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Abstract

We develop a systematic and efficient method of counting single-trace and

multi-trace BPS operators for world-volume gauge theories of N D-brane probes,

for both N → ∞ and finite N . The techniques are applicable to generic singu-

larities, orbifold, toric, non-toric, et cetera, even to geometries whose precise field

theory duals are not yet known. Mathematically, fascinating and intricate inter-

relations between gauge theory, algebraic geometry, combinatorics and number

theory exhibit themselves in the form of plethystics and syzygies.
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1 Introduction

The study of BPS states in a quantum field theory is of unquestionable importance. The

purpose of this note is to discuss the set of all mesonic BPS gauge invariant operators

(GIO) which appear in the chiral ring of a generic N = 1 supersymmetric gauge theory

that lives on a D3-brane which probes a singular Calabi Yau (CY) manifold1. For

arbitrary singularities, finding the gauge theory living on the D3-brane is intricate. The

simplest class is the orbifolds, the study of which began with [2, 3, 4, 5, 6, 7, 8]. The

next simplest class is the toric singularities, the investigation of which was initiated

by [8, 9, 10]. Interesting duality structures of these theories have been expounded in

[11, 12, 13, 14]. It is recently realised that the toric theories are, in fact, best described

using a bi-partite periodic tiling of the two dimensional plane, a so-called “dimer model”

[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] (also cf. [28, 29] for recent mathematical

treatments).

When the manifold is non-orbifold and non-toric there is no current systematic way

of describing the gauge theory even though some examples exist in the literature. For

example, the higher del Pezzo series [30] and certain deformations of toric singularities

[26] have been addressed. In this paper we will see how one can describe the single- and

multi-trace operators in terms of generating functions which can be computed for both

1Some preliminary results were annouced in [1].
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toric and non-toric manifolds. In fact, the computations we will see can calculate the

generating functions even for cases in which the gauge theory is not precisely known -

either the superpotential is missing or even the quiver itself is not known.

The discussion on GIO’s in the chiral ring can be divided into few parts as follows.

Given a gauge theory description of the theory on the D-brane, there are several problems

of interest:

Global U(1) Charges: One would like first to identify the set of global U(1) charges

of this theory. One charge out of this set is singled out to be the R-charge and the other

charges can be generically called global non-R charges. The most useful way of thinking

about these charges is by introducing the holographically dual gravity description. A set

of D3-branes on a singular conical CY is holographically dual to an AdS5×Y5 background

where Y5 is a Sasaki Einstein (SE) manifold (cf. [31] and references therein). The global

charges of the gauge theory are dual to gauge fields in AdS5. These gauge fields can be

divided into two sets – one set originates from the Type IIB metric, those are typically

referred to as the isometry of the SE manifold, and the other set comes from the Type

IIB 4-form. The R-charge is always part of the isometry group of the SE manifold.

The traditional name which was given to the charges coming from the metric are flavor

charges and those which come from the 4-form are called baryonic charges.

The isometry group of the SE manifold has a maximum rank of 3, in which case the

SE manifold and its CY cone are called toric; the minimum rank is 1, in which case the

corresponding U(1) charge is precisely the R-charge. The number of baryonic charges

is in principle unbounded and is given by the third homology of the SE manifold. Most

cases which were studied in the literature have one baryonic symmetry, the prototypical

example being the conifold [32]. Currently there are extensive studies of cases with more

than one baryonic charge, the simplest being the Suspended Pinch Point (SPP) [17, 33].

Counting Gauge Invariant Operators: Given the set of U(1) symmetries, R,

flavor, baryonic, etc., say, n of them, each gauge invariant operator in the chiral ring

carries a set of charges under these symmetries. We will assign a generic complex variable

ti, i = 1 . . . n to each such charge and define a function f({ti}) to be the generating

function of all these operators. This function f has, by definition, an expansion in

terms of monomials in {ti} such that the coefficient, ck1,...,kn
of tk1

1 · · · tkn
n is integer and
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counts the number of operators of charges (k1, . . . , kn),

f({ti}) =
∑

i1,...,ik

ck1,...,kn
tk1
1 . . . tkn

n . (1.1)

Our goal is to compute such functions for a multitude of cases.

Our ultimate wish is that for any CY manifold we would like to know

1. The set of single-trace BPS operators, the generating function is denoted by f ;

2. The set of multi-trace BPS operators, the generating function is denoted by g;

3. For N D3-branes at the singular CY we would like to know the dependence on N .

Namely, we would like to know how many independent single-trace and multi-trace

operators are there in the chiral ring for a given set of charges. For a finite N this

turns out to be a much more difficult task since there are matrix relations for a

finite size matrix that need to be taken into account. Nevertheless, we find a nice

solution to this as well; the generating functions in this case will be denoted as fN

for single-trace and gN for multi-trace.

As will be discussed in detail in later sections there is an important function which

beautifully relates the single-trace generating function and the multi-trace. Namely,

gN can be simply computed from fN using the so-called “Plethystic Exponential.” This

function has been used in physics several times in the past and we believe it should go

into the literature more often as it plays a crucial role in counting problems such as

the one dealt with here2. Conversely one can use the so-called “Plethystic Logarithm”

which is the inverse function to the plethystic exponential and computes fN from gN .

The ability to switch between f and g will turn out to be a key tool in analyzing the

theories we are interested in and to reveal new pieces of information which were either

previously unknown or alternatively not well discussed.

Having presented a host of functions and concepts, it would be most expedient to

exemplify them in a context with which the readers are well-acquainted. We shall do

so for the famous D3-brane theory on C
3 in the next section. Having whetted the

readers’ appetites, the plan for the remainder of the paper is as follows. We begin

with the large N limit and present the solution to questions (1) and (2) above. In §3,

we show how to construct f , the generating function for single-trace GIO’s. This is

2A. H. would like to thank Marcos Mariño for demonstrating the properties of this function [50].
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a Hilbert-Poincaré counting problem. We exemplify with orbifolds, toric varieties and

the del Pezzo family. We take an interlude in §4 and examine this counting problem

using the graphical perspectives of dimers. Then, in §5, we construct the generating

function g, which count the multi-trace GIO’s. The relationship between f and g will

turn out to be a plethystic one. In due course, we will show how plethystics actually

encode not only the GIO’s counting, but also the defining equation of the singularity.

Interesting partition identities as well as syzygies in graded polynomial rings emerge.

Having constructed the generating functions, we then calculate the asymptotic behaviour

thereof in §6, using results from combinatorics and analytic number theory. Finally, we

use the above formalism to address the more difficult problem of finite N in §7 and show

how plethstics again solves the counting problem and how they encode the geometry.

We conclude with perspectives in §8.

2 C
3: An Illustrative Example

As promised in the introduction, we begin with a familiar example to illustrate the

various generating functions. Here, the computation can be done without using the

more general techniques which will follow in the rest of the paper. This example is of

course for the archetypal example of the AdS/CFT correspondence, the case in which

the CY manifold is trivially C3 and its associated SE manifold, S5 [34]. There are no

baryonic charges in this case since the third homology of S5 is trivial and the isometry

group is SU(4) with rank 3, meaning that this CY manifold is actually toric and the

number of U(1) charges is 3. We can thus define 3 corresponding variables, t1, t2, t3,

which will then measure these three U(1) charges in their powers, as explained above.

The gauge theory is the N = 4 gauge theory with U(N) gauge group which in N = 1

language has 3 adjoint chiral multiplets which we will denote as x, y and z. Being toric,

this CY manifold admits a description in terms of periodic bi-partite tilings of the two

dimensional plane and in fact is given by the simplest of them all - tilings by regular

hexagons [16].

We are interested in operators in the chiral ring and therefore we need to impose

the F-term relations coming from the superpotential W = Tr(x[y, z]). The F-terms

hence take a particularly simple form: [x, y] = [y, z] = [z, x] = 0, i.e., all chiral adjoint

fields commute. The generic single-trace GIO in the chiral ring will then take the form
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of Tr(xiyjzk). It is then natural to assign t1 as counting the number of x fields, t2,

the number of y fields and t3, the number of z fields in a GIO. There will therefore

be a corresponding monomial ti1t
j
2t

k
3 for each gauge invariant of charges i, j, and k,

respectively. In fact, there will be precisely one for each triple of charges, provided each

of i, j, and k are non-negative. Putting all of this together, we find that the generating

f takes the form

f(t1, t2, t3; C
3) =

∞∑

i=0

∞∑

j=0

∞∑

k=0

ti1t
j
2t

k
3 =

1

(1 − t1)(1 − t2)(1 − t3)
. (2.1)

To be more precise, in the above form we did not take into account any relations that

a finite matrix should satisfy, therefore, as mentioned earlier, this result is strictly valid

for the case of N = ∞. Therefore, using the notation introduced above we should write

f∞(t1, t2, t3; C
3) =

1

(1 − t1)(1 − t2)(1 − t3)
. (2.2)

A General Feature for Toric CY: Note that in eq. (2.2) the coefficients cijk

appearing in the general expansion

f∞(t1, t2, t3) =
∑

ijk

cijkt
i
1t

j
2t

k
3 (2.3)

are all equal to either 1 or 0. This means that for a given set of charges, i, j, k, there

is either one operator carrying these charges or not, but there can not be more than

one. Indeed this is a generic feature which is obeyed for every toric singular CY. More

explicitly there is a one-to-one correspondence between single-trace GIOs and integer

lattice points in the dual cone of toric diagram [9, 26, 35]. This property is reminiscent of

some kind of a fermionic degree of freedom that carries this set of charges. In contrast,

for the non-toric case, it is shown in [26] that there are, in general, multiple-to-one

mappings between single-trace GIOs and given charges. The reason is clear. In the

toric case, we have two extra U(1) flavor symmetries besides the R-symmetry, which

is big enough to distinguish finely, while for non-toric case we do not have these extra

symmetries.

Let us look at the set of charges i, j, k for which cijk are not zero. They form a

sub-lattice of the three dimensional lattice which has the form of a cone. Indeed, this

sub-lattice is the so-called “positive octant” for which i ≥ 0, j ≥ 0, k ≥ 0. This feature

of a cone structure will also be general for every CY manifold, the form of this cone
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is interesting and will be discussed in detail §4. One can think of the function f∞ as

a theta-function over the lattice points of the cone and is a characteristic function of

this cone. It is worth to notice that from results in [26], it seems that there is a lattice

structure for both toric and non-toric cases. The difference is that for the toric case the

lattice is 3-dimensional while for non-toric case the dimension is less.

If on the other hand we are interested in counting the number of BPS operators

which carry a given fixed scaling dimension, say Tr(xiyjzk) of dimension i+ j +k = 3
2
R,

we need to set t1 = t2 = t3 = t in eq. (2.2) and get the generating function for all

operators. In other words, we have to forget the other two U(1) flavor symmetries and

use the fact that all variables x, y, z have same R-charge 2
3
. Hence,

f∞(t; C
3) =

1

(1 − t)3
=

∞∑

m=0

(
m + 2

2

)
tm (2.4)

and the number of GIO’s of given R-charge R = 2
3
m is

(
m+2

2

)
, corresponding to the

completely symmetric rank m representation of SU(3) that acts on x, y, and z in the

fundamental representation.

Single-Trace and Multi-Trace at N → ∞: Having studied f∞, let us now look

at the function f1, generating the single-trace operators for the case of one D3-brane on

C3. Clearly, the adjoint fields x, y, and z are complex variables and not matrices and

therefore any product of two or more of these matrices is a multi-trace operator. As a

result, there are only 4 single-trace operators in this case: the identity operator, x, y,

and z. We can therefore use their representation in terms of ti, i = 1, 2, 3, sum them

and write:

f1(t1, t2, t3) = 1 + t1 + t2 + t3. (2.5)

Next, we notice an interesting relation between g1 and f∞. Let us look at the set

of operators of the form Tr(xiyjzk) for the case in which the number of D3-branes is

N → ∞. Each such operator is represented by the monomial ti1t
j
2t

k
3 and can be thought

of as a multi-trace operator for the case of the number of D3-branes being N = 1. This

implies that g1, the generating function for multi-trace operators for one D3-brane is

equal to f∞, the generating function for single-trace operators for infinitely many D3

branes,

g1 = f∞ . (2.6)
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Can we now find some functional dependence between f1 and g1? Combining ex-

pressions eq. (2.6), eq. (2.5) and eq. (2.2), we have

g1(t1, t2, t3) =
1

(1 − t1)(1 − t2)(1 − t3)
= exp[− log(1 − t1) − log(1 − t2) − log(1 − t3)]

= exp

( ∞∑

r=1

tr1 + tr2 + tr3
r

)
= exp

( ∞∑

r=1

f1(t
r
1, t

r
2, t

r
3) − 1

r

)
. (2.7)

The last relation

g1(t1, t2, t3) = exp

( ∞∑

r=1

f1(t
r
1, t

r
2, t

r
3) − 1

r

)
= f∞(t1, t2, t3) (2.8)

turns out to be a key relation and is satisfied for any CY manifold, toric or otherwise.

The function g1 is then said to be the Plethystic Exponential of f1. This relation in

fact generalizes to any N and we find that gN is the plethystic exponential of fN . We

will discuss this extensively in §5 and §7.

We are now ready to write down the expression for the generating function g∞ of

multi-trace BPS GIO’s in the chiral ring in the N = 4 theory, corresponding to N → ∞
D3-branes on C3. It is again, the plethystic exponential, this time of f∞ in eq. (2.2):

g∞(t1, t2, t3) = exp

( ∞∑

r=1

f∞(tr1, t
r
2, t

r
3) − 1

r

)
= exp

( ∞∑

r=1

1
(1−tr1)(1−tr2)(1−tr3)

− 1

r

)
. (2.9)

Note that g∞ has an expansion

g∞(t1, t2, t3) =
∑

ijk

dijkt
i
1t

j
2t

k
3, (2.10)

where the coefficients dijk are non-zero precisely when the coefficients cijk of f∞ are

non-zero. However, while cijk can be at most 1, dijk has a very fast growth and in fact

grows exponentially. It is therefore a problem of interest to find what is the large charge

behavior of dijk. We see that the multiplicity of BPS states for fixed R charge, R = 2
3
k,

is

g∞(t, t, t) = exp

( ∞∑

r=1

1
(1−tr)3

− 1

r

)
=

∞∑

k=0

dkt
k . (2.11)

We will present in §6 detailed discussions of how to obtain dk.

Single-Trace and Multi-Trace at Finite N : For finite N , the situation is in

general much more involved. Here, however, the simplicity of C3 allows us to write the

9



generating functions explicitly. In fact, the function fN is just the level-N truncation of

eq. (2.1):

fN(t1, t2, t3) =
N∑

i,j,k=0

ti1t
j
2t

k
3 .

Again, the multi-trace result gN can be obtained from the above by plethystics. We will

present the systematic treatment for arbitrary singularities in §7.

3 Counting Gauge Invariants: Poincaré Series and

Single-Trace

Having stated our problem and enticed the reader with the example of C3, we are now

ready to attack the general CY singularity. Our strategy will be to first examine the

simpler case of N → ∞ and then the more involved case of finite N .

Beginning with the large N situation, we first find the generating function f for

the single-trace GIO’s. Then, in §5, we will show how the plethystic exponential (PE),

extracts g, the generating function for the multi-trace GIO’s, from f . Indeed, because

the multi-trace GIO’s are composed of products of the single-trace ones, PE is expected

to be a version of counting integer-partitions. We would like to emphasize that the

counting automatically encode more than merely the matter content, but, furtively, the

superpotential as well. In other words, we will be concerned with a true counting of the

GIO’s with the F-term constraints automatically built in. We will check in all examples

below that this is indeed so by showing that the moduli space is explicitly the CY 3-fold,

as in required in D-brane probe theories.

How, then, do we compute f given the geometrical data of the CY? It turns out

that we could appeal to some known methods in mathematics. In projective algebraic

geometry, an important problem is to count the number of generators of graded pieces

of polynomial rings, the generating functions of this type are called Hilbert-Poincaré

series.

We shall borrow this terminology and refer to the function f for the single-trace

GIO’s as the Poincaré series for the associated N = 1 gauge theory; it shall soon be

seen that this appropriation is a conducive one. In this section, we proceed stepwise

along the various known classes of CY singularities which the D3-brane can probe. We

start with orbifolds and see the Poincaré series in the mathematical sense is precisely

10



what is needed. Next, we address toric CY singularities; here, using the techniques of

(p, q)-webs and 2-dimensional tilings (dimers), we construct f from the toric diagram.

Then, we proceed to the del Pezzo family of singularities.

3.1 Orbifolds and Molien Series

Given a finite group, it is a classical problem to find the generators of the ring of

polynomial invariants under the group action. The theory matured under E. Nöther

and T. Molien (cf. e.g. [36]). In our quiver gauge theory, the single-trace GIO’s are

polynomial combinations of fields which are invariant under the group action. Because

we are assuming large N , no extra relations arise beside these from the F-terms, and

the problem of computing f reduces to simply counting the number of algebraically

independent polynomials one could construct of degree n that are invariant under the

group. The problem is a mathematical one and was solved by Molien; the Poincaré

series is named Molien series in his honour.

Let us be concrete and specialise to the orbifolds of our concern, viz., 3-dimensional

CY orbifolds C3/G, with G a discrete finite subgroup of SU(3). Such singularities

were first classified by [37] and the D-brane quiver theories, constructed in [6]. Let G

act on the coordinates (x, y, z) of C3. Then, the question is: how many algebraically3

independent polynomials are there of total degree n in (x, y, z). The Molien series is

given by

M(t; G) =
1

|G|
∑

g∈G

1

det(I − tg)
=

∞∑

i=0

bit
i , (3.1)

where the determinant is taken over the 3×3 matrix representation of the group elements.

Upon series expansion, the coefficients bi give the number of independent polynomials

in degree i. Hence, the f we seek is simply M(t; G).

We can remark one thing immediately. In eq. (3.1) there is only one variable t instead

of (x, y, z) in our example C3. The reason is that for orbifold theories which descend

from the N = 4 parent every elementary field has R-charge 2/3. The replacement

x, y, z → t tells us that eq. (3.1) counts the single-trace GIO for given R-charge. Indeed,

as a first check, take G = I, the trivial group. We immediately find that

M(t; I) =
1

det(I − tI)
=

1

(1 − t)3
= 1 + 3 t + 6 t2 + 10 t3 + 15 t4 + 21 t5 + O(t6) , (3.2)

3In fact linearly independent, because any polynomial relation would change the total degree. Find-

ing the polynomial relations is a important one and will be subsequently addressed.

11



which agrees with eq. (2.2) for the C
3 theory if one set ti = t. Thus, the Molien series

counts invariants of total degree in x, y, z whereas eq. (2.2) counted the degree of the

three variables individually. In the next subsection, we shall refine the Molien series by

straight-forwardly generalising the dummy variable t to a triple (t1,2,3).

Emboldened by this check, let us go on to a non-trivial example, the binary dihedral

group D̂4 of 8 elements. This is a subgroup of SU(2) ⊂ SU(3) and is a member of

the ADE-series of CY two-fold (K3) singularities (cf. [38]). We can think of this as a

C3 orbifold with one coordinate, say z, held fixed. The gauge theory is the well-known

N = 2 D-type quiver (q.v. [3, 4, 5, 6]).

This group is generated as

D̂4 = 〈
(
−i 0

0 i

)
,

(
0 i

i 0

)
〉 , (3.3)

acting on (x, y) ∈ C2. We can readily compute the Molien series to be

M(t, D̂4) =
1

8
(

6

1 + t2
+

1

1 − 2 t + t2
+

1

1 + 2 t + t2
) (3.4)

= 1 + 2 t4 + t6 + 3 t8 + 2 t10 + 4 t12 + 3 t14 + 5 t16 + 4 t18 + 6 t20 + O(t22) .

This dictates that there are two invariants at degree 4, one at degree 6, etc.

Now, one can actually determine the invariants explicitly, which gives us another

check. First, an important theorem due to Nöther states that (cf. e.g. [36]):

THEOREM 3.1. The polynomial ring of invariants is finitely generated and the degree

of the generators is bounded by |G|.

Therefore, though the Molien series is infinite, with increasingly more invariants

arising at successive degree with them being linearly independent at each total degree,

there will be highly non-trivial algebraic relations amongst the ones at different degree.

The power of Theorem 3.1 is that one needs to find invariants at most up to degree

equal to the order of the group; all higher degree invariants are polynomials in these

basic ones.

Hence, we only need to find a finite number of invariants, which can be determined

explicitly due to an averaging technique of O. Reynolds (cf. e.g. [36]). Given any poly-

nomial F (x), one can define the so-called Reynolds operator

RG[F (x)] :=
1

|G|
∑

g∈G

F (g ◦ x) . (3.5)
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Then, the polynomial RG[F (x)] is invariant by construction. We can then list all mono-

mials of a given degree, apply eq. (3.5) to each and obtain the invariants at the said

degree; the number thereof should agree with what eq. (3.1) predicts.

Applying the above discussion to our example of D̂4, we obtain the following invariant

polynomials for the first few degrees:

degree invariant polynomials

4 x2y2, 1
2
(x4 + y4)

6 1
2
xy(x4 − y4)

8 x4y4, 1
2
x2y2(x4 + y4), 1

2
(x8 + y8)

(3.6)

We remark that there are no invariants of lower degree (except trivially the identity)

and that the number of independent invariants indeed agree with the series expansion

of eq. (3.4). Immediately, one sees some trivial relations such as x4y4 = (x2y2)2. Using

Gröbner basis algorithms [39], one can show that the above ring of 6 invariants can be

further reduced to 3. In other words, the ring of invariant polynomials, C[x, y]D̂4, is

generated by 3 so-called primitive ones:

v =
1

2
(x4 + y4), w = x2y2, u =

1

2
xy(x4 − y4) . (3.7)

Finding relations among these polynomials is known as the syzygy problem and is,

again, a classical problem dating to at least Hilbert. The modern solution is, as above,

to use Gröbner bases. The reader is referred to [40] for a pedagogical application of

syzygies and Gröbner basis to N = 1 gauge theories and to [41] in the context of moduli

stabilisation. We will return to syzygies later in the paper. For the present example, we

find the relation

v2w − w3 = u2 . (3.8)

This is a comforting result. Indeed, invariant theory tells us that

The defining equation of an orbifold is the syzygy of the primitive invariants.

We recognise eq. (3.8) as precisely the defining equation [38] for the affine variety C2/D̂4.
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3.1.1 ADE-Series

For completeness, let us compute (making extensive use of [39, 42]) the Molien series

for the discrete subgroups of SU(2). We find that

G ⊂ SU(2) |G| Generators Equation Molien M(t; G)

An n 〈
(

ωn 0

0 ω−1
n

)
〉 uv = wn

(1+tn)
(1−t2)(1−tn)

D̂n+2 4n 〈
(

ω2n 0

0 ω−1
2n

)
,

(
0 i

i 0

)
〉 u2 + v2w = wn+1 (1+t2n+2)

(1−t4)(1−t2n)

Ê6 24 〈S, T 〉 u2 + v3 + w4 = 0
1−t4+t8

1−t4−t6+t10

Ê7 48 〈S, U〉 u2 + v3 + vw3 = 0 1−t6+t12

1−t6−t8+t14

Ê8 120 〈S, T, V 〉 u2 + v3 + w5 = 0 1+t2−t6−t8−t10+t14+t16

1+t2−t6−t8−t10−t12+t16+t18

(3.9)

where we have defined ωn := e
2πi
n and

S := 1
2

(
−1 + i −1 + i

1 + i −1 − i

)
, T :=

(
i 0

0 −i

)
,

U := 1√
2

(
1 + i 0

0 1 − i

)
, V :=

(
i
2

1−
√

5
4

− i1+
√

5
4

−1−
√

5
4

− i1+
√

5
4

− i
2

)
.

(3.10)

We have also used the identity

n−1∑

k=0

1

(1 − tωk
n)(1 − tω−k

n )
=

∞∑

j=0

∞∑

m=0

tj+mnδj,nZ = n

∞∑

m=0

( ∞∑

β=0

t2m+nβ +

∞∑

β=1

t2m−nβ

)

=
n

1 − t2

(
1

1 − tn
+

1

t−n − 1

)
.

(3.11)

3.1.2 Valentiner: A Non-Abelian SU(3) Example

Having warmed up with the 2-dimensional CY orbifolds, we are ready to study the

proper subgroups of SU(3) [6]. The simplest, most well-known, non-trivial, non-Abelian

discrete subgroup of SU(3) is perhaps the Valentiner group, otherwise known as ∆(3·32),
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defined as

∆(27) := 〈




ω3 0 0

0 1 0

0 0 ω−1
3


 ,




1 0 0

0 ω3 0

0 0 ω−1
3


 ,




0 1 0

0 0 1

1 0 0


〉 . (3.12)

Let us investigate this group in some detail; we shall return to this group later in the

paper. The Molien series is readily computed to be

M(t; ∆(27)) =
−1 + t3 − t6

(−1 + t3)3 = 1+2 t3 +4 t6 +7 t9 +11 t12 +16 t15 +22 t18 + . . . . (3.13)

To find the defining equation (syzygies), Theorem 3.1 tells us that we need only

go up to degree 27 here, a total of 174 invariants, of degrees 0, 3, 6, . . . , 24, 27. Using

Gröbner techniques [39], we find that there are only 4 nontrivial generators for these

174 polynomials (we have scaled the expressions by an over-all 3):

{m = 3xyz, n = x3 + y3 + z3, p = x6 + y6 + z6, q = x3y6 + x6z3 + y3z6} . (3.14)

We then find a single relation in C[m, n, p, q]:

8 m6 + m3
(
−48 n3 + 72 n p + 72 q

)
+ 81

((
n2 − p

)3 − 4 n
(
n2 − p

)
q + 8 q2

)
= 0 .

(3.15)

Therefore, ∆(27) is a complete intersection, given by a single (Calabi-Yau) hypersurface

in C4.

3.2 Toric Varieties

Having studied the first class of CY singularities, viz., the orbifolds, in some detail,

let us move onto the next, and recently much-revived, class of geometries, the toric

singularities. It turns out that here one can also write the Poincaré series f explicitly,

now in terms of the combinatorics of the given toric diagram D [35]. Mathematically,

this is a nice extension of the Molien series.

We first draw the graph dual of the triangulation of D; this is the (p, q)-web [43],

a skeleton of tri-valent vertices indexed by i ∈ V . At each vertex i, the j-th (for

j = 1, 2, 3) of the three coincident edges has charge ~aij with ~a a three-vector indexed

by k, signifying the 3 charges. We remark that toric Calabi-Yau threefolds have three-

dimensional toric diagrams whose endpoints are co-planar and this is why D and the dual

(p, q)-web are usually drawn on the plane. Here, we need to restore the full coordinates
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of the 3-dimensional toric diagram; whence, ~a has 3 components. With this notation, the

Poincaré series for D is (cf. Eq. (7.24-5) of [35] and also [44] for interesting mathematical

perspectives):

P (X1, X2, X3; D) =
∑

i∈V

3∏

j=1

1

1 − X
a1

ij

1 X
a2

ij

2 X
a3

ij

3

. (3.16)

Before we proceed, let us remark on the charges of coordinates X1, X2, X3. For

toric varieties, we have three U(1) global symmetries: one is R-charge and the other

two, flavor charges. In general, each coordinate Xi is charged under all three U(1).

For example, the R-charge of X2 is given by the inner product of X2 = (0, 1, 0) and the

Reeb Vector VR = (b1, b2, b3). We recall that in the AdS/CFT correspondence the U(1)

R-symmetry is dual to a special Killing vector, the so-called Reeb vector (cf. e.g. [31]),

which can be expanded as VR =
3∑

i=1

bi
∂

∂φi
, where φi are the coordinates parametrising

the T 3-toric action. It is a very important quantity in toric geometry.

It is possible to make coordinate transformation (X1, X2, X3) → (X̃1, X̃2, X̃3) such

that each coordinate X̃i is charged under one and only one U(1). However, the charges

of these new coordinates X̃i in general is not even a rational number (for example the

R-charge of dP2), so it is not proper to use this new X̃i coordinate to do the Poincaré

series expansion, which must have integer powers. Furthermore, as we have seen in

the example of C3, sometimes we want to find the generating function of only one

U(1) charge, for example, the R-charge. To do so, we merely make the substitution

(X1, X2, X3) → (ta, tb, tc) for given a, b, c ∈ Z≥0 and the expression will be simplified

considerably. In a lot of cases, the interesting U(1) is a linear combination of all three

U(1)’s as we will see shortly.

Returning to eq. (3.16), we have some immediate checks. First, we recall that all

Abelian orbifolds of C3 (including C3 itself) are toric. For example, the toric diagram

for C3 is a triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1). The dual graph, i.e., the

(p, q)-web, has a single vertex, with three edges in the directions (1, 0, 0), (0, 1, 0) and

(0, 0, 1) respectively:

(1,0,0)

(0,0,1) (0,1,0)

(1,0,0)

Toric Diagram (p,q)−web (0,1,0)

(0,0,1)
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Hence,

P (X1, X2, X3; C
3) =

1

1 − X1
1X

0
2X

0
3

1

1 − X0
1X

1
2X

0
3

1

1 − X0
1X

0
2X

1
3

=
1

(1 − X1)(1 − X2)(1 − X3)
=
∑

i,j,k

X i
1X

j
2X

k
3 . (3.17)

This is precisely the result eq. (2.2) obtained from conventional methods in §2.

For a less trivial example, take the conifold C (cf. [35]). The toric diagram has 4

points, with coordinates

A = (0, 0, 1), B = (1, 0, 1), C = (1, 1, 1), D = (0, 1, 1) , (3.18)

as shown in the center of Fig. 1. The are two triangulations, giving two (p, q)-webs

upon dualising; the two are related by flop transitions. Of course, we need to prove the

counting is independent of such choices. Indeed, as the conifold is the building block

to all flops in toric varieties, if we show that f is the same for the two (p, q)-webs, this

would be true for all toric diagrams and thus we would be at liberty to make any choice

of (p, q)-web. First, take the left one, given by the two triangles ABD and BCD. This

(1,−1,0)

A B

CD

(0,0,1) (1,0,1)

(1,1,1)(0,1,1)

Toric Diagram

Trianglization 2Trianglization 1

(p,q)−web 1
(p,q)−web 2

(0,−1,1)

(−1,0,1)

(1,0,0)

(0,1,0)

(−1,−1,1)

(1,1,−1)

(0,−1,1)

(1,0,0)

(−1,0,1)

(0,1,0)

(−1,1,0)

Figure 1: The toric data for the conifold C. There are two triangulations, related to by

flops, and thus two (p, q)-webs. We see in the text that they lead to the same counting.

gives us 2 vertices, with (p, q)-charges of, respectively, {(0, 1, 0), (1, 0, 0), (−1,−1, 1)}
and {(0,−1, 1), (−1, 0, 1), (1, 1,−1)}. Thus eq. (3.16) gives us

P (x, y, z; C) =
1

(
1 − x y

z

) (
1 − z

x

) (
1 − z

y

) +
1

(1 − x) (1 − y)
(
1 − z

x y

) . (3.19)
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The second trianglization is given by ACD and ABC, giving us

1(
1 − x

y

)
(1 − y)

(
1 − z

x

) +
1

(1 − x)
(
1 − y

x

) (
1 − z

y

) . (3.20)

It is easy to see that the two expressions eq. (3.19) and eq. (3.20) are the same. Thus

indeed the generating function is independent of how we triangulate and how the dual

(p, q)-web is obtained [35].

3.2.1 Refinement: U(1)-charges and Multi-degrees

We see from eq. (3.16) that for toric varieties the counting is more refined than the

Molien series eq. (3.1) as the latter only counts invariants of total-degree. There seems

to be a straight-forward generalisation. In order to get the number of single-trace GIO’s

given the R-charge of each field, the Molien counting seems to be refinable to counting

the number of independent polynomials of a given multi-degree (i1, . . . , i3). This is done

by generalising the Molien series to:

M(t, G) =
1

|G|
∑

g∈G

1

det(I − diag(t1, . . . , tk) · g)
=
∑

i1,...,ik

bi1,...,ikt
i1
1 . . . tikk . (3.21)

The caveat is that now the coefficients bi1,...,ik are no longer guaranteed to be integers

for general groups. This corresponds to the fact that the invariants are not monomial in

general, but, rather, polynomial. For example, in eq. (3.6), at degree 6, there is a single

invariant, built of the sum of two monomials, of multi-degree (5, 1) and (1, 5), each of

which is not an invariant.

Therefore, this refinement only makes sense in case there is a corresponding con-

served charge associated with a U(1) that is part of the isometry of the CY manifold.

The isometry of C3 is SU(4) with rank 3. There is thus a maximum of 3 charges cor-

responding to the maximal subgroup of the isometry group of the CY manifold. If the

manifold is toric then there is a T 3 fibration and therefore a total of three U(1) charges

and the index would be a function of 3 variables. If the manifold is not toric then in

many cases the isometry group has a rank smaller than 3 and in most cases in fact is ab-

sent. Nevertheless there is at least one charge, counting the R charge, that corresponds

to the choice of complex structure of the manifold.

To summarize, there are some cases in which the rank of the isometry group is 2

and in most cases the rank is 1. All cases in which the rank is less than 3 are non-toric.
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Ypq C

O A(0,0,1) (1,0,0)

(−1,p−q,1)

(−1,p−q+1,1) D

B (0,p,p)

O A

B

C

(1,0,0)(0,0,1)

(−1,p−q,1)

(0,p,p)

Xpq

Figure 2: The toric diagrams for the spaces Y p,q and Xp,q.

An example for a manifold with rank 2 is the set of complete intersection manifolds

of the form x2 + y2 + z2 + wk = 0. Is has a clear SO(3) isometry acting on the first

3 coordinates and together with the natural degree of the variables form the isometry

group SU(2)×U(1). For the case k = 2 the isometry grows to SO(4)×U(1) and having

rank 3 indeed confirms that the manifold is toric - the familiar conifold. We will study

this geometry again in §5.3.2.

An example of a manifold of rank 1 is any C3-orbifold with a full non-abelian sub-

group Γ of SU(3). For Γ in SU(2), we still have N = 2 SUSY, so the global isometry is

SU(2)×U(1), of rank 2. This is the reason that in trying to implement the refinement

on D̂4 we found factors of 1/2. There was simply no corresponding conserved charge

which corresponds to this generalization.

3.2.2 The Y p,q Family

An infinite family of toric CY 3-folds which has recently attracted much attention,

because of the discovery of explicit CY metric thereon, is the Y p,q’s (cf. e.g.,[45, 46, 47]).

Let us now do the counting for these. The toric data is given by O = (0, 0, 1), A =

(1, 0, 1), B = (0, p, 1) and C = (−1, p − q, 1). We have drawn it at the left hand side

of Fig. 2. As indicated, we take the trianglization as connecting the point Ta = (0, a, 1)

to A and C with a = 1, ..., p (so Tp = B). Now we have 2p triangles given by TaATa+1

and TaCTa+1, a = 0, ..., p − 1. For triangle TaATa+1 we have following charges and

corresponding term

{(1, 0, 0), (a, 1,−a), (−a − 1,−1, a + 1)} ⇒ 1

(1 − x)
(
1 − xa y

za

) (
1 − x−1−a z1+a

y

) .
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For triangle TaCTa+1 we have

{(−1, 0, 0), (−a + (p − q), 1,−a), (q − p) + a + 1,−1, a + 1)} ⇒ 1
(
1 − 1

x

) (
1 − x−a+p−q y

za

) (
1 − x1+a−p+q z1+a

y

) .

Putting these together we have

f(x, y, q; Y p,q) =

p−1∑

a=0

1

(1 − x)
(
1 − xa y

za

) (
1 − x−1−a z1+a

y

)+
1

(
1 − 1

x

) (
1 − x−a+p−q y

za

) (
1 − x1+a−p+q z1+a

y

) .

(3.22)

Knowing Y p,q, it is easy to go on to Xp,q. It differs therefrom by the addition of one

point (−1, p− q + 1, 1) in the toric diagram. So we use the above trianglization of Y p,q,

plus one more triangle given by (0, p, 1), (−1, p − q + 1, 1) and (−1, p − q, 1). This one

gives the following vector and hence a new term to eq. (3.22):

{(1, 0, 1), (q − 1,−1, p), (−q, 1,−p)} ⇒ 1

(1 − x z)
(
1 − y

xq zp

) (
1 − x−1+q zp

y

) .

3.3 The Del Pezzo Family

The last category of CY singularities widely studied in D-brane gauge theories is the

cone over the 9 del Pezzo surfaces. These surfaces are P2 blown up at n generic points;

the cone is CY if n = 0, . . . , 8. There is a close cousin to this family, viz, the zeroth

Hirzebruch surface F0, which is simply P1 × P1 and the cone over which is also CY.

It is well-known that for dPn=0,1,2,3 and for F0, the space is actually toric (q.v. [10]).

Therefore, we can use eq. (3.16) to obtain the following:

P (q, x, y; dP0) = 1

(1−x) (1−y) (1− z
x y )

+ 1

(1− 1
x) (1− y

x)
(
1−x2 z

y

) + 1

(1− 1
y )(1−x

y )
(
1− y2 z

x

)

P (q, x, y; F0) = 1

(1−x) (1−y) (1− z
x y )

+ 1

(1− 1
x) (1−y) (1−x z

y )
+ 1

(1−x) (1− 1
y )(1− y z

x )
+ 1

(1− 1
x) (1− 1

y ) (1−x y z)

P (q, x, y; dP1) = 1

(1−x) (1− y

x) (1− z
y )

+ 1

(1− 1
x) (1−y) (1−x z

y )
+ 1

(1−x) (1−x
y ) (1− y z

x2 )
+ 1

(1− 1
x) (1− 1

y ) (1−x y z)

P (q, x, y; dP2) = 1

(1−x
y ) (1−y) (1− z

x)
+ 1

(1−x) (1− y

x) (1− z
y )

+ 1

(1− 1
x) (1−y) (1−x z

y )
+

+ 1

(1−x) (1− 1
y )(1− y z

x )
+ 1

(1− 1
x)(1− 1

y ) (1−x y z)

P (q, x, y; dP3) = 1

(1− 1
y ) (1−x y) (1− z

x)
+ 1

(1− 1
x y ) (1−y) (1−x z)

+ 1

(1− 1
x) (1−x y) (1− z

y )
+

+ 1

(1−x) (1−y) (1− z
x y )

+ 1

(1−x) (1− 1
x y ) (1−y z)

+ 1

(1− 1
x)(1− 1

y ) (1−x y z)
.

(3.23)
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We include toric diagrams and the dual (p, q)-webs here for reference:

(−1,−1,1)

O

A

B

C

A=(−1,−1,1) B=(1,0,1)

C=(0,1,1) O=(0,0,1)

P1

P2

P3
(−1,1,0)

(1,−1,0)

(−1,0,0) (1,0,0)

(0,1,0)

(0,−1,0)

(2,−1,1)

(−1,2,1)

P1

P2

P3

P4

(−1,0,0) (1,0,0)

(0,1,0)

(0,−1,0)

(−1,1,0)

(1,−1,0)

(0,1,0)

(0,−1,0)

(1,0,1)

(1,−1,1)

(−1,2,1)

(−1,−1,1)

(a) dP0 (b) dP1

(−1,1,1)

P1

P3

P4

P2
P5

(0,1,1)

(−1,1,0)
(1,0,1)

(1,−1,0)

(0,−1,0)

(0,1,0)

(1,−1,1)

(1,0,0)

(−1,0,0)

(−1,0,0) (1,0,0)

(0,1,0)

(0,−1,0)

(−1,−1,1)

(0,1,1)

P1

P3

P4

P2
P5

P6

(−1,0,0) (1,0,0)

(0,1,0)

(0,−1,0)

(1,1,−1)

(−1,−1,1)

(1,0,0)

(−1,0,0)
(1,−1,0)

(−1,1,0)

(0,−1,0)

(0,1,0)

(1,−1,1)

(1,0,1)

(0,−1,1)

(−1,0,1)

(−1,1,1)

(c) dP2 (d) dP3

For completeness, we also include the data for F0 as well as PdP4, the so-called

pseudo dP4 surface, first introduced in [48], which is obtained from blowing up a non-

generic point of dP3 so as to keep it a toric variety:

(0,−1,0)

(−1,1,−1) (1,1,−1)

P2P3

P4 P1

(−1,−1,−1) (1,−1,−1)
(−1,0,0) (1,0,0)

(0,−1,0)

(0,1,0)

(−1,0,0) (1,0,0)

(0,1,0)

(−1,1,1)

P1

P3

P4

P5

(0,−1,−1)

P6
(1,0,−1)

(0,1,−1)

P2

P7

(0,−1,−1)

(1,0,−1)

(−1,0,0) (1,0,0)

(0,1,0)

(0,−1,0)

(−1,0,−1)

(−1,1,−1)

(−1,1,0)

(1,−1,0)

(−1,−1,1)

(1,1,−1)

(0,1,0)

(0,−1,0)

(1,0,0)

(−1,0,0)

(1,−1,−1)

(a) F0 (b) PdP4
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3.3.1 A General Formula for dPn

We can see that taking the limit x = y → 1 to relax the refinement in eq. (3.23) the

expressions become very simple. In other words, we neglect the two U(1) charges carried

by x, y and keep only the U(1) charge carried by t = z (note that this is not the R-charge

but a linear combination of the three U(1) charges). The result counts the single-trace

GIO’s of a given total degree:

f(t; dP0) = 1+7t+t2

(1−t)3
, f(t; dP1) = f(t; F0) = 1+6t+t2

(1−t)3
,

f(t; dP2) = 1+5t+t2

(1−t)3
, f(t; dP3) = 1+4t+t2

(1−t)3
.

(3.24)

We shall see in the next section what it means to set x, y to 1 and how all this relates to

projecting 3-dimensional toric diagrams to 2-dimensions and to dimers. For the mean

time, observing the pattern eq. (3.24) for the above 4 members of the del Pezzo family,

we propose the following general expression for the generating function:

f(t)(n) := f∞(t; dPn) =
1 + (7 − n)t + t2

(1 − t)3
, n = 0, . . . , 8 . (3.25)

We remark that the result for F0 is the same as dP1. This is not surprising because they

both, when having 1 more generic point blown-up, become dP2. Also, dP0 is a Calabi-

Yau over P2, it is in fact simply the orbifold C3/Z3 which we will encounter again in

§5.1.2. Indeed, we shall revisit the del Pezzo family, and give full credence to eq. (3.25)

in §5.3.1.

4 Dimers, Toric Diagrams and Projections

By now we have seen the Poincaré series f∞ in full action in counting single-trace GIO’s.

Before proceeding to finding the generating function g∞ for the multi-trace case, let us

take a brief but important interlude in how the counting in f is pictorially realised for

toric varieties. In due course, we shall see how the invariants emerge in slices of the

3-dimensional toric cones and how such projections relate to dimers and 2-dimensional

tilings. Indeed, it is these observations which initiated our original interest in this

problem of counting GIO’s.

4.1 Example: Dimers and Lattices for C3

We begin by discussing the simplest toric CY 3-fold, C3, which was first mentioned in

§2 and then in §3.2. Let us see how to represent the chiral ring in the dimer diagram
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of C
3. The dimer for C

3 is well-known [15] and is drawn in Fig. 3. There is only one

gauge group and it is represented by a hexagon. We recall the fundamental fact that

in a dimer, the polygonal faces correspond to gauge groups, edges, (perpendicular) to

fields and nodes, to superpotential terms. Thus, a BPS GIO in the chiral ring 4 can

be thought of as a path from the origin to a polygon, and we shall show below that

it is in fact path-independent. Since we consider only chiral operators, we represent

Lattice of Chiral GIO at Level One 

X

YZ
X

ZY

Y

X

Z

Level one dimer with (anti)−chiral fields

(1,0,0)

(0,1,0) (0,0,1)

X

Y Z

Level Two Lattice

X

X

YZ

Z

XZ

YZ

XY

YZ

XY

Y

XZ

XX

YY
ZZ

XY XZ

YZ

ZZ

XX

YY

XZ
XY

YZ

XX ZZ

YY

(2,0,0)

(0,2,0) (0,0,2)

(0,1,1)

(1,1,0) (1,0,1)

X

Y Z

Level Two Dimer

Level Three Dimer 

X

Y

Y

Z

XXX

YYY ZZZ

Y
XYZ

XXZ
XXY

YYX

ZZY

ZZX

YYZ

X

Y Z

(3,0,0)

(2,1,0) (2,0,1)

(1,2,0) (1,0,2)

(0,3,0) (0,0,3)

(0,2,1) (0,1,2)

(1,1,1)

Level  Three Lattice

Figure 3: The Dimer configurations and the lattice structure of GIO’s for C3, exhibited at

the first 3 levels. We have drawn some mixed-chiral GIO’s as well for illustration, but the

ones of our concern, viz., the chiral ones, are drawn in blue.

the (holomorphic) operator by orientated lines crossing edges, such that when a line

crosses an edge, the black vertex is to its left (recall that the coloring convention in a

dimer has orientation built in). There are three holomorphic fields denoted by X, Y, Z.

As mentioned before, the F -term relations here make these three operators mutually

commutative.

4Since we are studying BPS mesons, we may emphasize the relationship between the concept of the

“extremal BPS meson” (introduced in [27]) and that of the “zig-zag path” in [20, 21].
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Now, we discuss the chiral GIO’s in detail. We shall do so according to the number

of levels. Here, we define level to mean the number of X, Y, Z fields inside the chiral

operators. This was what we meant by degree in the aforementioned generating function.

For clarity, we have enclosed each level with a dotted red circle in the diagram. At level

1, there are only 3, given by Tr(X), Tr(Y ) and Tr(Z). This has been shown in level one

of Fig. 3. In the figure we have given also the 3 anti-chiral operators Tr(X̄), Tr(Ȳ ) and

Tr(Z̄) for reference. Henceforth, we shall use blue to denote the GIO’s in which we are

interested, viz., the chiral single-traces ones. The 3 here, of course, correspond to the

3t term in eq. (3.2).

Next, let us move to level 2 of Fig. 3. This time, we can cross two edges, as shown

by the second red circle. A few remarks at hand. First, for the hexagon denoted by

the blue XY (which is inside the chiral ring), we have two paths to reach from center.

One is from center to hexagon Y Z then to XY . Another one is from center to XZ

then to XY . The key point is that these two paths give the same element Tr(XY ) in

the chiral ring. So, our first conclusion is that for chiral ring, a GIO depends only on

the starting and ending point of the path in dimer model and does not depend on the

path itself. This in fact is generic for every dimer model and not just for the simple

hexagonal model discussed here. See [20, 27] for a proof of this point.

Furthermore, we have in fact drawn not only the chiral ring, but also the anti-chiral

and mixed-chiral rings5 at the level 2. For the mixed-chiral ring, it is easy to see that

now the path in dimer does matter. We start from center, go up and then go down

and get X̄X. Similarly we can go southwest to get Ȳ Y and southeast to get Z̄Z.

This means that we should put all three X̄X, Ȳ Y and Z̄Z in the center hexagon. In

another word, the one-to-one correspondence we found for chiral or anti-chiral ring is

lost. Because of this complexity we will not discuss mixed-chiral rings further in this

paper (the anti-chiral ring is isomorphic to the chiral ring and need not be addressed

separately).

Focusing on only the chiral ring we can see that there are 6 (chiral) GIO’s at level

2, corresponding to the term 6t2 in eq. (3.2). Also, The result of level 3 is given at the

right of Fig. 3. Here, we give only the chiral ring operators at proper hexagons in this

5We remark that the mixed operators are protected only in N = 4 because of enhanced SUSY, in

generic N = 1 theories the ’protected rings’ are only the chiral or antichiral ones. The other 1/2-BPS

protected operators like the currents do not form a ring. Nevertheless we will be loose and call these

operators the mixed-chiral ring.
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figure. There is a total of 10 as shown, corresponding to the 10t3 in eq. (3.2).

4.1.1 Lattice Structure and Planar Slices

We thus conclude that:

A (chiral) GIO’s at level n corresponds to a polygon in the dimer, which is a

chiral-distance n away from the center.

In the above, a chiral-distance is measured by segments of only chiral operators, i.e.,

black vertices to the left. We have drawn these chiral GIO’s in blue in Fig. 3. With

this one-to-one correspondence between chiral GIO’s at a given level and hexagons in

the dimer diagram, we can see that in fact we have a lattice structure in R3. Each

integer lattice point (a, b, c) with a, b, c ≥ 0 corresponds to a chiral operator. The level

of this operator is given by (a + b + c). In other words, level n is given by the plane

perpendicular to vector (1, 1, 1) and has distance n from the origin. It is interesting to

notice that the vector (1, 1, 1) is the Reeb vector of C3. Thus the degree we are counting

is exactly the R-charge. We have drawn these plane slices for each level in our figure as

well in Fig. 3.

This lattice is something with which are familiar! It is nothing other than the dual

toric cone for C3. Indeed, the definition of a toric variety is that it is the affine spectrum

of the ring of monomials obtained from raising the coordinates to the powers of the

lattice generators, i.e., the invariant monomials. This is what we are doing above. Level

1 gives the monomials which are obtained from the lattice generators of the cone; level

2 gives the monomials obtained from the toric cone intersected with the (non-primitive)

lattice points one further step away, etc.

4.2 Example: Dimers and Lattices for the Conifold

Next, let us discuss the conifold. Here, we will see explicitly how we must count the

GIO’s up to relations from F-terms, as was mentioned in the introduction. The toric

diagram was given in Fig. 1 in §3.2. The dimer model is the brane diamond [49] drawn

on T 2 [15] and is given in Fig. 4. There are two gauge groups so there will be two types

of polygons which are labeled 1 and 2. It is easy to see that we can locate these 2 gauge

groups at lattice points. More explicitly, if we draw the lifting of T 2 in R2, we can

identify an integer lattice point (a, b) to gauge group 1 if a, b are integers or gauge group
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2 if a, b are half-integers. Now, since we are considering the single-trace mesonic GIO’s,

we can neglect gauge group 2 and consider the holomorphic paths connecting different

lattice points of gauge group 1, i.e., integer lattice points in 2-dimensions.

(a)

Lattic structure

1

1

1

1

1

1

1

1

1

2 2

2 2

A1

A2

B1

B2

Dimer Model and Four chiral fields

(b)

Level  One

M(0,1)

M(0,−1)

M(1,0)

M(−1,0)

M(1,0) M(−1,0) = M(0,1) M(0,−1)M(0,1) M(0,1)

M(0,1) M(0,1) M(1,0)

M(1,0) M(−1,0) = M(0,1) M(0,−1)

M(0,−1) M(0,−1)

M(0,1) M(0,1)

M(−1,0)M(−1,0) M(1,0) M(1,0)

M(0,1) M(−1,0) M(0,1) M(1,0)

M(0,−1) M(0,−1)M(−1,0) M(1,0)

Level  ThreeLevel  Two

Figure 4: (a) The dimer configuration for the conifold and the dual lattice structure of

GIO’s; (b) In more detail, the actual operators (with built-in relations) corresponding to the

lattice points at the first 3 levels.

In this gauge theory, there are four bi-fundamental fields A1, A2 and B1, B2. We

define the following operators which are in the adjoint representation of gauge group 1:

M0,1 = A1B1, M1,0 = A1B2, M−1,0 = A2B1, M0,−1 = A2B2 . (4.1)

It is easy to check that the F -term relations tell us that all four Mij commute and obey

one non-trivial relation:

M0,1M0,−1 = M1,0M−1,0 . (4.2)

We can map the above quantities into the dimer model. As we have shown above,

the dimer model can be mapped to a 2-dimensional integer lattice. The operator M0,1

can be mapped to vector (0, 1) so we can use it to connect points (0, 0) and (0, 1).

Similarly, M1,0, M−1,0, M0,−1 map to vectors (1, 0), (−1, 0), (0,−1), respectively. Using

this mapping, a single-trace GIO is mapped to a path connecting point (0, 0) to (a, b)
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using the above four vectors. The non-trivial relation eq. (4.2) is nothing, but the

statement that after following consecutively vectors (0, 1) and (0,−1) (or (1, 0) and

(−1, 0)) we come back to the starting point.

Using this picture we can see the lattice structure of holomorphic GIO’s. For level 0,

it is the origin (0, 0) and corresponds to identity operator. For level one, we can use only

one Mi,j to connect (0, 0) to nearby lattice points. Thus we have four of them Tr(M1,0),

Tr(M−1,0), Tr(M0,1), and Tr(M0,−1). For level two, we need to use two Mi,j operators.

It is easy to get to lattice points (±2, 0), (±1,±1) as well as (0, 0). For (0, 0) we have

two ways Tr(M(0, 1)M(0,−1)) or Tr(M(1, 0)M(−1, 0)). But by relation eq. (4.2) they

are same so we should count only once. Similarly we can draw the level three lattice

diagram as shown in Fig. 4.

4.2.1 Planar Slices and Lattices

Now let us find the 3-dimensional box which projects to the above 2-dimensional picture.

The vectors (0, 0, 1), (1, 0, 1), (0, 1, 1) and (1, 1, 1) of the toric diagram of C generates

an integral cone; we can find the generators of the dual cone to be v1 = (1, 0, 0),

v2 = (0, 1, 0), v3 = (0,−1, 1) and v4 = (−1, 0, 1). By definition, a lattice point in the

dual cone is given by positive integer linear combinations of these four vectors. It is

special in our case that these four generators vi have their endpoints co-planar6. It is

easy to find the vector u orthogonal to the plane generated by vi as u = (1, 1, 2). In

fact, in this case, the vector u is precisely the Reeb vector, so the level we are counting

is also the R-charge7.

Now, we can see how this 3-dimensional lattice generated by vi projects to the 2-

dimensional lattice. For level one, it is given by four vi, since all of them have vi ·
(1, 1, 2) = 1. For the level two, we need to find vectors (x, y, z) such that (1) (x, y, z) =
∑4

i=1 aivi with ai ≥ 0 and integer; (2) (x, y, z) · (1, 1, 2) = 2 which gives x + y + 2z = 2.

From these conditions, we find the following 9 points:

{(2, 0, 0), (0, 2, 0), (0,−2, 2), (−2, 0, 2), (1, 1, 0), (1,−1, 1), (0, 0, 1), (−1,−1, 2), (−1,−1, 2)}
(4.3)

6Note that though the toric diagram always has its vectors in a plane, as guaranteed by the CY

condition, the dual cone is not so guaranteed.
7We remark that our Reeb vector differs in convention from that of [35]. Our (a, b, c) is their (c, a, b).
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which is exactly what we find in the dimer model. In general level n should have (n+1)2

points.

Now let us check this using our Poincaré series, which from eq. (3.19) is

P (x, y, z; C) = − x y (−1 + z)

(−1 + x) (−1 + y) (x − z) (y − z)
. (4.4)

To count the level, notice that the Reeb vector is u = (1, 1, 2), which means that the

R-charges of x, y, z are 1, 1, 2 respectively. In other words, we should replace x → q, y →
q, z → q2, yielding

P (q; C) =
(1 + q)

(1 − q)3
=

∞∑

n=0

(n + 1)2qn ; (4.5)

whereby giving us the required (n + 1)2 counting!

In fact we can do better that that. Let us do the following replacement x → xq,

y → yq and z → q2. The expression is changed to

xy(1 − q2)

(1 − qx)(1 − qy)(q − x)(q − y)
= 1 + q(x + y +

1

x
+

1

y
) + . . . . (4.6)

Comparing this with toric data we can see that x, y represent the Cartan weight of

SU(2)L ×SU(2)R global symmetry for the conifold. More explicitly, for the two U(1)×
U(1), x, y carry the charge of U(1)x = U(1)L + U(1)R and U(1)y = U(1)L − U(1)R. To

see this let us consider, for example, M0,1 = A1B1. Because the (U(1)L, U(1)R) charge of

A1 and B1 is (1
2
, 0) and (0, 1

2
), we get immediately the (U(1)x, U(1)y) charge (1, 0), i.e.,

the term x. Similarly, the terms y, 1
x
, 1

y
correspond to the operators M0,1, M−1,0, M0,−1,

respectively.

5 Counting Gauge Invariants: Plethystics, Multi-

Trace and Syzygies

We have now seen the generating function f which counts single-trace GIO’s of a given

choice of global charges for 3 large families of CY threefold singularities. What about

the multi-trace GIO’s? These are products of combinations of single-traces. We have

called the generating function for counting these, g. We shall now see how g can be

obtained from f using some nice combinatorics. We shall then see how the function

which relates f and g has some remarkable geometrical properties as well.
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5.1 The Plethystic Exponential: From Single to Multi-Trace

Recall that in the above f should really be f∞ bacause we have taken the large N limit.

Similarly, the quantity g we desire is really g∞. Now, we showed in §2 that for C3, the

relation between f and g is that of the plethystic exponential, PE (q.v. [50, 51]).

This in fact holds in general:

g(t) = PE[f(t)] := exp

( ∞∑

k=1

f(tk) − f(0)

k

)
. (5.1)

Indeed, recalling eq. (2.6), we summarise the following relations, with the subscripts

restored:

g1 = f∞, f∞(t) = PE[f1(t)], g∞(t) = PE[g1(t)] = PE[PE[f1(t)]] . (5.2)

We remark that, even for a list of variables ti=1,...,n, which are used in the refinement of

counting discussed above, the expression eq. (5.1) and eq. (5.2) still hold, with obvious

replacement. Namely,

g(t1, . . . , tn) = PE[f(t1, . . . , tn)] := exp

( ∞∑

k=1

f(tk1, . . . , t
k
n) − f(0, . . . , 0)

k

)
. (5.3)

We can derive the statement eq. (5.1) explicitly by series-expansion. Let

f(t) =

∞∑

n=0

ant
n (5.4)

be the Taylor expansion of the Poincaré series f∞ = f(t). Thus, an is the number of

independent invariants at (total) degree n. Then, eq. (5.1) gives us

PE[f(t)] = exp

( ∞∑

n=0

an

∞∑

k=1

tnk

k
− a0

∞∑

k=1

1

k

)

= exp

(
−

∞∑

n=0

an log(1 − tn) − a0

∞∑

k=1

1

k

)
.

We see therefore that the f(0) term precisely regularises the sum and we obtain

PE[f(t)] = exp

(
−

∞∑

n=1

an log(1 − tn)

)
=

1
∞∏

n=1

(1 − tn)an

. (5.5)
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This expression is now in the standard Euler product form. Upon expansion of PE[f(t)],

we would see that the coefficient for tm is the number of ways of partitioning m, each

weighted by an. This is precisely our required counting, i.e., the number of multi-trace

GIO’s at degree m. Hence, g(t) = PE[f(t)].

We have thus solved problems (1) and (2) posed in the introduction and have the

generating functions f and g for large N . In fact, as before, we can refine our counting.

In the above, we had a single variable t, a dummy variable associated with the total

degree. Where permitted, as discussed in §3.2.1, we can have a set of variables Xi, one

for each U(1)-charge, and an associated multi-degree for these tuples of charges. In

addition, we can introduce one more variable ν, to be inserted into the summand. One

could easily see that upon expansion, the power of ν will actually count how many single-

trace operators are present in each of the terms. In other words, for f∞(X1, . . . , Xm) =
∞∑

p1,...,pm=0

ap1,...,pm
Xp1

1 . . .Xpm
m , we have

g̃∞(Xi, ν) = PE[f∞] = exp

( ∞∑
k=1

(f∞(Xk
1 ,...,Xk

m)−f∞(0,...,0))νk

k

)

=

( ∏
p1,...,pm

(1 − νXp1
1 . . .Xpm

m )ap1,...,pm

)−1

,
(5.6)

where the product is taken over all non-negative pi with the point (p1, . . . , pm) =

(0, . . . , 0) excluded.

5.1.1 The Plethystic Logarithm

The inverse function of PE is also a fascinating one. It is called the plethystic logarithm

[50]; one can in fact write it analytically:

f(t) = PE−1(g(t)) =

∞∑

k=1

µ(k)

k
log(g(tk)) , (5.7)

where µ(k) is the Möbius function

µ(k) =





0 k has one or more repeated prime factors

1 k = 1

(−1)n k is a product of n distinct primes

. (5.8)

As g∞ = PE[g1], so too does one have the relation f∞ = PE[f1]. Since our basic

generating function is the Poincaré series f = f∞, for which we have had explicit results
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in §3, it is more convenient to write

f1 = PE−1(f∞) . (5.9)

One may ask what this function f1, which we briefly encountered in eq. (2.5), signifies.

It has a remarkable geometrical property!

The plethystic logarithm of the Poincaré series, is a generating series for the

relations and syzygies of the variety!

We exemplify this statement with our familiar example of the Valentiner group from

§3.1.2 in the next subsection.

5.1.2 Plethystic Logarithm and Syzygies

Using eq. (5.7), and recalling the Poincaré (Molien) series f for ∆(27) from eq. (3.13),

we see that

f1 = PE−1

(−1 + t3 − t6

(−1 + t3)3

)
= 2t3 + t6 + t9 − t18 . (5.10)

The RHS terminates and is a polynomial! It is to be interpreted thus: there are 2 degree

3 invariants, 1 degree 6 and 1 degree 9 invariant, these 4 invariants obey a single relation

of total degree 18. Upon inspecting eq. (3.14) and eq. (3.15), we see that this is indeed

the definition of C3/∆(27) as a variety!

Now, C3/∆(27), as a hypersurface in C4, is a complete intersection affine variety (i.e.,

the number of equations is equal to the codimension of the variety in the embedding

space). How does the above work for non-complete intersections? We have an example

readily available: the famous C3/Z3 = OP2(−3) orbifold. In fact, being an Abelian

orbifold, this is also toric and furthermore, it is also dP0, being a cone over P2. So we

have 3 ways to compute its Molien series from §3. Let us use the Molien series. The

action is (x, y, z) → ω3(x, y, z) and we immediately get

f∞(t) = M(t; Z3) =
1 + 7 t3 + t6

(1 − t3)3 , (5.11)

whereby

f1(t) = PE−1[f∞(t)] = 10 t3−27 t6+105 t9−540 t12+3024 t15−17325 t18+O(t21) . (5.12)
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This is again in accordance with known facts! The equation for this orbifold is 27

quadrics in C10, i.e., 10 degree 3 invariants satisfying 27 relations of degree 2 × 3 = 6

(q.v. [36, 40]). We can determine these as follows. The 10 invariants are

y1,...,10 =
{
x3, x2y, xy2, y3, x2z, xyz, y2z, xz2, yz2, z3

}
, (5.13)

obeying the 27 quadrics

{y2
2 − y1y3, y2y3 − y1y4, y3

2 − y2y4, y2y5 − y1y6, y3y5 − y1y7, y2y6 − y1y7,

y4y5 − y2y7, y3y6 − y2y7, y4y6 − y3y7, y5
2 − y1y8, y5y6 − y1y9, y2y8 − y1y9,

y6
2 − y2y9, y5y7 − y2y9, y3y8 − y2y9, y6y7 − y3y9, y4y8 − y3y9, y7

2 − y4y9,

y5y8 − y1y10, y6y8 − y2y10, y5y9 − y2y10, y7y8 − y3y10, y6y9 − y3y10, y7y9 − y4y10,

y8
2 − y5y10, y8y9 − y6y10, y9

2 − y7y10} .

(5.14)

Therefore, eq. (5.13) are the 10 primitive invariants of degree 3, obeying 27 syzygies of

degree 6 given by eq. (5.14). According to our rule, this should read 10t3 − 27t6. These

are precisely the first two terms of eq. (5.12)! Indeed, because we no longer have a

complete intersection, the plethystic logarithm of the Poincaré series is not polynomial

and continues ad infinitum. What about the 105 and higher terms then, do they mean

anything? We will explain this in §5.2.

As a final example of the more subtle case of non-complete-intersection varieties, let

us take the C3/Z5 orbifold, with action (x, y, z) → (ω5x, ω2
5y, ω2

5z). We obtain:

M(t; Z5) =
−1 + t − 3 t3 + t4 − 3 t5 + t7 − t8

(−1 + t)3 (1 + t + t2 + t3 + t4)2 = 1 + 3 t3 + 2 t4 + 7 t5 + 5 t6 + 4 t7 + 11 t8

+9 t9 + 18 t10 + 15 t11 + 13 t12 + 24 t13 + 21 t14 + 34 t15 + O(t)16 , (5.15)

giving us

PE−1[f∞(t)] = 3 t3+2 t4+7 t5−t6−2 t7−13 t8−12 t9−14 t10+14 t11+34 t12+72 t13+47 t14+O(t)15 .

(5.16)

We can find that the 3 invariants of degree 3, 2 of degree 4, 7 of degree 5 are

y1,...,12 := {x y2, x y z, x z2, x3 y, x3 z, x5, y5, y4 z, y3 z2, y2 z3, y z4, z5} . (5.17)

We can easily find, using Gröbner algorithms, all relations amongst these 12 invariants,

giving us 1 in degree 6 (a quadric in the 3 degree 3 invariants), 2 in degree 7, 13 in

degree 8, 12 in deree 9 and 16 in degree 10. All this is in almost in exact agreement
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with eq. (5.16), with the only exception being that there are 16 degree 10 relations and

not 14. Together with the issue of the higher terms in the C3/Z3 case, we now address

this discrepancy in the next subsection.

5.2 Plethystics: A Synthetic Approach

We have now witnessed the astounding power of plethystics in the counting problem

and have moreover noted a tantalising fact about the geometry of the variety and the

(plethystic logarithm of) the generating function for the GIO’s in the gauge theory. Let

us now attempt to argue why some of the above examples should work. First we note

that the Poincaré series f , when finally collected and simplified, is always a rational

function. In particular it has a denominator of the form of products of (1 − tk) with

possible repeats for k; the numerator is some complicated polynomial. We will call this

the Euler form. The point is that the coefficient in front of the tk is always unity and

we conjecture that this is a property of the Poincaré series of concern 8.

When we are taking the plethystic logarithm of f , due to the explicit expression

eq. (5.5), we are trying to solve the following algebraic problem: find integers bn such

that

f(t) =
1

∞∏
n=1

(1 − tn)bn

, (5.18)

where f(t) is a given rational function in Euler form. Note that PE−1[f(t)] =
∞∑

n=1

bntn,

unlike the Poincaré series herself, need not have all positive bn. Because f(t) has Euler

form, the denominator of eq. (5.18) is immediately taken care of. In other words, because

f(t) has denominator in the form of products of (1− tk), all positive values of n and bn

are just read off. These are low values of n and correspond, in the Molien case, to some

of the small invariants, including the primitive ones. However, there is still a numerator

in f(t), often of complicated form. This will give negative bn contributions to the RHS

of eq. (5.18), which correspond to the relations.

Take ∆(27) as an example. We need to find bn such that

1 − t3 + t6

(1 − t3)3 =
(1 − t18)

(1 − t6) (1 − t9) (1 − t3)2 =
1

∞∏
n=1

(1 − tn)bn

, (5.19)

8In fact, all Poincaré series we have encountered, orbifold, toric, etc., have this property. We do not

have a rigorous proof of this right now and leave it to the mathematically inclined.
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where we have used the identity

(1 − t3) (1 − t18)

(1 − t6) (1 − t9)
= 1 − t3 + t6 . (5.20)

This rational identity is crucial and expresses even the numerator of f into Euler form.

Now we can read out the solution: the denominator contributes terms +2t3, +t6 and

+t9 while the numerator contributes −t18. Thus PE−1[M(t)] = 2t3 + t6 + t9 − t18. In

other words, there should be 2 degree 3 invariants, 1 each of degrees 6 and 9, obeying a

single relation of degree 18. The fact that the numerator can be factorised into (finite

polynomial) Euler form dictates that the plethystic logarithm of f terminates in series

expansion as was seen in eq. (5.10). The moral of the story is that

Findings relations in this language corresponds to finding appropriate factorisa-

tions of the numerator into Euler form.

Of course, not all Poincaré series have polynomial plethystic logarithms. This is just

the statement that not all polynomials afford identities of the type eq. (5.20). In general,

the product on the RHS of eq. (5.18) must be infinite to accommodate those which

cannot be put into finite Euler form. These correspond to non-complete intersection

varieties. Take C3/Z3, we have

M(t; C3) =
1 + 7 t3 + t6

(1 − t3)3 . (5.21)

Indeed, no rational identity can express 1+7 t3 + t6 in finite Euler form so the plethystic

logarithm will not terminate. Now, as promised earlier, we can explain the higher terms

such the 105 and 540. In this example, there are 10 basic invariants and there are 27

relations amongst them. This explains the first 2 terms in eq. (5.12). This is seen above

because if we were to write 1 + 7 t3 + t6 in Euler form, we would obtain

1 + 7 t3 + t6 =
(1 − t6)27(1 − t12)540 . . .

(1 − t3)7(1 − t9)105 . . .
(5.22)

thus we get the +10t3 term from the (1−t3)3+7 factor in the denominator and the −27t6

term from the (1 − t6)27 factor in the numerator.

Of course, one finds the 27 relations by finding syzygies among the 10 primitive

invariants. The reason we can do this is of course Theorem 3.1 which dictates that we

need not go beyond degree |G| = 3 to find all basic invariants which generate the entire
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invariant polynomial ring. Instead, if we found the syzygies for the entire invariant ring,

we would get the higher terms. That is, we should, considering the expansion of the

Molien series

1 + 7 t3 + t6

(1 − t3)3 = 1 + 10 t3 + 28 t6 + 55 t9 + 91 t12 + 136 t15 + 190 t18 + . . . , (5.23)

consider all 10 + 28 + 55 + . . . invariants as polynomials in 3 variables and find all

their syzygies; thsi should give the higher terms. Of course this cannot be done all at

once, but nevertheless we can consider the process stepwise: first, syzygies for 10 of

them, then 10 + 28 of them, etc. In principle, if we only wish to know up to some

degree, we only need to find syzygies for invariants up to that degree. This algorithm

is the precise analogue of the infinite product expansion of eq. (5.22) into Euler form,

which serves as successive approximation to the LHS in eq. (5.22). This also explains the

discrepancies in the case of C
3/Z5 as seen above. In these cases where the Euler product

is non-terminating, and rational identities become infinite products, the syzygies should

thereby receive stepwise corrections. We should be able to arrive at the right answer

after some finite number of steps if we only wish to know the terms up to a desired

order.

Let us check up to second order in this example of C3/Z3 by finding the syzygies

amongst the 10 basic invariants of degree 3 and 28 degree 6 invariants. We find, using

[39], 595 relations: 55 of degree 6, 225 of degree 9 and 315 of degree 12. This thus reads

10t3 + 28t6 − 55t6 − 225t9 − 315t12 = 10t3 − 27t6 − 225t9 − 315t12 . (5.24)

Good, we reproduce the first 2 terms of PE−1[M(t)] and have the next 2 terms. This

is only up to order 2, i.e., finding syzygies among 38 polynomials. At next order, we

would have to find relations among 10 + 28 + 55 = 93 polynomials and correct the t9

and t12 coefficients; the computation becomes increasingly strenuous for the computer9.

5.3 Complete Intersections

We see from the preceeding arguments that the most powerful avatar of the intimate re-

lations between plethystics and syzygies is realised in complete intersections, especially

9This alternative addition of invariants and substraction of relations is reminiscent of the characters

of minimal models and the removal of null-states using the Kac determinant in 2-dimensional conformal

field theories.
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in single hypersurfaces. We have seen that ∆(27) is one such example of the hypersur-

face. The key feature for this class of varieties is that the series for f1 = PE−1[f∞(t)]

terminates and is polynomial. This is nice because if we knew the defining equations and

the degrees of the various pieces, we could re-construct the Poincaré series and find the

number of invariants in the gauge theory! This is independent of whether the variety is

orbifold or toric, but should hold in general. We shall see, in §6.2, an inverse application

of this philosophy, where we shall construct a variety with desired gauge invariants.

5.3.1 del Pezzo Family Revisited

Take a non-orbifold, non-toric, single hypersurface, the famous cubic in C3; this is the

cone over the 6-th del Pezzo surface. From eq. (3.25) and eq. (5.7), we have

f(t; dP6) =
1 + t + t2

(1 − t)3 ⇒ PE−1[f(t; dP8)] = 4t − t3 , (5.25)

which says that there should be 4 linear invariants, obeying 1 cubic relation; precisely

the definition of dP6.

Another illustrative example is dP8; here we shall go beyond projective spaces, but

rather to weighted projective spaces. We shall see that the plethystic logarithm still

works. We know (cf. [52]) that dP8 as a surface is given by a single equation in WP3
1,1,2,3.

Again, from eq. (3.25) and eq. (5.7), we find

f(t; dP8) =
1 − t + t2

(1 − t)3 ⇒ PE−1[f(t; dP8)] = 2 t + t2 + t3 − t6 . (5.26)

This is again correct: 2 degree 1, 1 degree 2 and 1 degree 3, obeying a single degree 6

relation. This can only happen in a weighted projective space, viz., WP3
1,1,2,3. Thus, our

proposal eq. (3.25) is again confirmed. We note that, upon comparing eq. (5.26) and

the result eq. (5.10) for ∆(27), the f -functions are the same, only with the replacement

t → t3. This does not surprise us, indeed (cf. e.g. [53]) ∆(27) is known to be a special

point in the moduli space of dP8’s.

In fact, all del Pezzo surfaces for n > 4 are complete intersections (cf. e.g., eq.(3.2)

of [52] and also [54]). We check against eq. (3.25) and find complete agreement. For
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clarity, let us tabulate these results:

dPn f = f∞(t) f1 = PE−1[f(t)] Defining Equations

5 1+2t+t2

(1−t)3
5 t − 2 t2 2 degree 2 equations in P4

6 1+t+t2

(1−t)3
4 t − t3 1 degree 3 equation in P3

7 1+t2

(1−t)3
3 t + t2 − t4 1 degree 4 equation in WP3

1,1,1,2

8 1−t+t2

(1−t)3
2 t + t2 + t3 − t6 1 degree 6 equation in WP3

1,1,2,3

(5.27)

Therefore, for the entire del Pezzo family, members 0 to 3 are checked by toric meth-

ods while 5 to 8 are complete intersections. The only one remaining is dP4 and from

eq. (3.25),

f(t; dP4) =
1 + 3 t + t2

(1 − t)3 = 1+6 t+16 t2+31 t3+51 t4+76 t5+106 t6+141 t7+181 t8+226 t9+O(t10)

(5.28)

predicts the single-trace GIO counting for this variety. The equation for this variety is

[48, 54] is the (non-complete) intersection of 5 quardrics in P5. Expanding the plethystic

logarithm of f in this case gives

PE−1[f(t; dP4)] = 6 t − 5 t2 + 5 t3 − 10 t4 + 24 t5 − 55 t6 + 120 t7 −O(t8) (5.29)

We see that the first 2 terms are actually correct: there are 5 degree 2 relations in 6

variables!

For full reference, we tabulate below the other members of the del Pezzo family,

these are non-complete intersections:

dPn f = f∞(t) f1 = PE−1[f(t)] Defining Equations

0 1+7t+t2

(1−t)3
10 t − 27 t2 + 105 t3 − 540 t4 + 3024 t5 + O(t)6 (10|227)

1 1+6t+t2

(1−t)3
9 t − 20 t2 + 64 t3 − 280 t4 + 1344 t5 + O(t)6 (9|220)

2 1+5t+t2

(1−t)3
8 t − 14 t2 + 35 t3 − 126 t4 + 504 t5 + O(t)6 (8|214)

3 1+4t+t2

(1−t)3
7 t − 9 t2 + 16 t3 − 45 t4 + 144 t5 + O(t)6 (7|29)

4 1+3t+t2

(1−t)3
6 t − 5 t2 + 5 t3 − 10 t4 + 24 t5 + O(t)6 (6|25)

(5.30)

Here, we have computed these defining equations using fat-point methods on P2 [39, 55].

We have used the notation, in the above table, that (m|pq1
1 . . . pqk

k ) denotes q1 equations

of degree p1, q2 equations of degree p2, etc., all in m variables. The first memeber, dP0,
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is of course C
3/Z3 as studied in detail in eq. (5.13) and eq. (5.14). Furthermore, as

mentioned when we first presented eq. (3.25), F0 has the same f(t) as dP1. Indeed, we

can study the degree 2 Veronese-Segrè embedding of P
1×P

1 into P
9 and see that F0 also

has defining equation in 10 variables as (10|220). The precise forms of these equations,

of course, differ from those of dP1. Thus, dP1 and F0 are in different points of a complex

structure moduli space.

To compare and contrast, we include the f1 results for the ADE-series addressed in

§3.1.1; indeed these are all complete intersections - in fact, single hypersurfaces - so f1,

the plethystic logarithm of the the Molien series should be polynomial:

G ⊂ SU(2) f1 = PE−1[M(t; G)] Defining Equation in C[u, v, w]

An t2 + 2tn − t2n uv = wn

D̂n+2 t4 + t2n + t2n+2 − t4n+4 u2 + v2w = wn+1

Ê6 t6 + t8 + t12 − t24 u2 + v3 + w4 = 0

Ê7 t8 + t12 + t18 − t36 u2 + v3 + vw3 = 0

Ê8 t12 + t20 + t30 − t60 u2 + v3 + w5 = 0

(5.31)

5.3.2 Example: The Hypersurface x2 + y2 + z2 + wk = 0

Now, let us try another family of complete intersection 3-folds, viz., x2+y2+z2+wk = 0

in C4. For k = 1, this is just C3, for k = 2, it is the conifold C. For k > 2, the theory is

studied in [13]. For k > 3, however, [56] recently showed that there is no Sasaki-Einstein

metric, whereby making the AdS/CFT correspondence a little ambiguous here.

For k = 2n even, we have x, y, z being degree n and w being degree 1. From this we

can read out f1 = t + 3tn − t2n. Thus we can calculate that

f∞(k = 2n) = PE[t + 3tn − t2n] =
(1 − t2n)

(1 − t)(1 − tn)3
.

Similarly, for k odd, we have x, y, z being degree k and w, degree 2. From this we can

read out that f1 = t2 + 3tk − t2k and whence

f∞(k) = PE[t2 + 3tk − t2k] =
(1 − t2k)

(1 − t2)(1 − tk)3
, , k odd .

To demonstrate, we list the series expansion of the Poincaré series f∞ for k = 1 to k = 5
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and we find

f∞(1) = f∞(t; C3) = 1 + 3t + 6t2 + 10t3 + 15t4 + 21t5 + 28t6 + 36t7 + ...

f∞(2) = f∞(t; C) = 1 + 4t + 9t2 + 16t3 + 25t4 + 36t5 + 49t6 + 64t7 + ...

f∞(3) = 1 + t2 + 3t3 + t4 + 3t5 + 6t6 + 3t7 + 6t8 + 10t9 + 6t10 + ...

f∞(4) = 1 + t + 4t2 + 4t3 + 9t4 + 9t5 + 16t6 + 16t7 + 25t8 + 25t9 + 36t10 + 36t11 + ...

f∞(5) = 1 + t2 + t4 + 3t5 + t6 + 3t7 + t8 + 3t9 + 6t10 + 3t11 + 6t12 + 3t13 + 6t14 + ...

5.4 Refined Relations: The Conifold Revised

In all of the above, we have used the generating function with a single variable t. How

does this all work if everything is refined fully so as to contain a tuple of dummy variables

for the various U(1)-charges? We shall now see that the relations are still explicitly

encoded by f1. We mentioned early on that the F-term relations are automatically

built into the counting. Indeed, for C
3, we do not have these relations - just that

x, y, z commute. For the conifold, we have the simplest demonstration that f1 contains

relations.

Recall the expression for the Poincaré series f∞ in eq. (4.6). Now, let us take

the multi-variate plethystic logarithm [50], which for f∞(X1, . . . , Xm) is, recollecting

eq. (5.6)

PE−1[f∞(X1, . . . , Xm)] =
∞∑

k=1

µ(k)

k
log(f∞(Xk

1 , . . . , Xk
m)) . (5.32)

The result is

f1 = PE−1[
xy(1 − q2)

(1 − qx)(1 − qy)(q − x)(q − y)
] =

q

x
+ q x +

q

y
+ q y − q2 . (5.33)

Indeed, f1 is polynomial because the conifold is complete intersection. There are four

invariants, corresponding to qx, q

x
, qy, q

y
. If we would write just these generators without

any subtractions, this would be merely the result for C4. Therefore it is not enough.

To put the relation, we notice that (qx)(q/x) = (qy)(q/y) = q2 and therefore we should

subtract one combination of q2. We thus reproduce eq. (5.33). The procedure is simple

and analogous for complete intersections. However, non-complete intersections, once we

make the subtraction we are taking away too much. We must therefore compensate

by adding those which are subtracted, etc. ad infinitum, just like the non-terminating

series explained in §5.2.
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6 Asymptotics and the Meinardus Theorem

We have encountered, in the preceeding discussions, many infinite products of Euler

type. Indeed, we recall that the generating function for multi-trace GIO’s is

g(t) :=

∞∑

n=0

pnt
n = PE[f(t)] =

1
∞∏

n=1

(1 − tn)an

for f(t) =

∞∑

m=0

amtm . (6.1)

In the case that all an = 1, g(t) is the Euler function, or, up to a factor of t−
1
24 , the

Dedekind η-function. This is our familiar generating function for the number of ways of

partitioning integers. The Hardy-Ramanujan equation gives the asymptotic behaviour

of pn and was what gave rise to the Hagedorn temperature (q.v. [59]). It is, needless to

say, important to find analogous asymptotic behaviours for general an. This would give

micro-state counting for our quiver gauge theories.

Luckily, this generalisation of Hardy-Ramanujan is known. This is a result due to

G. Meinardus [57] (q.v. [58], to whose notation we adhere, for some explicit results).

Meinardus’ theorem states that the asymptotic behaviour of pn in eq. (6.1) is:

pn ∼ C1n
C2 exp

[
n

α
α+1 (1 +

1

α
) (AΓ(α + 1)ζ(α + 1))

1
α+1

]
(1 + O(n−C3)) , (6.2)

if the Dirichlet series for the coefficients am of f , defined as

D(s) :=

∞∑

m=1

am

ms
, Re(s) > α > 0 , (6.3)

converges and is analytically continuable into the strip −C0 < Re(s) ≤ α for some

real constant 0 < C0 < 1 and such that in this strip, D(s) has only 1 simple pole at

s = α ∈ R+ with residue A. The constants in eq. (6.2) are

C1 = eD′(0) 1√
2π(α + 1)

(AΓ(α + 1)ζ(α + 1))
1−2D(0)
2(α+1) ,

C2 =
D(0) − 1 − α

2

α + 1
, (6.4)

and C3 some positive constant.

6.1 Example: C and Dedekind η

For example, when all am = 1, we have the usual partition of integers and the Dirichlet

series is just the Riemann ζ-function. The generating function f(t) =
∞∑

m=0

tm is of course
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simply 1
1−t

and the geometry is that of the complex line C. Using the above results of

Meinardus, we have

α = 1, A = 1, D(0) = −1

2
, D′(0) = e−

1
2

log(2π); C1 =
1

4
√

3
, C2 = −1 ,

giving us

pn ∼ 1

4
√

3n
eπ
√

2n
3 (1 + O(n−C)) ,

precisely the Hardy-Ramanujan result.

6.2 Example: MacMahon Function and a Riemann Surface

Next, consider

f(t) =
1 − t + t2

(1 − t)2
, an = n, ⇒ g(t) =

1
∞∏

n=1

(1 − tn)n

.

As PE−1[f(t)] = t + t2 + t3 − t6, this is a complete intersection, given as a hypersurface

of degree 6 in WP2
1,2,3. The dimension is therefore 1 and is hence a Riemann surface.

The total space is an affine cone over this surface and is of dimension 2. Using the

degree-genus formula, g = 1
2
(d− 1)(d− 2), the genus of the Riemann surface is 10. The

generating function g(t) is the well-known MacMahon function [60]. We see that

α = 2, A = 1, D(0) = − 1

12
, D′(0) =

1

12
−log(Gl); C1 =

e
1
12 ζ(3)

7
36

2
11
36 Gl

√
3 π

, C2 = −25

36
,

where Gl := e
1
12

−ζ′(−1) ≃ 1.28243 is the Glaisher constant. Hence,

pn ∼ e
1
12 ζ(3)

7
36

2
11
36 Gl

√
3 π

n− 25
36 exp

(
3 ζ(3)

1
3

2
2
3

n
2
3

)
. (6.5)

6.3 Example: Our Familiar C
3

Returning to something we have encountered earlier, let us attack the C3 example of

eq. (2.11). We can now find the coefficients dk therein! Using eq. (5.5) we have that

g(t; C
3) = PE[f(t; C

3)] =
1

∞∏
n=1

(1 − tn)an

, an =
1

2
(n + 1)(n + 2) . (6.6)
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We can readily see that D(s) = 1
2
(ζ(−2 + s) + 3ζ(−1 + s) + 2ζ(s)). We see that there

are 3 poles, at 1,2 and 3. Of course, Meinardus Theorem requires that there be only one

pole within a strip. Thus, one must consider one monomial of an at a time and consider

the break-down

g(t; C
3) =

1
∞∏

n=1

(1 − tn)an1

· 1
∞∏

n=1

(1 − tn)an2

· 1
∞∏

n=1

(1 − tn)an3

:= g1(t)g2(t)g3(t),

with an1 = 1
2
n2, an2 = 3

2
n, an3 = 1. Applying Meinardus and defining gi=1,2,3 :=

∞∑
n=0

pi(n)tn, we have that

p1(n) ∼ e
ζ′(−2)

2

2 2
5
8 15

1
8
n− 5

8 exp
(

2 2
3
4 π

3 15
1
4
n

3
4

)
, p2(n) ∼ e

1
8 ζ(3)

5
24

3
7
24 Gl

3
2
√

2 π
n− 17

24 exp

(
3 (3 ζ(3))

1
3

2
n

2
3

)
,

p3(n) ∼ 1

4·3
3
8
n− 7

8 exp
(

π√
3
n

1
2

)
.

(6.7)

Therefore, we have the convolution p(n) =
∑

r+s+t=n

p1(r)p2(s)p3(t) and since the expo-

nential growth of p1(n) dominates over the other two, for large n

p(n) ∼ p1(n) . (6.8)

7 Single-Trace and Multi-Trace for Finite N

We have, in all preceeding discussions, made the important simplification of taking N ,

the matrix size of the operators, to infinity, whereby decoupling spurious relations which

arise from the lack of commutativity among the matrices of finite size. As mentioned

in the introduction, the problem of counting for finite N is a significantly more difficult

one. Nevertheless, we shall see in this section that the plethystics are still applicable.

We consider the problem of counting BPS states of N = 1 supersymmetric quiver

gauge theories for N finite; N is the number of D3-branes at the tip of the CY cone.

We denote the generating function for multi-trace GIO’s by gN . This problem is of

significant interest, for instance, to studying phase transitions and AdS5 black holes.

We already considered in the previous sections the functions g1 = f∞ and g∞ = PE[g1],

and we are going to propose that it is still quite simple to reconstruct gN in terms of g1.

Suppose the single-trace generating function is given by g1(t) = f∞(t) =
∞∑

n=0

antn,
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then we can construct the following function:

g(ν; t) :=

∞∏

m=0

1

(1 − ν tm)am
. (7.1)

We immediately notice a strong similarity to the Euler product form of the plethystic

exponential introduced in eq. (5.1), eq. (5.5) and especially eq. (5.6). The only difference

between eq. (5.6) and eq. (7.1) is that in the former the sum is from 1 to ∞ while for

the latter it is from 0 to ∞.

We now propose that the finite N multi-trace generating function gN(t) is simply

given by the expansion
∞∑

N=0

gN(t)νN = g(ν; t) . (7.2)

We have 2 limiting cases to check, viz., g1 and g∞, with which we are now quite familiar.

First, we note that

∂νg(ν; t) =
∞∑

k=0

(−ak)(−tk)

(1 − ν tk)ak+1

∞∏

m=0;m6=k

1

(1 − ν tm)am
= g(ν; t)

∞∑

k=0

akt
k

(1 − ν tk)
.

Furthermore, since g(0; t) = 1, we have that ∂νg(0; t) =
∑∞

k=0 akt
k. Therefore, the

coefficient of ν in eq. (7.2) is indeed our g1:

∂νg(ν, q)|ν=0 = g1(q) . (7.3)

Next, let us check whether the N -th coefficient for N → ∞ gives our g∞. This

coefficient can be found by considering the limit10 lim
ν→1

(1− ν)a0g(ν; t) which extracts the

large N -term in the series expansion. We see that

lim
ν→1

(1 − ν)a0g(ν; t) =

∞∏

m=1

1

(1 − tm)am
≡ PE[g1(t)] . (7.4)

Therefore, our expansion eq. (7.2) has the property that its large N coefficient is the

PE of the linear coefficient, precisely what is required of g∞. We now confess that we

do not yet have a rigorous derivation that the expansion eq. (7.2) indeed gives gN for all

N , but from the following examples it can be seen that it works very well. It is indeed

an interesting problem in combinatorics to have the full proof.

It is also very interesting to compare eq. (5.6) and eq. (7.1). From it we can see that

the parameter ν in eq. (7.1) can have two different interpretations:
10In this paper we always have a0 = 1, since the only operator of vanishing scaling dimension is the

identity. We can see this explicitly in all the examples we have given throughout.
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1. It counts the number of single-trace GIO’s in a multi-trace GIO for the limit of

matrix rank N → ∞ (here we include the single trace of identity as well) as in

eq. (5.6);

2. It counts the number of multi-trace GIO’s for matrix rank N given by the finite

power of ν as in eq. (7.2).

Naively these two counting problems seem to be unrelated, but our conjectured formula

eq. (7.1) indicates that they are the same. It will be very interesting to understand their

relation more concretely and to find a proof for proposal eq. (7.1) and eq. (7.2).

Formulae (7.1) and (7.2) give the general solution for counting multi-trace BPS

GIO’s, for a finite number N of D3-branes. In fact, the relation between fN and gN , in

general, still obeys the plethytic exponential as was in eq. (2.8) and eq. (5.1), which we

summarise now (for a list of variables Xi):

gN(Xi) = PE[fN(Xi)] = exp

( ∞∑

k=1

fN(Xk
i ) − fN (0, . . . , 0)

k

)
. (7.5)

Symmetric Products and Moduli Spaces: We can in fact re-examine the finite

N counting from another perspective. The standard lore for N D3-branes probing a CY

manifold, X, is that the moduli space of vacua, Mvac(N ; X), is the symmetric product

of N copies of the CY manifold,

Mvac(N ; X) = SN (X) :=
XN

SN

, (7.6)

where SN is the permutation group of N elements. Following our general line in this

paper we can now state two important relations:

1. gN counts multi trace operators for one D3-brane on the symmetric product of N

CY manifolds Mvac(N ; X):

gN(t; X) = g1(t;
XN

SN

) = f∞(t;
XN

SN

). (7.7)

Alternatively we can think of it as the Poincaré series for Mvac(N ; X). Further-

more, from the second equality we conclude that gN also counts the single trace

operators on Mvac(N ; X) in the limit in which there are no matrix relations at

all, N → ∞.
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2. fN counts single trace operators for one D3-brane on the symmetric product of N

CY manifolds Mvac(N ; X):

fN(t; X) = f1(t;
XN

SN

). (7.8)

Here, we are again using the plethystic exponential relations. In fact, in cases

in which the symmetric product is a complete intersection, fN will be finite and

we can compare the computation of fN using the formulas at the beginning of

this section to independent derivations using the property that the manifold is

a complete intersection. In cases in which the symmetric product is not a com-

plete intersection we can still use the reasoning of §5.2. To count the number of

generators and the number of defining relations for the symmetric product.

We shall now show that these proposals agree with known results.

7.1 Example: The Complex Line C

The simplest example, as was encountered in §6.1, is given by

g1(t) = f∞(t; C) =
1

(1 − t)
=

∞∑

n=0

tn . (7.9)

This is the well known partition function of the half-BPS states in N = 4 SYM (given a

particular choice of the supercharges). This partition function also counts the “extremal”

BPS mesons in toric quivers (i.e. the mesons lying along an edge of the toric cone). In

this case, it should be simple to check the the multi-trace generating function is, as

dictated by eq. (7.1) and eq. (7.2), given precisely by

g(ν; t) =

∞∑

N=0

gN(t)νN =

∞∏

m=0

1

(1 − νtm)
. (7.10)

We note that gN is also the partition function of N bosonic one-dimensional harmonic

oscillators. In other words, we are taking a quantum particle whose single particle states

are precisely the integer points in the half-line Z≥0, and considering the placement of N

of such bosons. We can obtain gN for any value of N by Taylor expansion:

gN(t) =
N∏

n=1

1

1 − tn
. (7.11)
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In fact, there is another way to see eq. (7.11). Indeed, we have the single-trace

generating function explicitly:

fN (t; C) = 1 + t + t2 + ... + tN =
1 − tN+1

1 − t
, (7.12)

which encode the operators Tr(X i) for i = 0, . . . , N . We can take the PE of eq. (7.12)

and using the multiplicative property eq. (5.5), arrive at eq. (7.11) directly.

A few specific cases are at hand. For N = 1,

g1(t) =
1

1 − t
= 1 + t + t2 + . . . + tn + . . . , (7.13)

corresponding to the operators

I; Tr(X); Tr(X)2; . . . ; Tr(X)n; . . . .

For N = 2 we get

g2(t) =
1

(1 − t)(1 − t2)
= 1+t+2t2+2t3+3t4+3t5+4t6+. . .+(n+1)t2n+(n+1)t2n+1+. . . ,

(7.14)

corresponding to the operators (we have dropped the Tr in the notation without ambi-

guity):

I; (X); (X)2, (X2); (X)3, (X)(X2); (X)4, (X)2(X2), (X2)2; . . .

. . . ; (X)2n, (X2)(X)2n−2, (X2)2(X)2n−4, . . . , (X2)n−1; . . . .

Indeed g2(t) is the Poincaré series for C2/Z2 where Z2 acts by the exchange of the

two coordinates (z1, z2) of C2. It has two generators, one of degree 1 corresponding to

a := z1 + z2 and another of degree 2, corresponding to b := z1z2. It is easy to see that

the other invariant of degree 2 is represented in terms of these two, z2
1 + z2

2 = a2 − 2b.

Similarly, all other invariants of higher degree can be written in terms of these two.

For N = 3, we have

g3(t) =
1

(1 − t)(1 − t2)(1 − t3)
= 1+t+2t2+3t3+4t4+5t5+7t6+8t7+10t8+12t9+14t10+O(t11) ,

(7.15)

corresponding to the operators

I; (X); (X2), (X)2; (X3), (X)(X2), (X)3; (X)(X3), (X2)2, (X)2(X2), (X)4;

(X2)(X3), (X)2(X3), (X)(X2)2, (X)3(X2), (X)5; . . . .
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We see that indeed our generating function eq. (7.2) agrees with the explicit counting.

To show demonstrate the interplay between plethystics and symmetric products, we

now calculate fN using eq. (7.8). We need to find fN(t; C) = f1(t;
CN

SN
). Now, if we

expand an N -th order polynomial equation in one complex variable x,

PN(x) = xN +
N∑

i=1

aix
N−i =

N∏

j=1

(x − zj), (7.16)

we find that the parameters ai, i = 1 . . .N are symmetric functions of degree i for the

coordinates zj on CN . That is, ai are coordinates on Mvac(N ; C) = CN/SN . Further-

more, there is precisely one generator of degree i for the ring of symmetric functions of

the zj for any i between 0 and N . We can pick the generators to be the coordinates

ai. Any other symmetric function of degree i > N can be written in terms of the ai.

Collecting this together we find f1 for Mvac(N ; C) as in eq. (7.12),

f1(t;
CN

SN

) =
1 − tN+1

1 − t
= fN(t; C), (7.17)

consistent with our proposal from eq. (7.8) which implies, using the plethystic exponen-

tial, eq. (7.7), thus supporting the proposal for multi-trace.

7.2 Example: The Complex Plane C2

Next, we address a slightly more involved example, viz., C2. This case is quite simple

as well and describes 1/4-BPS operators in U(N) N = 4 SYM. This also describes a

subsector of BPS operators in many toric quivers, namely the operators corresponding

to points lying along a face of the toric cone (this face gives a toric subcone of the toric

cone, a cone over a SUSY 3 cycle), when the SUSY 3-cycle has the topology of S3. Now,

we have that

f1(t; C
2) = 2t;

g1(t; C
2) = PE[f1(t; C

2)] =
1

(1 − t)2
=

∞∑

n=0

(n + 1)tn . (7.18)

Formula (7.1) takes the form

g(ν; t) =

∞∏

m=0

1

(1 − νtm)m+1
(7.19)
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which looks deceptively similar to the generalized MacMahon function which is used as

the partition function for the topological string on the conifold [61]. Using eq. (7.2), we

get

g2(q) =
1 + t2

(1 − t)4(1 + t)2
= 1 + 2t + 6t2 + 10t3 + 19t4 + 28t5 + 44t6 + . . . . (7.20)

We report the R-charge 3 GIO’s, corresponding to the term 10t3. We see that indeed

there are 10 = 2 + 3 + 3 + 2 of them:

(X2)(X), (X)3; (X2)(Y ), (X)(XY ), (X)2(Y ); [X ↔ Y ] .

Next, for R-charge 4 GIO’s, we see that there are indeed 19 = 3 + 4 + 5 + 4 + 3 them:

(X2)2, (X2)(X)2, (X)4;

(X2)(X)(Y ), (X)2(XY ), (X2)(XY ), (X)3(Y );

(X2)(Y 2), (X2)(Y )2, (X)2(Y 2), (X)(XY )(Y ), (X)2(Y )2;

[X ↔ Y ]

The moduli space of vacua for this case is C4/Z2 where the Z2 acts as exchange of the

two coordinates. It is a complete intersection and has

f1(t; C
4/Z2) = f2(t; C

2) = 1 + 2t + 3t2 − t4. (7.21)

7.3 Example: The Conifold

The single trace GIO’s for the conifold are given, recalling eq. (4.5), by

g1(q) =
1 + q

(1 − q)3
=

∞∑

n=0

(n + 1)2qn . (7.22)

From formula (7.1) we get

f2(q) = 1 + 4q + 19q2 + 52q3 + 134q4 + 280q5 + 554q6 + . . . , (7.23)

corresponding to the operators (again, we drop the Tr for brevity):

I; (Mi,j); . . . . (7.24)
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At R-charge 2 we have 9 single-trace GIO’s (cf. Fig. 4) and 10 double-trace GIO’s, given

explicitly by:

(M0,1M0,1) (M0,1M1,0) (M1,0M1,0)

(M0,1M−1,0) (M0,1M0,−1) = (M1,0M−1,0) (M1,0M0,−1)

(M−1,0M−1,0) (M−1,0M0,−1) (M0,−1M0,−1) .

(7.25)

and

(M0,1)(M0,1) (M0,1)(M1,0) (M1,0)(M1,0)

(M0,1)(M−1,0) (M0,1)(M0,−1), (M1,0)(M−1,0) (M1,0)(M0,−1)

(M−1,0)(M−1,0) (M−1,0)(M0,−1) (M0,−1)(M0,−1) .

(7.26)

We emphasize that all these GIO’s have vanishing mesonic charge, we are not counting

the BPS operators such as det(A).

7.4 Refinement: Multicharges at Finite N

As with the refinement of the charges discussed in§3.2.1, it is simple to generalize the

arguments of the previous subsection to partition functions g1 depending on more than

one variables, arising for instance from CY cones with isometry U(1)2 or U(1)3.

Consider a toric CY cone whose integer points are described by the set C. The single

particle states are described by the generating function

g1(q1, q2, q3) =
∑

n,m,r∈C

qn
1 qm

2 qr
3 . (7.27)

Every point in C contributes once to g1, i.e., we are considering a quantum particle

whose states are precisely the integer points in the toric cone. The multi-trace generating

function gN(q1, q2, q3), in analogy with eq. (7.1), is given by

g(ν, qi) =
∑

N

gN(qi)ν
N =

∏

n,m,r∈C

1

(1 − νqn
1 qm

2 qr
3)

. (7.28)

The coefficients gN(qi) can be interpreted as the multi-particle partition function of N

boson whose single particle states are given by the integer points of C.

7.4.1 The Conifold Reloaded

Recalling eq. (4.4), the generating function g1 is given by:

g1 =
xy(1 − q2)

(1 − qx)(1 − qy)(q − x)(q − y)
= 1+q(x+y+

1

x
+

1

y
)+q2(1+

1

x2
+x2+

1

y2
+y2+xy+

1

xy
+

x

y
+

y

x
)+. . . .
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We can identify the charges (q, x, y) for following four operators

M0,1 = (1, 1, 0), M0,−1 = (1,−1, 0), M0,1 = (1, 0, 1), M0,−1 = (1, 0,−1) .

Therefore, the generating function is, according to eq. (7.28),

g(p; q, x, y) =
1

(1 − p)

1

(1 − pqx)(1 − pqy)(1 − p q

x
)(1 − p q

y
)

1

(1 − pq2)(1 − pq2x2)(1 − p q2

x2 )

1

(1 − pq2y2)(1 − p q2

y2 )(1 − pq2xy)(1 − p q2

xy
)(1 − p q2x

y
)(1 − p q2y

x
)

.

Now we try to apply above result. For N = 1 case we find the

g1 = 1 + q

(
1

x
+ x +

1

y
+ y

)
+ q2

(
1 +

1

x2
+ x2 +

1

y2
+

1

x y
+

x

y
+

y

x
+ x y + y2

)
+ ... ,

which has obvious correspondence with the variables Mi,j. For N = 2, we get the

following expansion up to R-charge two

g2 = 1+q

(
1

x
+ x +

1

y
+ y

)
+q2

(
3 +

2

x2
+ 2 x2 +

2

y2
+

2

x y
+

2 x

y
+

2 y

x
+ 2 x y + 2 y2

)
.

Again, it is easy to find the mapping between the terms here and operators in eq. (7.25)

and eq. (7.26).

7.5 Theories with only U(1)2 symmetry

We can also start from a theory with only U(1)2 symmetry, whose Poincaré series is

given by

g1(q1, q2) =
∑

n,m≥0

am,nq
n
1 qm

2 . (7.29)

Using this we can find the generating function given by

g(ν, qi) =
∑

N

fN(qi)ν
N =

∏

n,m≥0

1

(1 − νqn
1 qm

2 )am,n
. (7.30)
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8 Conclusions and Prospects

In this paper we have considered the 1/2-BPS operators of generic superconformal quiver

gauge theories, living on N D3-branes probing the tip of a Calabi-Yau (CY) cone. It

is shown how to construct the explicit generating functions that count the scalar BPS

operators. We have discussed in great detail various classes of CYs (orbifolds, toric

varietes, del Pezzo’s and complete intersections, even geometries for which the gauge

theory is not yet known), providing a simple bridge (the “Plethystic Exponential”)

between the algebraic geometry of the CY and the generating functions of the BPS

states.

The plethystics directly relate three different generating functions: (1) the defining

equations of the CY (syzygies) as well as the moduli space of vacua, (2) the single-trace

operators and (3) the multi-trace operators. Beautiful structures thus emerge, exhibiting

a rich inter-play between quiver gauge theories, algebraic geometry, combinatorics and

analytic number theory. This intricate framework allows us to solve the 3 problems

posed in the introduction, whereby realising our wish-list.

There are a number of directions that could be pursued for future work. Let us dis-

cuss some of them. We only considered the subset of operators with vanishing baryonic

charges. For instance, for the conifold we did not include, in the counting, the operator

det(A). It would be nice to find the partition functions including the baryonic charge,

that may be compared to analogous computations on the string, AdS5 × X5, side.

A possible continuation of our work could be to extend the study of chiral 1/2-

BPS operators in N = 1 quivers to consider also 1/2-BPS operators with space-time

angular momenta and 1/2-BPS fermionic operators. This would give partition functions

depending on additional charges and would, for instance, enable a computation of the

BPS index in quiver gauge theories, see [62, 63, 64, 65].

Another exension would be to consider 1/4-BPS operators, annihilated only by one

supercharge. We remark that we are studying 1/2-BPS operators in N = 1 gauge

theories annihilated by 2 out of the 4 supercharges Q. These are the analogues of 1/8-

BPS operators (annihilated by 2 out of the 16 supercharges) in N = 4 SYM. It would

be very interesting to extend the study to 1/4-BPS operators of quivers (annihilated

by only 1 supercharge Q, analogous to 1/16-BPS ops in N = 4 SYM) 11. One possible

11One single-trace example of such operators is given by Tr(O K), where O is a scalar BPS operator

and K is the scalar SUSY partner of a conserved current: Q̄αO = 0, and Q2K = Q̄2K = 0, so Tr(O K)
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outcome, for instance, could be a comparison with entropy counting of the recently

constructed AdS5 SUSY black holes 12.

In N = 4 SYM an interesting problem is whether there is a change in the number of

BPS operators changing the coupling. At zero coupling one expects more BPS states.

Here, there is a precisely analogous question. It was shown in [27] that, in the moduli

space of SCFTs corresponding to a given quiver gauge theory, there is a special point

with enhanced chiral ring13. It was observed in [27] that at this special point, the

growth of the number of single-trace, N = ∞, BPS mesons is exponential instead that

quadratic (as is the case on generic points of the moduli space of SCFTs). It would

be interesting to study further this mechanism, that could lead at finite temperature to

phase transitions.

On the gravity/string side of AdS/CFT, we should also find the same partition

functions. For single-trace operators the result is well-known. The interesting case is

multi-trace at finite N . One way to reproduce the gN should be counting Giant Gravitons

(GG’s) in AdS5 ×X5. There are studies of GG’s in AdS5 × S5 and AdS5 × T 1,1 [66]. In

the case of S5, one considers the classical moduli space of GG’s and is led to study N

classical non-interacting particles, whose single particle phase space is C
3. Quantizing

the multi particle phase space one gets N bosons whose single particle states are the

integer points of the toric cone of C
3. The partition function is precisely the finite N

partition function of 1/8-BPS ops in N = 4 SYM. In generic toric quivers, for instance,

one should find the result of the end of §7:
∑

N

fN (qi)ν
N =

∏

n,m,r∈C

1

(1 − νqn
1 qm

2 qr
3)

A different approach is [67], where they consider “dual GG’s”, i.e., D3-brane wrapping

an S3 inside AdS5, and moving along a trajectory in X5. For generic Sasaki-Einstein

manifolds X5, we conjecture that these states are BPS if and only if the trajectory is a

BPS geodesic. We already know that single-trace BPS mesons are the quantization of

such BPS geodesics (see [27]), so the final result should be a simple of outcome of the

use of the Plethystic Exponential on the gravity side.

is annihilated only by Q̄2.
12Notice that these BPS black holes are constructed in 5-dimensional gauged supergravity with U(1)k

gauge group, so can in principle be uplifted to various AdS5 × X5 solutions.
13For N = 4 and orbifolds there of this special point is the free theory, for the conifold it corresponds

to having vanishing superpotential. For generic quivers we have only one term of the superpotential

vanishing.
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