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INTERSECTION NUMBERS ON Mg,n

AND AUTOMORPHISMS OF STABLE CURVES

KEFENG LIU AND HAO XU

Abstract. Due to the orbifold singularities, the intersection numbers on the moduli
space of curves Mg,n are in general rational numbers rather than integers. We study
the properties of the denominators of these intersection numbers and their relationship
with the orders of automorphism groups of stable curves. We also present a conjecture
about a multinomial type numerical property for a general class of Hodge integrals.

1. Introduction

We denote by Mg,n the moduli space of stable n-pointed genus g complex algebraic
curves. We have the forgetting the last marked point morphism

π : Mg,n+1 −→ Mg,n,

We denote by σ1, . . . , σn the canonical sections of π, and by D1, . . . , Dn the corresponding
divisors in Mg,n+1. We let ωπ be the relative dualizing sheaf and set

ψi = c1(σ
∗
i (ωπ))

K = c1

(
ωπ

(∑
Di

))

κi = π∗(K
i+1)

E = π∗(ωπ)

λl = cl(E), 1 ≤ l ≤ g.

Where E is the Hodge bundle. The classes κi were first introduced by Mumford [15] on
Mg, their generalization to Mg,n here is due to Arbarello-Cornalba [1].

Hodge integrals are intersection numbers of the form

∫

Mg,n

ψd1
1 · · ·ψdn

n κa1 · · ·κam
λk1

1 · · ·λkg

g

If
∑n

i=1 di +
∑m

i=1 ai +
∑g

i=1 iki = 3g − 3 + n, then the above intersection number is a
nonnegative rational number, otherwise it is zero.

Hodge integrals arise naturally in the localization computation of Gromov-Witten in-
variants. They are extensively studied by mathematicians and physicists. The Hodge
integral involving only ψ classes can be computed recursively by the following famous
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2 KEFENG LIU AND HAO XU

Witten’s conjecture [18] proved by Kontsevich [13]:

〈τk+1τd〉 =
1

(2k + 3)!!

[
n∑

j=1

(2k + 2dj + 1)!!

(2dj − 1)!!
〈τd1 . . . τdj+k . . . τdn

〉

+
1

2

∑

r+s=k−1

(2r + 1)!!(2s+ 1)!!〈τrτsτd〉(1)

+
1

2

∑

r+s=k−1

(2r + 1)!!(2s+ 1)!!
∑

I⊂{1,...,n}

〈τrτdI
〉〈τsτdCI

〉




for any d = (d1, . . . , dn), where 〈τd1 . . . τdn
〉g =

∫
Mg,n

ψd1
1 · · ·ψdn

n .

Now there are several new proofs of Witten’s conjecture [12, 17, 11, 14].
Let denom(r) denote the denominator of a rational number r in reduced form (coprime

numerator and denominator, positive denominator). We define

Dg,n = lcm

{
denom

(∫

Mg,n

ψd1
1 · · ·ψdn

n

)∣∣∣
n∑

i=1

di = 3g − 3 + n

}

and for g ≥ 2,

Dg = lcm

{
denom

(∫

Mg

κa1 · · ·κam

) ∣∣∣
m∑

i=1

am = 3g − 3

}

where lcm denotes least common multiple.
We know that a neighborhood of Σ ∈ Mg,n is of the form U/Aut(Σ), where U is an

open subset of C3g−3+n. This gives the orbifold structure for Mg,n. Since denominators
of intersection numbers on Mg,n all come from these orbifold quotient singularities, so
the divisibility properties of Dg,n and Dg should reflect overall behavior of singularities.

We are mainly interested in Dg, which is closely related with Dg,n.
In the second section, we will study some properties of Dg and present an explicit

multiple of Dg. In the third section, we will discuss briefly automorphism groups of
Riemann surfaces and stable curves. In the fourth section, we will study prime factors
of Dg and its relations with automorphism groups of stable curves. In the last section,
we will give a conjectural numerical property for Hodge integrals and verify it for several
special cases.

2. Some properties of Dg

If we take k = −1 and k = 0 respectively in Witten-Kontsevich’s formula (1), we get
the string equation

〈τ0

n∏

i=1

τki
〉g =

n∑

j=1

〈τkj−1

∏

i6=j

τki
〉g
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and the dilaton equation

〈τ1

n∏

i=1

τki
〉g = (2g − 2 + n)〈

n∏

i=1

τki
〉g

from which it’s easy to prove the following

Proposition 2.1. If n ≥ 1, then

a. D0,n = 1,
b. D1,n = 24,
c. Dg,1 = 24g · g!.

Note that D0,n = 1 is also implied by the fact that M0,n is a smooth manifold.

Theorem 2.2. We have

Dg,n | Dg,n+1.

Proof. Let qs | Dg,n, where q is a prime number and qs+1 ∤ Dg,n.
We sort {〈τd1 . . . τdn

〉g |
∑n

i=1 di = 3g − 3 + n, 0 ≤ d1 ≤ · · · ≤ dn} in lexicographical
order, we say 〈τk1 . . . τkn

〉g < 〈τm1 . . . τmn
〉g, if there is some i, such that kj = mj , j < i

and ki < mi.
Let 〈τk1 . . . τkn

〉g be the minimal element with respect to the lexicographical order such
that its denominator is divisible by qs.

We have

〈τ0τk1 . . . τkn+1〉g = 〈τk1 . . . τkn
〉g +

n−1∑

i=1

〈τk1 . . . τki−1 . . . τkn−1τkn+1〉g

=
c

qsd
+

n−1∑

i=1

bi
ai

we require q ∤ c, q ∤ d and (ai, bi) = 1.
Since for i = 1, . . . , n − 1, we have 〈τk1 . . . τki−1 . . . τkn−1τkn+1〉g < 〈τk1 . . . τkn

〉g, so ai =
qsiei, where si < l and q ∤ ei. We now have

〈τ0τk1 . . . τkn+1〉g =
c
∏n−1

i=1 ei + qd(
∑n−1

j=1 q
s−sj−1

∏
i6=j ei)

qsd
∏n−1

i=1 ei

we see that q can not divide the numerator, so we have proved qs | Dg,n+1. Since q is
arbitrary, we proved the theorem. �

Theorem 2.3. We have Dg,n | Dg for all g ≥ 2, n ≥ 1. Moreover Dg = Dg,3g−3.

Proof. Let

πn : Mg,n −→ Mg,n−1,

be the morphism which forgets the last marked point, then we have the formulas due to
Faber (see [1])

(2) (π1 . . . πn)∗(ψ
a1+1
1 . . . ψan+1

n ) =
∑

σ∈Sn

κσ,
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where κσ is defined as follows. Write the permutation σ as a product of ν(σ) disjoint
cycles, including 1-cycles: σ = β1 · · ·βν(σ), where we think of the symmetric group Sn as
acting on the n-tuple (a1, . . . , an). Denote by |β| the sum of the elements of a cycle β.
Then

κσ = κ|β1|κ|β2| . . . κ|βν(σ)|.

From the formula (2), we get
∫

Mg,n

ψa1+1
1 · · ·ψan+1

n =
∑

σ∈Sn

∫

Mg

κσ,

so we proved Dg,n | Dg.

On the other hand, any
∫
Mg

κa1 · · ·κam
can be written as a sum of

∫
Mg,n

ψd1
1 · · ·ψdn

n ’s.

This can be seen by induction on the number of kappa classes, for integrals with only one
kappa class, we have

∫
Mg,n

κa1ψ
d1
1 · · ·ψdn

n =
∫
Mg,n+1

ψa1+1
n+1 ψ

d1
1 · · ·ψdn

n . We also have
∫

Mg,n

κa1 · · ·κam
ψd1

1 · · ·ψdn

n =

∫

Mg,n+m

ψa1+1
n+1 · · ·ψam+1

n+m ψd1
1 · · ·ψdn

n

− {integrals with at most m− 1 kappa classes}.

thus finishing the induction argument. So we proved Dg = Dg,3g−3. �

Corollary 2.4. For g ≥ 2,

Dg = lcm

{
denom

(∫

Mg,n

ψd1
1 · · ·ψdn

n

) ∣∣∣
n∑

i=1

di = 3g − 3 + n, di ≥ 2, n ≤ 3g − 3

}

We have used this corollary to calculate Dg for g ≤ 16 in the appendix.
To proceed, we need a little knowledge of Hurwitz numbers.
Let π : Xg → P1 be a ramified cover over the sphere P1 (or meromorphic function on

Xg) whose only degenerate ramification point is over ∞ with ramification type µ. So we
have deg π = |µ|. By the Riemann-Hurwitz formula, the number of simple ramification
points of π is:

b = 2g − 2 + |µ| + l(µ).

Two covers

π : Xg → P1, π′ : X ′
g → P1

are isomorphic if there exits an isomorphism φ : Xg → X ′
g satisfying π′ ◦ φ = π. Each

cover π has an naturally associated automorphism group Aut(π).

Definition 2.5. The Hurwitz number hg,µ is a weighted count of the distinct Hurwitz
covers π of genus g with ramification µ over ∞ and simple ramification over b fixed points
on P1. Each such cover is weighted by 1/|Aut(π)|.

Lemma 2.6. Any simple Hurwitz number, if mutiplied by 2, is an integer, i.e.

2hg,(a1,...,an) ∈ Z.

Proof. In the definition of simple Hurwitz numbers, each isomorphism class of cover π :
Xg → P 1 is weighted by 1/|Aut(π)|. So we should examine |Aut(π)|.
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Let µ = (a1, . . . , an) be the partition of |µ| =
∑n

i=1 ai, the length l(µ) = n. By
Riemann-Hurwitz theorem, we have b = 2g− 2+n+ |µ| simple ramification points in the
target sphere.

The following table is borrowed from [17], which is not difficult to check

hg,µ (1) (2) (1, 1) (3) (2, 1) (1, 1, 1)
g = 0 1 1/2 1/2 1 4 4
g = 1 0 1/2 1/2 9 40 40
g = 2 0 1/2 1/2 81 364 364

If g = 0 and b = n+ |µ|−2 ≥ 3, then the automorphism group Aut(π) of any morphism
π : Xg → P1 with the prescribed branch type over ∞ contains only identity, since any
Mobiüs transformation of the sphere fixing three points is the identity.

If g ≥ 1, then b = n + |µ| + 2g − 2, if |µ| = 2, then the automorphism group Aut(π)
of any morphism π : Xg → P1 with the prescribed branch type over ∞ contains exactly
two elements: the identity and the involution that transposes the sheets of the covering
(fixing exactly 2g + 2 points). If b > 2g + 2, i.e. n + |µ| > 4, then from the following
lemma 2.7, we know that the automorphism group Aut(π) of any morphism π : Xg → P1

with the prescribed branch type over ∞ contains only identity.
Combining with the table, we proved the theorem. �

Lemma 2.7. (See [7]) If Xg is a Riemann surface with genus g ≥ 0 and if 1 6= T ∈
Aut(Xg), then T has at most 2g + 2 fixed points.

Next we will work out an explicit multiple of Dg.

Theorem 2.8. [11] For any sequence of non-negative integers d1, . . . , dn we have

〈τd1 . . . τdn
〉g =

d1+1∑

a1=1

· · ·

dn+1∑

an=1

(
1

(2g − 2 + n+
∑n

i=1 ai)!

n∏

i=1

(−1)di+1−ai

(di + 1 − ai)!a
ai−1
i

)
hg,(a1,...,an),

where the genus g is determined by the left-hand side,
∑n

i=1 di = 3g − 3 + n.

From the above formula, we get the following

Proposition 2.9. Dg,n divides

(5g − 5 + 3n)! [(3g − 3 + 2n)!]3g−3+n · 2.

Proof. Note lemma 2.6 and the simple fact that
∏n

i=1 ki! | (
∑n

i=1 ki)!, it’s easy to see that
Dg,n divides

(2g − 2 + n+

n∑

i=1

di + n)!

n∏

i=1

[(di + 1)!]di · 2

| (5g − 5 + 3n)!

[
n∏

i=1

(di + 1)!

]3g−3+n

· 2

| (5g − 5 + 3n)! [(3g − 3 + 2n)!]3g−3+n · 2

where “|” denotes that the latter is divisible by the former.
�
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Since Dg = Dg,3g−3, we have the following

Corollary 2.10. For g ≥ 2, Dg divides (14g − 14)! [(9g − 9)!]6g−6 · 2.

Corollary 2.11. For g ≥ 2, the denominator of intersection numbers of the form∫

Mg,n

ψd1
1 · · ·ψdn

n κa1 · · ·κam

can divide (14g − 14)! [(9g − 9)!]6g−6 · 2.

3. Automorphism groups of stable curves

The book [7] contains an excellent chapter on automorphisms of compact Riemann
surfaces.

Let X be a compact Riemann surface of genus g and Aut(X) denotes the group of
conformal automorphisms of X. It’s a classical theorem of Hurwitz that if g ≥ 2, then
|Aut(X)| ≤ 84(g − 1).

Let G ⊂ Aut(X) be a group of automorphisms of X, consider the natural map

π : X → X/G

we know that π has degree |G| and X/G is a compact Riemann surface of genus g0.
The mapping π is branched only at the fixed points of G and the branching order

b(P ) = ordGP − 1

where GP is the isotropy group at P ∈ X which is known to be cyclic.
Let P1, . . . , Pr be a maximal set of inequivalent fixed points of elements of G \ {1}.

(that is, Pi 6= h(Pj) for all h ∈ G and all j 6= k.)
Let ni = ordGPi

, then the total branch number of π is given by

B =

r∑

i=1

|G|

ni
(ni − 1) = |G|

r∑

i=1

(1 −
1

ni
)

the Riemann-Hurwitz formula now reads

2g − 2 = |G|

[
2g0 − 2 +

r∑

i=1

(1 −
1

ni
)

]

so we have

(3) |G|
∣∣∣ (2g − 2) · lcm(n1, . . . , nr),

this fact is crucial in the study of automorphism groups of compact Riemann surfaces.
We need the following theorem.

Theorem 3.1. [9] The minimum genus g of compact Riemann surface which admits an
automorphism of order pr (p is prime) is given by

g = max

{
2,
p− 1

2
pr−1

}
.

An immediate corollary of formula (3) and theorem 3.1 is
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Corollary 3.2. Let X be a compact Riemann surface of genus g ≥ 2, if a prime number
p can divide |Aut(X)|, then p ≤ 2g + 1.

We recall the definition of stable curves. A stable curve is a connected and compact
nodal curve, which means that its singular points are locally analytically isomorphic to a
neighborhood of the orgin of xy = 0 in C2 and satisfy the stability conditions: (i) each
genus 0 component has at least three node-branches; (ii) each genus 1 component has at
least one node-branch.

The stability conditions are equivalent to say that the nodal curve has finite automor-
phism group.

Suppose Σ is a stable curve of arithmetic genus g such that its normalization has n
components Σ1, . . . ,Σn of genus g1, . . . , gn.

Definition 3.3. We call an automorphism ϕ of the dual graph Γ of Σ an admissible
graph automorphism, if there is at least one automorphism of the stable curve Σ realizing
the underlying dual graph automorphism ϕ. All admissible automorphisms of Γ form a
group, denoted by Ad(Γ), which is a subgroup of Aut(Γ).

Theorem 3.4. Let Ãut(Σi) be the group of automorphisms of Σi fixing node-branches on
Σi. Then we have

|Aut(Σ)| = |Ad(Γ)| ·
n∏

i=1

|Ãut(Σi)|

Proof. We note the following fact, if f(x) and g(y) are two holomorphic functions defined
near the origin of C1 and satisfy f(0) = g(0), then F (x, y) = f(x) + g(y) − f(0) is a
holomorphic function near the origin of C2 satisfying F (x, 0) = f(x) and F (0, y) = g(y).
Then the theorem is obvious. �

We now generalize corollary 3.2 to stable curves.

Theorem 3.5. Let Σ be a stable curve of arithmetic genus g ≥ 2, if a prime number p
can divide |Aut(Σ)|, then p ≤ 2g + 1.

Proof. Let’s assume that there are δ nodes on Σ and δi node-branches on each Σi. Then
we have the following relations,

g =
n∑

i=1

(gi − 1) + δ + 1,(4)

2gi + δi − 2 ≥ 1,(5)

2δ =

n∑

i=1

δi.(6)

Sum up (5) for i = 1 to n and substitute (4) and (6) into (5), we get

n ≤ 2g − 2.

Let eij denotes the number of edges between Σi and Σj in the dual graph of Σ, then
it’s obvious that eij ≤ g + 1.

Since |Aut(Γ)| divides n!
∏

(i,j)(eij !) which is not divisible by prime numbers greater
than 2g + 1, and gi ≤ g, so the theorem follows from corollary 3.2. �
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4. Prime factors of Dg

Definition 4.1. We call the following generating function

F (x1, · · · , xn) =
∞∑

g=0

∑
∑

di=3g−3+n

〈τd1 · · · τdn
〉
∏

xdi

i

the n-point function.

In particular, 2-point function has a simple explicit form due to Dijkgraaf,

F (x1, x2) =
1

x1 + x2

exp

(
x3

1

24
+
x3

2

24

) ∞∑

k=0

k!

(2k + 1)!

(
1

2
x1x2(x1 + x2)

)k

.

Lemma 4.2. Let p denotes a prime number and g ≥ 2, then

a. If p > 2g + 1, then p ∤ Dg,2,
b. If g + 1 ≤ p ≤ 2g + 1, then

p | denom〈τ p−1
2
τ3g−1− p−1

2
〉g,

c. If 2g+1 is prime, then (2g+1) | denom〈τdτ3g−1−d〉g if and only if g ≤ d ≤ 2g−1.

Proof. From the 2-point function, we get

〈τdτ3g−1−d〉 =

g∑

i=0

∑

k

(
g − k

i

)(
k − 1

d− 3i− k

)
k!

(g − k)!24g−k(2k + 1)!2k

+
(−1)mod(d,3)

g!24g

(
g − 1

⌊d
3
⌋

)
,

where mod(d, 3) denotes the remainder of the division of d by 3, the summation range of
k is max(d1−3i+1

2
, 1) ≤ k ≤ min(g − i, d1 − 3i). Then the lemma follows easily. �

Theorem 4.3. Let p denotes a prime number, g ≥ 2 and let o(p, q) denotes the maximum
integer such that po(p,q) | q, then

a. If p > 2g + 1, then p ∤ Dg,
b. For any prime p ≤ 2g + 1, we have p | Dg.
c. If 2g + 1 is prime, then o(2g + 1,Dg) = 1,
d. o(2,Dg) = 3g + o(2, g!).

Proof. For part a., we use induction on the pair of genus and the number of marked points
(g, n) to prove that denominators of all ψ class intersection numbers are not divisible by
prime numbers greater than 2g + 1. We rewrite Witten-Kontsevich formula here,

〈τk+1τd〉g =
1

(2k + 3)!!

[
n∑

j=1

(2k + 2dj + 1)!!

(2dj − 1)!!
〈τd1 . . . τdj+k . . . τdn

〉g

+
1

2

∑

r+s=k−1

(2r + 1)!!(2s+ 1)!!〈τrτsτd〉g−1

+
1

2

∑

r+s=k−1

(2r + 1)!!(2s+ 1)!!
∑

I⊂{1,...,n}

〈τrτdI
〉g1〈τsτdCI

〉g2
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where g1 + g2 = g.
For n ≥ 3 marked points, we may take k ≤ g−1, then by induction on (g, n) it’s easy to

see that the denominator of the right hand side is not divisible by prime numbers greater
than 2g + 1.

For part b., it follows from proposition 2.1 c., theorem 2.3 and lemma 4.2 b.
For part c., we again use induction on (g, n) as in the proof of part a. In view of lemma

4.2 c. and o(2g + 1, Dg,2) = 1, We need only consider the following intersection numbers,

〈τgτgτg〉 =
1

(2g + 1)!!

[
2(4g − 1)!!

(2g − 1)!!
〈τgτ2g−1〉 + {lower genus terms}

]

since the factor 2g+ 1 in the denominator of 〈τgτ2g−1〉 will be cancelled by (4g− 1)!!. We
proved part c.

For part d., since 〈τ3g−2〉g = 1
24gg!

, we have o(2,Dg) ≥ 3g+o(2, g!), the reverse inequality

can be seen from the Witten-Kontsevich formula by induction on (g, n) and note the
following,

1

2

∑

r+s=k−1

(2r + 1)!!(2s+ 1)!!
∑

I⊂{1,...,n}

〈τrτdI
〉g1〈τsτdCI

〉g2

=
∑

r+s=k−1

(2r + 1)!!(2s+ 1)!!
∑

I∪J={1,...,n}

〈τrτdI
〉g1〈τsτdJ

〉g2,

where {I, J} takes over unordered partitions of {1, . . . , n}. �

Proposition 4.4. If p ≥ 3 is a prime number, then

o(p, denom〈τd1 · · · τdn
〉g) ≤ o(p,

n∏

i=1

(2di + 1)!!).

Proof. Following Dijkgraaf’s notation [2], let

〈τ̃d1 . . . τ̃dn
〉g =

[ n∏

i=1

(2di + 1)!!
]
〈τd1 . . . τdn

〉g

then the Witten-Kontsevich formula can be written as,

〈τ̃kτ̃d〉g =

n∑

j=1

(2dj + 1)〈τ̃d1 . . . τ̃dj+k−1 . . . τ̃dn
〉g +

1

2

∑

r+s=k−2

〈τ̃rτ̃sτ̃d〉g−1

+
1

2

∑

r+s=k−2
I⊂{1,...,n}

〈τ̃rτ̃dI
〉g′〈τ̃sτ̃dCI

〉g−g′

for any d = (d1, . . . , dn).
Since 〈τ̃1〉1 = 1

8
, by induction on (g, n), it’s easy to prove that for any prime number

p ≥ 3,

p ∤ denom〈τ̃d1 . . . τ̃dn
〉g.

So we proved the proposition. �
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Lemma 4.5. Let Bm denotes the Bernoulli numbers in the expansion

t

et − 1
=

∞∑

m=0

Bm
tm

m!
,

The denominator of B2m is given by
∏

(p−1)|2m

p

where the product is taken over the primes p.

Proof. It follows easily from the Staudt’s theorem (see [10]),

−B2m ≡
∑

(p−1)|2m

1

p
(mod 1)

where the sum is taken over the primes p. �

Theorem 4.6. The denominator of intersection numbers of the form

(7)

∫

Mg,n

ψd1
1 · · ·ψdn

n κa1 · · ·κam
λk1

1 · · ·λkg

g

can only contain prime factors less than or equal to 2g + 1.

Proof. Mumford [15] proved the following formula for Chern character of Hodge bundle

ch2m−1(E) =
B2m

(2m)!

[
κ2m−1 −

n∑

i=1

ψ2m−1
i +

1

2

∑

ξ∈∆

lξ∗

(
2m−2∑

i=0

ψi
1(−ψ2)

2m−2−i

)]
.

We know that any λi can be expressed as a polynomial of chj(E)’s,

λi =
∑

µ⊢i

(−1)i−l(µ)
∏

r≥1

((r − 1)!)mr

mr!
chµ(E), i ≥ 1,

where the sum ranges over all partitions µ of i, and mr is the number of r in µ, and
chµ(E) = chµ1(E) · · · chµl

(E).
By Faber’s algorithm [3], we can reduce any Hodge integral (7) to a sum of integrals

with only ψ and κ classes.
Note also that ch0(E) = g, ch2r(E) = 0 for r ≥ 1 and chr(E) = 0 for r ≥ 2g.
So the theorem follows from lemma 4.5 and theorem 4.3 a. �

In view of theorem 3.5, the above theorem should also follow from the definition of
Chow ring of Mg,n by Mumford [15]. We include a proof here because it’s conceptually
simple and direct.

Lemma 4.7. If g − 1 is an odd prime number, then

(g − 1)2 | denom〈τ g

2
−1τ g

2
−1τ2g+2〉g.
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Proof. For g = 4, 〈τ1τ1τ10〉4 = 7
21235 . So we assume g ≥ 6 in the following,

We need Don Zagier’s marvelous 3-point function which we learned from Faber [4],

F (x, y, z) = e(x
3+y3+z3)/24

∑

r,s≥0

r!Sr(x, y, z)

4r(2r + 1)!! · 2
·
[(x+ y)(y + z)(z + x)]s

8s(r + s+ 1)!

where Sr(x, y, z) is the homogeneous symmetric polynomial defined by

Sr(x, y, z) =
(xy)r(x+ y)r+1 + (yz)r(y + z)r+1 + (zx)r(z + x)r+1

x+ y + z
∈ Z[x, y, z].

It’s not difficult to prove that

Sr(x, y, z) = (xr + yr)z2r + p(x, y)z2r−1 + . . .

so in the sum indexed by r, s for the coefficient of x
g

2
−1y

g

2
−1z2g+2, only the denominator

of terms with r = g
2
− 1 and s = g

2
− 1 can be divided by (g − 1)2, namely the following

z6

48
·
r!(xr + yr)z2r

4r(g − 1)!! · 2
·
(x+ y)sz2s

8s(g − 1)!

where r = s = g
2
− 1, then the lemma follows easily. �

Theorem 4.8. Let X be a compact Riemann surface of genus g ≥ 2, then |Aut(X)| can
divide Dg.

Proof. Let p denotes a prime number and G = Aut(X). Since

o(p, |G|) ≤ ⌊logp

2pg

p− 1
⌋ + o(p, 2(g − 1)),

it’s sufficient to prove that

(8) ⌊logp

2pg

p− 1
⌋ + o(p, 2(g − 1)) ≤ o(p,Dg)

for all prime p ≤ 2g + 1.
If g ≤ p ≤ 2g + 1, then from formula (3) and theorem 3.1, we have ⌊logp

2pg
p−1

⌋ ≤ 1, so

from theorem 4.3 b., (8) holds in this case.
If 5 ≤ p ≤ g − 1, we need to prove

⌊logp

2pg

p− 1
⌋ + o(p, g − 1) ≤ o(p,Dg).

If p = g − 1 ≥ 5 is prime, then from g ≥ 6 and lemma 4.6, we have

⌊logg−1

2g(g − 1)

g − 2
⌋ + 1 ≤ 2 ≤ o(g − 1,Dg).

Otherwise if p ∤ (g − 1), since g! | Dg, so in order to check (8), it’s sufficient to prove

⌊logp

2pg

p− 1
⌋ ≤ ⌊

g

p
⌋

which is equivalent to prove for all k ≥ 2,

pk >
2p(kp− 1)

p− 1

i.e. pk − pk−1 − 2kp+ 2 > 0



12 KEFENG LIU AND HAO XU

which is not difficult to check.
If p | (g − 1) and 5 ≤ p < g − 1, then it’s sufficient to prove

⌊logp

2pg

p− 1
⌋ + 1 ≤ ⌊

g

p
⌋

since the higher power of p divisible by g− 1 will be subtracted by ⌊ g
p2 ⌋, ⌊

g
p3 ⌋, etc. in the

right hand side.
Let g = kp+ 1, k ≥ 2, we need to prove

pk >
2p(kp+ 1)

p− 1

i.e. pk − pk−1 − 2kp− 2 > 0.

The above inequality holds except in the case p = 5 and g = 11 which should be treated
separately. Since

o(5, |G|) ≤ ⌊log5

110

4
⌋ + 1 = 3

and we know from the appendix that o(5,D11) = 5, we finished checking in this case.
Now we consider the remaining two cases, p = 2 and p = 3. Note that 24gg! | Dg.
If p = 2, it’s sufficient to prove log2 4g ≤ 3g − 1.
If p = 3, it’s sufficient to prove log3 3g ≤ g.
Both cases are easy to check. So we conclude the proof of the theorem. �

5. A conjectural numerical property of intersection numbers

It’s well-known that the intersection numbers of ψ classes on Mg,n in genus zero is
given by

〈τd1 · · · τdn
〉0 =

(
n− 3

d1 · · · dn

)
=

(n− 3)!

d1! · · ·dn!

So if d1 < d2, we have

〈τd1τd2 · · · τdn
〉0 ≤ 〈τd1+1τd2−1 · · · τdn

〉0.

Now we prove that the same inequality holds in genus 1.

Proposition 5.1. For
∑n

i=1 di = n and d1 < d2, we have

〈τd1τd2 · · · τdn
〉1 ≤ 〈τd1+1τd2−1 · · · τdn

〉1.

Proof. We prove the inequality by induction on n. If n = 2,

〈τ0τ2〉1 = 〈τ1τ1〉1 =
1

24
So we assume that the theorem for n − 1 is proved. We may assume d2 − d1 ≥ 2,

otherwise it’s trivial. So by the symmetry property of intersection numbers, we may
assume without loss of generality that dn = 0 or dn = 1.

If dn = 1 then by dilaton equation

〈τd1τd2 · · · τdn
〉1 = (n− 1)〈τd1τd2 · · · τdn−1〉1

〈τd1+1τd2−1 · · · τdn
〉1 = (n− 1)〈τd1+1τd2−1 · · · τdn−1〉1.
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So 〈τd1τd2 · · · τdn
〉1 ≤ 〈τd1+1τd2−1 · · · τdn

〉1 holds in this case by induction.
If dn = 0 then by string equation

〈τd1τd2 · · · τdn
〉1 = 〈τd1−1τd2 · · · τdn−1〉1 + 〈τd1τd2−1 · · · τdn−1〉1

+

n−1∑

i=3

〈τd1τd2 · · · τdi−1 · · · τdn−1〉1

〈τd1+1τd2−1 · · · τdn
〉1 = 〈τd1τd2−1 · · · τdn−1〉1 + 〈τd1+1τd2−2 · · · τdn−1〉1

+

n−1∑

i=3

〈τd1+1τd2−1 · · · τdi−1 · · · τdn−1〉1.

So 〈τd1τd2 · · · τdn
〉1 ≤ 〈τd1+1τd2−1 · · · τdn

〉1 holds again by induction. �

Now we formulate the following conjecture

Conjecture 5.2. For
∑n

i=1 di = 3g − 3 + n and d1 < d2, we have

〈τd1τd2 · · · τdn
〉g ≤ 〈τd1+1τd2−1 · · · τdn

〉g.

Namely the more evenly 3g − 3 + n be distributed among indices, the larger the inter-
section numbers.

By the same argument of proposition 5.1, we can see that for each g, it’s enough to
check only those intersection numbers with n ≤ 3g − 1 and d3 ≥ 2, . . . , dn ≥ 2.

We have checked this conjecture to be true for g ≤ 16 with the help of Faber’s Maple
programm. Moreover, for n = 2, we have checked all g ≤ 300 (using the 2-point function);
for n = 3, we have checked all g ≤ 50 (using Zagier’s formula of the 3-point function).

Okounkov [16] has obtained general n-point functions, from which we could get some
properties of intersection numbers. For example, for fixed n, the sum of all n-point
intersection numbers of ψ’s is finite, i.e.,

∞∑

g=0

∑
∑

di=3g−3+n

〈τd1 · · · τdn
〉g <∞.

However, it seems combinatorially complicated to apply the n-point functions to the above
conjecture 5.2. We obtained the following partial results.

Lemma 5.3. For p ≥ 0 and q ≥ 0, let Gp,q(x, y) denotes the polynomial (x3 +y3)p(x+y)q

and let C(Gp,q, x
ayb) denotes the coefficient of xayb in Gp,q(x, y). Then if b ≥ a and

|b− a| ≥ |b− a− 6k| (i.e. b− a ≥ 3k ≥ 0), we have

(9) C(Gp,q, x
ayb) ≤ C(Gp,q, x

a+3kyb−3k)

Proof. We prove inequality (9) by induction on (p, q). We assume that (9) holds for (p, q)
and prove inequality (9) for (p+ 1, q) and (p, q + 1).

For the case (p+ 1, q),

C(Gp+1,q, x
ayb) = C(Gp,q, x

a−3yb) + C(Gp,q, x
ayb−3)

C(Gp+1,q, x
a+3kyb−3k) = C(Gp,q, x

a+3k−3yb−3k) + C(Gp,q, x
a+3kyb−3k−3)

We may assume that k ≥ 1, otherwise (9) holds trivially. Note also that b − a ≥ 3k,
it’s easy to prove the following,

|b− a + 3| ≥ |b− a− 6k − 3|, i.e. C(Gp,q, x
a−3yb) ≤ C(Gp,q, x

a+3kyb−3k−3)
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|b− a− 3| ≥ |b− a− 6k + 3|, i.e. C(Gp,q, x
ayb−3) ≤ C(Gp,q, x

a+3k−3yb−3k)

So we proved C(Gp+1,q, x
ayb) ≤ C(Gp+1,q, x

a+3kyb−3k) for b− a ≥ 3k ≥ 0.
The proof for the case of (p, q + 1) is similar. So we proved the lemma. �

Proposition 5.4. If a 6≡ 1 (mod 3), then for a+ b = 3g−1 and b−a ≥ 3k ≥ 0, we have

〈τaτb〉g ≤ 〈τa+3kτb−3k〉g.

Proof. From the 2-point function

F (x, y) =

g∑

s=1

s!

(g − s)!24g−s(2s+ 1)!2s
(x3 + y3)g−s(x+ y)s−1xsys

+
1

x+ y
exp(

x3

24
+
y3

24
).

Use the notation of the above lemma, we have for a+ b = 3g − 1,

〈τaτb〉g =

g∑

s=1

s!

(g − s)!24g−s(2s+ 1)!2s
C(Gg−s,s−1, x

a−syb−s) +
(−1)mod(a,3)

g!24g

(
g − 1

⌊a
3
⌋

)

and

〈τa+3kτb−3k〉g =

g∑

s=1

s!

(g − s)!24g−s(2s+ 1)!2s
C(Gg−s,s−1, x

a−s+3kyb−s−3k)

+
(−1)mod(a+3k,3)

g!24g

(
g − 1

⌊a+3k
3

⌋

)

By the above lemma, we need only prove that
∣∣∣∣
g − 1

2
− ⌊

a

3
⌋

∣∣∣∣ ≥
∣∣∣∣
g − 1

2
− ⌊

a

3
⌋ − k

∣∣∣∣

Since a + b = 3g − 1 and b− a ≥ 3k ≥ 0, we have ⌊a
3
⌋ ≤ ⌊3g−3k−1

6
⌋ ≤ g−1

2
,

(
g − 1

2
− ⌊

a

3
⌋

)
−

(
g − 1

2
− ⌊

a

3
⌋ − k

)
= k ≥ 0.

and (
g − 1

2
− ⌊

a

3
⌋

)
−

(
−
g − 1

2
+ ⌊

a

3
⌋ + k

)
= g − 1 − k − 2⌊

a

3
⌋ ≥ 0

since ⌊a
3
⌋ ≤ ⌊g−k

2
− 1

6
⌋ ≤ g−k

2
− 1

2
. �

Corollary 5.5. If a 6≡ 0 (mod 3), then for a+ b = 3g − 3 and b− a ≥ 3k ≥ 0, we have
∫

Mg

κaκb ≤

∫

Mg

κa+3kκb−3k.

Proof. We know that ∫

Mg

κaκb = 〈τa+1τb+1〉g −

∫

Mg

κ3g−3

So the corollary follows from the above proposition. �
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Proposition 5.6. If a+ b = 3g and b− a ≥ 3k ≥ 0, we have

〈τ0τaτb〉g ≤ 〈τ0τa+3kτb−3k〉g.

Proof. We have the following formula for the special 3-point function F (0, x, y),

F (0, x, y) = (x+ y)F (x, y)

=

g∑

s=0

s!

(g − s)!24g−s(2s+ 1)!2s
(x3 + y3)g−s(x+ y)sxsys.

So the proposition follows from lemma 5.3. �

In fact, the above multinomial type numerical property is also shared by general Hodge
integrals.

Conjecture 5.7. Let f(λ) be a monomial of the form λk1
1 . . . λ

kg
g . Then for

∑n
i=1 di =

3g − 3 + n−
∑g

i=1 iki and d1 < d2, we have

∫

Mg,n

ψd1
1 ψ

d2
2 · · ·ψdn

n f(λ) ≤

∫

Mg,n

ψd1+1
1 ψd2−1

2 · · ·ψdn

n f(λ)

We now give some evidence for conjecture 5.7.
For f(λ) = λg, we have the following well-known λg theorem proved by Faber and

Pandharipande [5],
∫

Mg,n

ψk1
1 . . . ψkn

n λg =

(
2g + n− 3

k1, . . . , kn

)
bg.

So conjecture 5.7 holds in this case.
For f(λ) = λg−1λg, the degree 0 Virasoro conjecture for P2 implies that [8] if

∑n
i=1 di =

g − 2 + n and di > 0, the following Faber’s conjecture holds,

∫

Mg,n

ψd1
1 . . . ψdn

n λgλg−1 =
(2g + n− 3)!|B2g|

22g−1(2g)!
∏n

i=1(2di − 1)!!

It’s not difficult to prove that conjecture 5.3 holds in this case.

For any f(λ) = λk1
1 · · ·λ

kg
g , where

∑g
i=1 iki = 3g − 3, we can use the same argument of

proposition 5.1 to prove that conjecture 5.7 holds.

Acknowledgements. The second author is grateful to Professor Carel Faber, Sean Keel
and Rahul Pandharipande for helpful suggestions on moduli spaces of curves.
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Appendix A. Some values of Dg

Dg

g = 2 27 · 32 · 5
g = 3 210 · 34 · 5 · 7
g = 4 215 · 35 · 52 · 7
g = 5 218 · 36 · 52 · 7 · 11
g = 6 222 · 38 · 53 · 72 · 11 · 13
g = 7 225 · 39 · 53 · 72 · 11 · 13
g = 8 231 · 310 · 54 · 72 · 11 · 13 · 17
g = 9 234 · 313 · 54 · 73 · 11 · 13 · 17 · 19
g = 10 238 · 314 · 55 · 73 · 112 · 13 · 17 · 19
g = 11 241 · 315 · 55 · 73 · 112 · 13 · 17 · 19 · 23
g = 12 246 · 317 · 56 · 74 · 112 · 132 · 17 · 19 · 23
g = 13 249 · 318 · 56 · 74 · 112 · 132 · 17 · 19 · 23
g = 14 253 · 319 · 57 · 74 · 112 · 132 · 17 · 19 · 23 · 29
g = 15 256 · 321 · 57 · 75 · 113 · 132 · 17 · 19 · 23 · 29 · 31
g = 16 263 · 322 · 58 · 75 · 113 · 132 · 172 · 19 · 23 · 29 · 31



INTERSECTION NUMBERS ON Mg,n AND AUTOMORPHISMS OF STABLE CURVES 17

References

[1] E. Arbarello, M. Cornalba, Combinatorial and Algebro-Geometric cohomology classes on the Moduli

Spaces of Curves, J. Algebraic Geometry, 5 (1996), 705-709.
[2] R. Dijkgraaf, Intersection Theory, Integrable Hierarchies and Topological Field Theory, New sym-

metry principles in quantum field theory (Cargse, 1991), 95–158, NATO Adv. Sci. Inst. Ser. B
Phys., 295, Plenum, New York, 1992.

[3] C. Faber, Algorithms for computing intersection numbers on moduli spaces of curves, with an.

application to the class of the locus of Jacobians, in New Trends in Algebraic Geometry (K. Hulek,
F. Catanese, C. Peters and M. Reid, eds.), 93–109, Cambridge University Press, 1999.

[4] C. Faber, Private communications (July 2006).
[5] C. Faber, R. Pandharipande, Hodge integrals, partition matrices, and the λg conjecture, Ann. Math.

156 (2002), 97–124.
[6] C Faber, R Pandharipande,Hodge integrals and Gromov-Witten theory, Invent. Math. 139 (2000)

173–199.
[7] H. M. Farkas, I. Kra, Riemann Surfaces, Springer, Berlin, Heidelberg, New York, 1980.
[8] E. Getzler, R. Pandharipande, Virasoro constraints and the Chern classes of the Hodge bundle,

Nuclear Phys. B 530 (1998), no. 3, 701–714.
[9] W. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math., 17

(1966), 86–97.
[10] G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, Clarendon press, Oxford,

1980.
[11] M. E. Kazarian, S. K. Lando, An algebro-geometric proof of Witten’s conjecture, preprint,

math.AG/0601760.
[12] Y. S. Kim, K. Liu, A simple proof of Witten conjecture through localization, preprint,

math.AG/0508384.
[13] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function.

Comm. Math. Phys. 147 (1992), no. 1, 1–23.
[14] M. Mirzakhani, Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann

surfaces, preprint, 2003.
[15] D. Mumford, Towards an enumerative geometry of the moduli space of curves, in Arithmetic and

Geometry (M. Artin and J. Tate, eds.), Part II, Birkhäuser, 1983, 271-328.
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