus, and K ⊂ G a maximal compact
subgroup. Then the homogeneous space X = G/K is diffeomorphic to a euclidean space and hence
is contractible. Give X a G-invariant metric. If G is reductive, then X is a symmetric space not
containing any compact factor. If G is semisimple, then X is a symmetric space of noncompact
type.

The arithmetic group Γ is a discrete subgroup of G and hence acts properly on X. If Γ is torsion
free, it acts freely on X, and the quotient Γ\X is a manifold. Since X is contractible, Γ\X is a
K(Γ, 1)-space, or a BΓ-space. In the following, we assume that Γ is torsion free.

If the Q-rank of G is equal to 0, then Γ\X is compact. Then Γ\X is a compact manifold
(without boundary) and hence admits a finite triangulation, which implies that Γ\X is a finite BΓ.

On the other hand, if the Q-rank of G is positive, Γ\X is non-compact. Without loss of
generality, we can assume that Γ\X has finite volume with respect to the invariant metric, i.e.,
Γ is a lattice subgroup of G. (This can be achieved by dividing out the Q-isotropic part of the
center of G.) Then there exists a compactification Γ\XBS

, called the Borel-Serre compactification,
which is a manifold with corners. The interior of Γ\XBS

is equal to Γ\X and hence the inclusion
Γ\X → Γ\XBS

is a homotopy equivalence. Since Γ\XBS
admits a finite triangulation, this implies

that Γ\XBS
is a finite K(Γ, 1)-space.

We briefly outline the construction of Γ\XBS
. For simplicity, we assume that G is semisimple

and hence X is a symmetric space. It is constructed in the following steps:

1. For every Q-parabolic subgroup P, attach a boundary component e(P), which is roughly a
parameter space of all the geodesics in X going to infinity in the direction of P.

2. Add all these boundary components e(P) to X to obtain a partial compactification X
BS
Q =

X ∪
∐

P e(P).
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3. Show that Γ acts properly and continuously on X
BS
Q with a compact quotient, which gives

Γ\XBS
.

By assumption, Γ is torsion-free, and hence Γ acts freely on XBS
Q . Since XBS

Q is a manifold with

corners, the quotient Γ\XBS
is also a manifold with corners. Consider the example G = SL(2).

Then G = SL(2,R) and K = SO(2), and the symmetric space X = SL(2,R)/SO(2) can be
identified with the upper half plane H = {x+ iy | x, y ∈ R, y > 0}.

The inclusion of H in CP 1 naturally gives a boundary R ∪ {∞}. The set Q ∪ {∞} of rational
boundary points corresponds bijectively to the set of Q-parabolic subgroups of SL(2).

For each P, the boundary component e(P) is a horocycle of the corresponding boundary point
in Q ∪ {∞} minus the boundary point, which can be identified with R, also isomorphic to the
unipotent radical NP of P . Hence XBS

Q is obtained by adding a line R at each rational boundary
point.

The quotient of e(P) = R by Γ ∩ P becomes a circle. So Γ\HBS
is obtained from Γ\H by

adding a circle to each cusp neighborhood. (Note that there is an 1-1 correspondence between the
ends of Γ\H and the Γ-equivalence classes of Q-parabolic subgroups of SL(2).)

This completes the discussion about Condition (1) on the existence of finite BΓ. For Condition
(2), we use the following results in [Ji1].

Proposition 5.1 Let X be a proper metric space. If a finitely generated group Γ acts properly and
isometrically on X, then asdim Γ ≤ asdim X.

The point is that for any point x0 ∈ X, the map Γ → Γx0 is a coarse equivalence, where Γ is
given a word metric.

The coarse equivalence is defined as follows. Let (M1, d1) and (M2, d2) be two metric spaces.
Two maps ϕ1, ϕ2 : M1 → M2 are called coarsely equivalent if there exists a constant C such that
d2(ϕ1(x), ϕ2(x)) ≤ C for all x ∈ M1. Two metric spaces (M1, d1) and (M2, d2) are called coarsely
equivalent if there exist coarsely uniform, (metric) proper maps ϕ : M1 → M2 and ψ : M2 → M1

such that ϕψ and ψϕ are coarsely equivalent to the identity maps on M2 and M1 respectively,
where a map ϕ is coarsely uniform if there is a function f(r) with limr→+∞ f(r) = +∞ such that
d2(ϕ(x), ϕ(y)) ≤ f(d1(x, y)) for all x, y ∈ M1. A basic observation is that two coarsely equivalent
metric spaces have the same asymptotic dimension. See [Roe] for details.

To prove the above proposition, both the properness and the isometry of the Γ action are used
to show that the map Γ → Γx0 is coarsely uniform. If the stabilizer of x0 in Γ is trivial, certainly
there is a canonical inverse map from Γx0 to Γ. Otherwise, the properness of the action shows the
stabilizers of points in Γx0 are finite. Since these points belong to one Γ-orbit, these stabilizers
are conjugate and hence are uniformly bounded. This allows one to get a coarse inverse map from
Γx0 → Γ which is also coarsely uniform. This proves the coarse equivalence between Γ and the
orbit Γx0.

In our case, X = G/K is a homogeneous space with a left invariant metric, which is clearly a
proper metric space. The finiteness of asdim X is proved in [CG2].

Proposition 5.2 Let G a real Lie group with finitely many components, and K a maximal com-
pact subgroup. Let X = G/K be the associated homogeneous space endowed with a G-invariant
Riemannian metric. Then asdim X = dimX < +∞.

The combination of these two results gives the following result, and hence the second condition
in Theorem 3.1 is satisfied.
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Corollary 5.3 If Γ ⊂ G(Q) is an arithmetic subgroup of a linear algebraic group G, then asdim Γ ≤
dimG/K < +∞.

Geometrically finite Kleinian groups.

We briefly discuss another natural class of discrete subgroups of Lie groups, the class of geomet-
rically finite Kleinian groups, which satisfy both conditions in Theorem 3.1 and hence the integral
Novikov conjectures hold for them. For more details and references for some of the results discussed
below, see [Ji2].

When G is semisimple, arithmetic subgroups Γ are lattices or lattice subgroups, i.e., vol(Γ\X) <
+∞. But there are other important discrete subgroups which are not necessarily lattices, for exam-
ple, geometrically finite groups acting on noncompact symmetric spaces of rank 1, in particular, the
real hyperbolic spaces. Discrete subgroups acting on symmetric spaces of rank 1 are often called
Kleinian groups. They have been studied extensively in complex analysis, topology, harmonic
analysis. The class of geometrically finite Kleinian groups strictly contains the class of arithmetic
subgroups of rank 1 semisimple Lie groups.

We recall the definition. Assume for the rest of this section that G is a connected semisimple
Lie group of rank 1. Then X = G/K is a symmetric space of noncompact type of rank 1, i.e.,
a symmetric space of strictly negative curvature. Let X(∞) be the set of equivalence classes
of geodesics in X, which can be identified with the unit sphere in the tangent space Tx0X for
any basepoint x0 ∈ X, and hence called the sphere at infinity. Let X ∪ X(∞) be the geodesic
compactification. It is known that X ∪X(∞) is a real analytic manifold with boundary.

Let Γ ⊂ G be a discrete subgroup. Then Γ acts isometrically on X. The action extends to
X ∪X(∞) by real analytic diffeomorphisms.

Let Λ(Γ) ⊂ X(∞) be the set of limit points of Γ, i.e., the set of accumulation points of any orbit
Γ · x in X ∪X(∞), for any x ∈ X. The complement Ω(Γ) = X(∞)− Λ(Γ) is called the domain of
discontinuity, and Γ acts properly on Ω(Γ).

Assume that Γ is torsion free. Then Γ acts properly and freely on X ∪ Ω(Γ), and the quotient
Γ\X ∪ Ω(Γ) is a real analytic manifold with boundary. If this quotient is compact, Γ is called
convex cocompact. Otherwise, Γ contains parabolic elements.

Definition 5.4 A discrete subgroup Γ of G is called geometrically finite if Γ\X ∪Ω(Γ) has finitely
many ends, and each end is of certain standard form.

There are several equivalent definitions of geometrically finite groups in terms of the nature
of limit points (conical limit points), convex core and thick-thin decomposition. When X is the
real hyperbolic space Hn, n = dimX, there is also a definition in terms of shapes of fundamental
domains.

As mentioned earlier, arithmetic subgroups (or more general lattice subgroups) are geometrically
finite. In fact, if Γ is an arithmetic subgroup, then Λ(Γ) = X(∞). The reduction theory of lattice
subgroups shows that Γ\X has finitely many ends and each of which is a topological cylinder.

But there are many other geometrically finite Kleinian groups which are not lattice subgroups.
In fact, there are several general constructions of geometrically finite groups from reflections as-
sociated with polyhedrons and combinations of simpler geometrically finite groups. For example,
Fuchsian groups in SL(2,R) considered as Kleinian groups acting on H3 are geometrically finite.

Proposition 5.5 If Γ is geometrically finite and torsion free, then Γ\X ∪Ω(Γ) admits a compact-
ification as a real analytic compactification with corners, which gives a finite BΓ-space.
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This result is essentially due to Apanasov and Xie [AX]. The compactification in the above
proposition gives a compactification of Γ\X, which is an exact analogue of the Borel-Serre com-
pactification for locally symmetric spaces of finite volume.

Corollary 5.6 The integral Novikov conjectures in K-theory and L-theory hold for torsion free
geometrically finite Kleinian groups Γ.

To prove this, we note that asdim Γ ≤ dimX as above for arithmetic groups and apply Theorem
3.1. See [Ji2] for details and references.

6 Novikov conjectures for S-arithmetic subgroups

In this section, we outline the proof of Theorems 1.4, 1.5 and 1.6. We assume G is a linear reductive
algebraic group defined over a global field k, and Γ an S-arithmetic subgroup, where S contains non-
archimedean places. We also assume that the center of G has rank 0 over k, which is automatically
satisfied if G is semisimple. The basic reason for this assumption is that Γ will be a lattice in the
group

∏
p∈S G(kp) defined below. We apply Theorem 3.2 to prove Theorem 1.4, Theorem 3.1 to

prove Theorem 1.5, and the generalization of Theorem 3.1 given in Theorem 3.6 to prove Theorem
1.6.

To prove Theorem 1.4, we need to check the following two conditions:

1. Γ admits a finite BΓ.

2. EΓ admits a Γ-equivariant compactification with small Γ-action at infinity.

For each place p of k, let kp be the completion of k with respect to the norm associated with
p. When p is archimedean, kp is isomorphic to either R or C. When p is non-archimedean, kp is a
local field with a finite residue field.

For each archimedean place p, let Kp be a maximal compact subgroup of G(kp) and

Xp = G(kp)/Kp

the associated symmetric space. For each non-archimedean place p, let Xp be the Bruhat-Tits
building associated to the reductive group G(kp) over a local field. It is known that Xp has a
Tits metric whose restriction to each apartment is isometric to Rr, where r is the kp-rank of G,
and G(kp) acts isometrically and properly on Xp (see [BS2] [Se1] [Se2] [Ji5] for definitions of the
Bruhat-Tits buildings, the Tits metric, and other properties). In the fololwing, Xp is considered as
a metric space with respect to the Tits metric.

Define
X∞ =

∏
archimedean p∈S

Xp, XS,f =
∏

non-archimedean p∈S

Xp.

Then X∞ is a symmetric space of nonpositive curvature, and XS,f is an euclidean building. Define

XS =
∏
p∈S

Xp.

When k is a number field,
XS = X∞ ×XS,f ;

when k is a function field,
XS = XS,f .
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Since the Bruhat-Tits buildings and symmetric spaces Xp are all contractible, all three spaces XS ,
XS,f and X∞ are contractible.

It is known that Γ can be embedded diagonally into
∏

p∈S G(kp) as a discrete subgroup, for

example, when G = Gm = GL(1),
(
Z

[
1
p1
, · · · , 1

pm

])×
can be embedded diagonally into R××Q×

p1
×

· · ·×Q×
pm

as a discrete subgroup. Arithmetic subgroups such as SL(n,Z) are discrete subgroups of
the Lie groups such as SL(n,R) because Z is a discrete subgroup of R. Similarly, the basic reason
for the above discrete embedding of S-arithmetic subgroups over number fields is that Z[ 1

p1
, · · · , 1

pm
]

is a discrete subgroup of R×Qp1 × · · · ×Qpm .
Since each G(kp) acts properly on Xp, Γ acts properly on XS . Therefore, if Γ is torsion free, Γ

acts freely on XS , and hence Γ\XS is a K(Γ, 1)-space.
Under the conditions in Proposition 4.3, Γ admits torsion free subgroups of finite index. We

can assume that Γ is torsion free if necessary.
It is known that Γ\

∏
p∈S G(kp) is compact if and only if the k-rank of G is equal to zero, which

is also equivalent to that the quotient Γ\XS is compact. (Note that though G(kp) does not act
transitively on Xp when kp is a local field, the quotient of Xp by G(kp) is compact.)

Proposition 6.1 When the k-rank of G is equal to 0, the quotient Γ\XS has the structure of a
finite CW-complex.

1. If Γ is torsion free, it admits a finite BΓ given by Γ\XS.

2. If Γ contains torsion elements, then XS is a cofinite Γ-CW-complex EFΓ.

Since S contains non-archimedean places, XS and hence Γ\XS are not manifolds. Therefore it
is not obvious or automatically true that it is a finite CW-complex. The basic idea of the proof is
that XS,f has a simplicial structure induced from the Bruhat-Tits buildings. For each simplex σ in
XS,f , its stabilizer Γσ in Γ is an arithmetic subgroup acting on X∞. Using triangulations of X∞
equivariant with respect to these arithmetic subgroups and suitable refinements, we can get an Γ-
equivariant CW-complex structure on XS which gives the structure of a finite CW-complex Γ\XS .
The second statement is more complicated. We need to use the fact that XS is a CAT(0)-space
discussed below in Proposition 6.3 in order to study the set of fixed points of finite groups in XS

and hence show that XS is a EFΓ-space. We also need to use triangulation of orbifolds to show
that it is a cofinite Γ-CW-complex EFΓ. See [Ji3] for details.

We point out that when k is a function field, its characteristic is positive. If the k-rank of
G is positive, then any S-arithmetic group Γ contains nontrivial unipotent elements, which are
torsion. Hence, the rank 0 assumption for function fields is necessary for the existence of torsion
free S-arithmetic subgroups and also for the existence of finite BΓ in the above proposition. (As
mentioned in Remark 2.7, the integral Novikov conjectures are expected to fail in general for groups
containing nontrivial torsion elements.)

On the other hand, the rank 0 assumption can be removed for number fields.

Proposition 6.2 Assume that G is a linear reductive group defined over a number field. If Γ a
torsion free S-arithmetic subgroup, then Γ admits a finite BΓ.

As in the case of arithmetic subgroups, we enlarge X∞ to the Borel-Serre partial compact-
ification X∞

BS
Q . For simplicity of notation, we denote X∞ by X. Then it can be shown that

Γ\XBS
Q ×XS,f is compact (see [Se2], [BS2]). Similar arguments as in the above proposition shows

that Γ\XBS
Q ×XS,f has the structure of a finite CW-complex.
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We need to check the second condition on the existence of a compactification of EΓ with small
Γ-action at infinity.

By assumption, the k-rank of G is equal to 0. Then Γ\XS is a finite BΓ-space, and the cor-
responding EΓ-space is given by XS . To describe the desired compactification, we recall that a
geodesic metric space is called a CAT(0)-space if every triangle in it is thinner than the correspond-
ing triangle of same side lengths in R2.

CAT(0)-spaces occur naturally. For example, nonpositively curved, simply connected Rieman-
nian manifolds are CAT(0)-spaces. In fact, CAT(0)-spaces were motivated by the study of such
nonpositively curved manifolds. It is also known that Euclidean buildings and hence Bruhat-Tits
buildings are CAT(0)-spaces (see [Br1]).

A simple but crucial observation is the following:

Proposition 6.3 If X1, X2 are CAT(0)-spaces, then X1×X2 is also a CAT(0)-space. In particular,
XS =

∏
p∈S Xp is a CAT(0)-space.

It is known that a CAT(0)-space is contractible. Another important fact is the existence of the
geodesic compactification.

Proposition 6.4 Let X be a CAT(0)-space and X(∞) the set of equivalence classes of geodesics
(or rays) in X. If X is proper, then it can be compactified by adding X(∞). The compactification
X ∪X(∞) satisfies the following property:

1. X ∪X(∞) is contractible.

2. Any isometric action of a group Γ on X extends to an action on X ∪X(∞).

3. If Γ acts properly on X with a compact quotient, then the action of Γ on X ∪X(∞) is small
at infinity.

When X is a simply connected nonpositively curved manifold, these conclusions are well-known.
In fact, parts (2) and (3) follow from the definition of the topology in terms of convergences of
geodesics; and part (1) follows from the fact that X ∪X(∞) is homeomorphic to the closed unit
ball in the tangent space Tx0X for any basepoint x0 ∈ X. For a general CAT(0)-space X, parts (2)
and (3) can be proved in the same way, and part (1) can be proved by contracting along rays from
a fixed basepoint.

Corollary 6.5 Assume that G is a linear reductive algebraic group defined over a global field k
with k-rank equal to 0. If Γ a torsion free S-arithmetic subgroup of G(k), then its EΓ = XS

admits a Γ-equivariant, metrizable compactification XS ∪ XS(∞) such that the Γ-action on the
compactification is small at infinity. Similarly, if Γ contains torsion elements, then EFΓ admits a
Γ-equivariant small compactification.

Together with Proposition 6.1, this shows that the conditions in Theorem 3.2 and Theorem 3.5
are satisfied, and hence Theorem 1.4 is proved.

In Theorem 1.5, G is a reductive algebraic group defined over a number field k. To apply
Theorem 3.1, we need to show that the asymptotic dimension of Γ, denoted by asdim Γ, is finite
and Γ admits a finite BΓ.

By Proposition 6.2, the condition of BΓ being realized by a finite CW-complex is satisfied. In
fact, we can take Γ\XBS

Q ×XS,f as a finite BΓ-space. Then EΓ = X
BS
Q ×XS,f .
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To show asdim Γ < +∞, we note that Γ acts properly and isometric on XS . Hence by the sub-
additivity of the asymptotic dimension, it suffices to prove that for each p ∈ Sf , asdim Xp < +∞.
Since Xp can be isometrically embedded into the Bruhat-Tits building of the group SL(n, kp), it
suffices to prove that the asymptotic dimension of the latter is finite, which is proved in [Mat,
Theorem 3.21].

To prove Theorem 1.6 using the criterion in Theorem 3.6, the condition asdim Γ < +∞ follows
from the above discussions. The difficulty is to get an explicit model of EFΓ and to understand
the geometry of the fixed point sets in EFΓ by finite subgroups of Γ and finite quotients of such
fixed point sets.

The following result on EFΓ is known and stated in literature without proof. We gave a proof
in [Ji6]. See [Ji6] for details and other results as well.

Proposition 6.6 Let G be a reductive algebraic group defined over a number field k, and Γ an
arithmetic subgroup of G(k) as above. Then the Borel-Serre partial compactification X∞

BS is a
Γ-cofinite EFΓ-space.

Remark 6.7 As pointed out earlier, if G is a reductive linear algebraic group of positive rank over
a function field, then every S-arithmetic subgroup Γ contains nontrivial torsion elements and hence
does not admit a finite BΓ-space. In fact, by [Be1] [Be2], such S-arithmetic subgroups are not of
type FP∞. On the other hand, the existence of a cofinite Γ-CW-complex EFΓ implies that Γ is
of type FP∞ [Br3, Proposition 1.1]. Therefore, Γ does not likely admit a Γ-cofinite CW-complex
EFΓ.

Remark 6.8 When a preliminary version of this paper was written, the paper [Mat] was not
available. In that version, only a special case of Theorem 1.5 was proved and the proof was modeled
after [Go2] by using a criterion more relaxed than Theorem 3.2. Since this original approach is
probably applicable to prove the integral Novikov conjecture in both K- and L-theories for the
mapping class groups (or rather its torsion-free subgroups), we keep an outline of this approach in
the current version.

As pointed out earlier, the existence of a finite BΓ follows from Proposition 6.2. To apply
Theorem 3.2, the problem is to find a good compactification of EΓ = X∞

BS×XS,f . Note thatX∞ is
a partial compactification of X∞ determined by the rational structure of G, such a compactification
of X∞

BS and hence of X∞ should make use of the real structure of G, and the construction will
depend on the interplay between the rational and real structures and is hence complicated.

For simplicity, the symmetric space at infinity X∞ is denoted by X. When S does not contain
any non-archimedean place, Γ is an arithmetic subgroup and XS = X. If the rank of X is equal
to 1, this problem was solved in [Go2]. It turns out that in general it is difficult to construct a
compactification of XBS

Q with a small Γ-action at infinity. Instead, a Γ-equivariant compactification

X
∗ of XBS

Q was constructed in [Go2] and a generalization of Theorem 3.2 in [CP1] as mentioned
in Remark 3.4 can be applied to prove the integral Novikov conjectures.

We briefly describe the compactification X
∗ when X is the Poincaré disc, or the upper half

plane. In this case, we add a line to every point in R ∪ i∞, and obtain XBS
R .

The resulting space XBS
R is still noncompact. In fact, it is naturally mapped onto the geodesic

compactification X ∪ X(∞), and the fibers on the boundary are R and hence noncompact. We
can compactify R ∼= (−1, 1) to [−1, 1]. The resulting space is X∗. Note that the boundary of this
compactification has dimension 2, which is also the dimension of X.
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When S contains non-archimedean places, we combine the compactification X∗ with the Borel-
Serre compactification of Bruhat-Tits buildings Xp by spherical Tits buildings in [BS2], or equiva-
lently, the compactification of the Bruhat-Tits buildings as CAT(0)-spaces, to obtain a compacti-
fication of EΓ = X

BS
Q ×XS,f . Then apply the methods in [Go2] using the result in [CP1] to prove

the integral Novikov conjecture for torsion-free S-arithmetic subgroups when the rank of X = X∞
is equal to 1.

Remark 6.9 When the symmetric space at infinity X = X∞ has rank strictly greater than 1, the
construction is even more complicated.

From the brief description in the previous remark, there are two steps in the construction of
X
∗:

1. Fill in all the missing irrational directions to enlarge the Borel-Serre partial compactification
X

BS
Q by adding boundary components of R-parabolic subgroups.

2. Partially compactify the boundary components, both rational and irrational ones.

The first step can be carried out using the real Borel-Serre partial compactification XBS
R , which

has a boundary component for every R-parabolic subgroup [BS1]. But there is a problem if the
the R-rank of G is not equal to Q-rank of G. In fact, in X

BS
R , the real Langlands decomposition

of parabolic subgroups is used for Q-parabolic subgroups; while in X
BS
Q , the rational Langlands

decomposition of parabolic subgroups is used for Q-parabolic subgroups. These two decompositions
are not the same, and there is no inclusion XBS

Q ↪→ X
BS
R if the R-rank is strictly greater than the Q-

rank of G. This is the reason that it is assumed in [Go1] that these ranks are equal. This problem
with non-equal ranks can be solved by blowing up the boundary components of real parabolic
subgroups in XBS

R . Briefly, let P be a Q-parabolic subgroup of G, and AP the Q-split component
of P = P(R) and AR the R-split component of P . Then AQ ⊆ AR. Assume that AQ 6= AR. Then
we can use an orthogonal complement of aQ in aR (or rather a compactification of this complement)
to enlarge (or blow up) the boundary of P in XBS

R so that the resulting space contains XBS
Q .

The next problem is to partially compactify the boundary components. In the example of
the Poincaré disc, the boundary component e(P ) is equal to the unipotent radical NP of P . For
general G and X, the boundary component is the product of the unipotent radical NP and a lower
dimensional symmetric space XP associated with P (or a suitable blow-up as explained above). It
turns out that it suffices to compactify the factor NP . Since the compactification of EΓ = X

BS
Q

needs to be Γ-equivariant, the compactification of NP needs to be Γ ∩ P -equivariant rather than
only Γ ∩ NP -equivariant as required in [Go1]. Since the Γ-equivariance of the compactification is
crucial for the application to the Novikov conjecture but not clear from the construction, it seems
that there might be some problems with the compactification X

∗ in [Go1]. (When the rank of X
is equal to 1 and Γ is torsion-free, by passing to a subgroup Γ′ of Γ of finite index if necessary, it
should be true that Γ′ ∩ P = Γ′ ∩NP , and the above problem can be avoided in this special case
in [Go2].)

Specifically, the idea in [Go1] and [Go2, §4] is to choose a Malcev set of generators of Γ ∩ NP

and hence a Malcev set of generators of the Lie algebra nP , which induces a filtration of nP

(or NP ). This filtration is used to obtain a compactification NP . By the choice of the Maclev
generators, this filtration is invariant under the action of NP and hence Γ∩NP , which implies that
the compactification NP is a Γ∩NP -equivariant compactification. But the problem is that there is
no canonical choice of such Maclev generators of nP which are invariant under the automorphism
group of NP , for example, under the conjugation of MP and Γ ∩ P . A possible way to solve
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this problem is to use the canonical filtration of NP induced from the decreasing commuting series,
which is invariant under the automorphism group of NP . Now each successive quotient is an abelian
group, diffeomorphic to an Euclidean space, and can be compactified by the sphere at infinity. These
compactifications can then be put together as in [Go2, §4] to obtain a compactification of NP which
is equivariant with respect to the automorphism group of NP .
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