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Abstract

The main aim of this paper is to give invariant properties of representations of

algebras under cleft extensions over a semisimple Hopf algebra. Firstly, we explain

the concept of cleft extension and give the relation between cleft extension and crossed

product which is the approach we depend upon. Then, by using of them, we prove that

for a finite dimensional Hopf algebra H which is semisimple as well as its dual H∗, the

representation type of an algebra is an invariant property under a finite dimensional

H-cleft extension over an algebraically closed field. In the other part, we still show

that the Nakayama property of an artin algebra is also an invariant property under

an H-cleft extension when the radical of the algebra is H-stable.

2000 Mathematics Subject Classifications: 16G60; 16G10; 16W30; 16S35

1 Introduction

Assume k is always a field. A module, which is not explained, is always left.

Let B be a k-algebra, A a subalgebra of B, and H a Hopf k-algebra. The following

concepts are well-known:

1) A ⊂ B is called a (right) H-extension if B is a right H-comodule algebra with structure

map ρ satisfying BcoH = A, where BcoH is defined as the subcomodule {b ∈ B : ρ(b) =

b⊗ 1};
2) An H-extension A ⊂ B is called H-cleft if there exists a right H-comodule map
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γ : H → B which is (convolution) invertible;

3) An H-extension A ⊂ B is called right H-Galois if the map β : B ⊗A B → B ⊗k H

given by β(a⊗ b) = (a⊗ 1)ρ(b), is bijective;

4) An H-extension A ⊂ B is said to have the (right) normal basis property if B ∼= A⊗H

as left A-modules and right H-comodules.

The following theorem of Doi and Takeuchi [8] characterizes Galois extensions with

the normal basis property.

Theorem 1.1 [8] Let A ⊂ B be an H-extension. The the following are equivalent:

(i) A ⊂ B is H-cleft;

(ii) A ⊂ B is H-Galois and has the normal basis property.

From this conclusion, we know that cleft extension is a special kind of Galois extensions

and generalizes the classical theorem in the Galois theory of groups which says that if

F ⊂ E is a finite Galois extension of fields with Galois group G, then E/F has a normal

basis. So, cleft extension is important in the Galois theory of Hopf algebras.

Our main aim is to give invariant properties of representations of algebras under cleft

extensions over a semisimple Hopf algebra.

In Section 1, firstly, we explain the concept of cleft extension and give the relation

between cleft extension and crossed product which is the method we depend upon. In

Section 2, by using of them, we prove that for a finite dimensional Hopf algebra H which

is semisimple as well as its dual H∗, the representation type of an algebra is an invariant

property under a finite dimensional H-cleft extension over an algebraically closed field.

In Section 3, we still show that the Nakayama property of an artin algebra is also an

invariant property under an H-cleft extension when the radical of the algebra is H-stable.

The major approach we will use in Section 2 and 3 is based on the correspondent relation

between cleft extension and crossed product.

First, we recall some notions on crossed product. A Hopf algebra H is said to measure

an algebra A if there is a k-linear map H ⊗ A → A given by h ⊗ a 7→ h · a such that

h · 1 = ε(h)1 and h · (ab) =
∑

(h1 · a)(h2 · b) for all h ∈ H, a, b ∈ A.

Assume H measures A and σ is a convolution invertible map in Hom(H ⊗H, A). The

crossed product A#σH of A with H is the set A⊗H as a vector space with multiplication

(a#h)(b#k) =
∑

a(h1 · b)σ(h2, k1)#h3k2

for all h, k ∈ H, a, b ∈ A. Here write a#h for the tensor product a⊗ h.

Theorem 1.2 [8][4] A#σH is an associative algebra with identity element 1#1 if and

only if the following two conditions are satisfied:
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(i) A is a twisted H-module with action ·, that is, 1 · a = a and

h · (k · a) =
∑

σ(h1, k1)(h2k2 · a)σ−1(h3, k3)

for all h, k ∈ H, a ∈ A;

(ii) σ is a cocycle, that is, σ(h, 1) = σ(1, h) = ε(h)1 and

∑
(h1 · σ(k1,m1))σ(h2, k2m2) =

∑
σ(h1, k1)σ(h2k2,m)

for all h, k, m ∈ H.

Trivially, for any a ∈ A, h ∈ H, we have (a#1)(1#h) = a#h; and A ∼= A#σ1 and

H ∼= 1#σH can always be said to be subalgebras of A#H respectively. Thus, (a#1) and

(1#h) often be written briefly as a and h respectively. So, ah = a#h and etc.

Now we can give the following relation:

Theorem 1.3 [12] An H-extension A ⊂ B is H-cleft with right convolution invertible

H-comodule map γ : H → B if and only if B ∼= A#σH as algebras with a convolution

invertible k-map σ : H ⊗H → A, where the twisted H-module action on A of A#σH is

given by

h · a =
∑

(h)

γ(h′)aγ−1(h′′) (1)

moreover, γ and σ are constructed each other by

σ(h, k) =
∑

(h)(k)

γ(h′)γ(k′)γ−1(h′′k′′) (2)

and γ, γ−1 from H to A#σH by

γ(h) = 1#h γ−1(h) =
∑

(h)

σ−1(Sh′′, h′′′)#Sh′ (3)

for all a ∈ A, h, k ∈ H and the antipode S of H.

2 Representation Type

Note that in this section, representations of any considered algebra Λ, or say, its modules,

always are assumed to lie in the subcategory modΛ of finite generated modules of the

algebra.

As well known [9][6], an algebra A is said to be of finite representation type provided

there are only finitely many non-isomorphic finitely generated indecomposable A-modules.

Moreover, an algebra A is said to be of tame type or a tame algebra if A is not of

finite representation type, whereas for any dimension d > 0, there are a finite number of
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A-k[T ]-bimodules Mi which are free as right k[T ]-modules such that all but a finite number

of indecomposable A-modules of dimension d are isomorphic to Mi ⊗k[T ] k[T ]/(T − λ) for

λ ∈ k.

And, an algebra A is said to be of wild type or a wild algebra if there is a finitely gener-

ated A-k〈X, Y 〉-bimodule B which is free as a right k〈X, Y 〉-module such that the functor

B ⊗k〈X,Y 〉 − from mod-k〈X, Y 〉, the category of finitely generated k〈X, Y 〉-modules, to

mod-A, the category of finitely generated A-modules, preserves indecomposability and

reflects isomorphisms.

The famous tame-and-wild theorem of Drozd’s in [9][6] states that a finite dimensional

algebra over an algebraically closed field k , which is not of finite representation type, is

either of tame representation type or of wild representation type, and not both. Therefore,

it gives the classification of finite dimensional algebras over an algebraically closed field

due to representation type. Now, we use this conclusion to discuss the representation type

of a crossed product.

In the sequel, for a Hopf algebra H and a k-algebra A, when we write A#σH it is

always assumed the crossed product structure A#σH exists as an associative algebra for

a cocycle σ.

The fundamental facts on the right integral space
∫ r
H of a Hopf algebra H are that

when dimH < +∞,
∫ r
H is always one-dimensional over k, and H is semisimple if and only

if ε(
∫ r
H) 6= 0.

Note that for a ring R and two R-modules M, N , we will write M |N if M is a direct

summand of N as a R-module.

Lemma 2.1 For a finite dimensional semisimple Hopf algebra H, a twisted H-module

algebra A and a cocycle σ ∈ Hom(H⊗H, A), suppose A#σH is a crossed product algebra.

Then, for any A#σH-module X, it holds that X|(A#σH)⊗A X.

Proof: Define ϕ : (A#σH) ⊗A X → X by (a#h) ⊗ x 7→ (a#h)x for a ∈ A, h ∈ H and

x ∈ X. Clearly, ϕ is an A#σH-epimorphism.

Let 0 6= t ∈ ∫ r
H and assume ε(t) = 1. Define ψ : X → (A#σH)⊗A X by

ψ(x) =
∑

(t)

γ−1(t′)⊗A γ(t′′)x

for x ∈ X, where γ and γ−1 are given by (3). We have, for a ∈ A, h ∈ H, x ∈ X, firstly,

γ(h)(ax) = (1#h)((a#1)x) =
∑

(h)

(h′ · a#h′′)x

=
∑

(h)

((h′ · a#1)(1#h′′))x =
∑

(h)

(h′ · a#1)(γ(h′′)x).
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Then it follows that

ψ(ax) =
∑

(t)

γ−1(t′)⊗A γ(t′′)ax =
∑

(t)

γ−1(t′)⊗A (t′′ · a#1)(γ(t′′′)x)

=
∑

(t)

γ−1(t′)(t′′ · a)⊗A γ(t′′′)x =
∑

(t)

γ−1(t′)γ(t′′)aγ−1(t′′′)⊗A γ(t(4))x (by (1))

=
∑

(t)

aγ−1(t′)⊗A γ(t′′)x =
∑

(t)

(a#1)γ−1(t′)⊗A γ(t′′)x =
∑

(t)

a(γ−1(t′)⊗A γ(t′′)x)

= aψ(x).

And, for any g, h ∈ H, (1#g)(1#h) = (g′·1)σ(g′′, h′)#g′′′h′′ = σ(g′, h′)#g′′h′′ = σ(g′, h′)(g′′h′′).

It can also be written as γ(g)γ(h) = σ(g′, h′)γ(g′′h′′). From this, it can be proved easily

that σ(g, h) = γ(g′)γ(h′)γ−1(g′′h′′). Thus, we have

ψ(hx) = ψ(γ(h)x) =
∑

(t)

γ−1(t′)⊗A γ(t′′)(γ(h)x) =
∑

(t)

γ−1(t′)⊗A (γ(t′′)γ(h))x

=
∑

(t)

γ−1(t′)⊗A σ(t′′, h′)γ(t′′′h′′)x =
∑

(t)

γ−1(t′)σ(t′′, h′)⊗A γ(t′′′h′′)x

=
∑

(t)

γ−1(t′)γ(t′′)γ(h′)γ−1(t′′′h′′)⊗A γ(t(4)h′′′)x =
∑

(t)

γ(h′)γ−1(t′h′′)⊗A γ(t′′h′′′)x

=
∑

(t)

γ(h)γ−1(t′)⊗A γ(t′′)x (by the fact : h⊗∆(t) =
∑

(h)(t)

h′ ⊗ t′h′′ ⊗ t′′h′′′)

= hψ(x)

Therefore, ψ is an A#σH-morphism. Finally,

ϕψ(x) = ϕ(
∑

(t)

γ−1(t′)⊗ γ(t′′)x) =
∑

(t)

γ−1(t′)(γ(t′′)x)

=
∑

(t)

(γ−1(t′)γ(t′′))x = ε(t)x

= x.

Hence, ϕψ = idX . It means that X|(A#σH)⊗A X. ¤
Although this lemma is a generalization of the similar result[11] in the case for smash

product, its proof is different with that of the latter since the definitions of their ψ’s are

distinct.

In Hopf theory, the Blattner-Montgomery Duality Theorem [12] is very valid which

says that for a finite dimensional Hopf algebra H and a crossed product algebra A#σH,

one has (A#σH)#H∗ ∼= Mn(A), where n =dimH. On the other hand, Drozd’s theorem

holds also only for finite dimensional algebras. Due to them, we will always suppose the

Hopf algebra H and the algebra A are finite-dimensional in the sequel.
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Proposition 2.2 Let H be a finite dimensional semisimple Hopf algebra and H∗ be

semisimple simultaneously over a field k. Then the following hold:

(i) If A is a finite dimensional twisted H-module algebra such that A#σH exists as a

crossed product algebra, then A is of finite representation type if and only if A#σH is so;

(ii) If A and B are finite dimensional k-algebras and A ⊂ B is an H-cleft extension, then

A is of finite representation type if and only if B is so.

Proof: “Only if” of (i): Suppose X is a finitely generated indecomposable A#σH-

module. Let {B1, . . . , Bt} be a complete set of non-isomorphic finitely generated in-

decomposable A-modules. Viewing X as an A-module, then X ∼= ⊕t
j=1njBj for some

non-negative integers nj and so (A#σH) ⊗A X ∼= ⊕t
j=1(nj(A#σH) ⊗A Bj). Since, by

Lemma 2.1, X is an A#σH-summand of (A#σH) ⊗A X. Since X is finitely generated

over A#σH and dimA#σH < ∞, X is of finite length. Due to the Krull-Schmidt theo-

rem, we can know that X is an A#σH-summand of (A#σH) ⊗A Bi for some i. There-

fore, the non-isomorphic finitely generated indecomposable A#σH-summands of all the

(A#σH) ⊗A Bi give a complete set of non-isomorphic finitely generated indecomposable

A#σH-modules. It can be seen that this set is finite. In fact, for a fixed i, Bi is finitely

generated as A-module, so (A#σH) ⊗A Bi is also finitely generated as (A#σH)-module,

then (A#σH) ⊗A Bi is an (A#σH)-module of finite length. Thus, by the Krull-schmidt

theorem, (A#σH) ⊗A Bi has a unique finite indecomposable decomposition. Therefore,

A#σH is of finite representation type.

“If” of (i): Since H∗ is also semisimple and smash product is a crossed product

in case σ is trivial, we can use the the necessity as above to know that (A#σH)#H∗ is

of finite representation type due to A#σH is so. By the Blattner-Montgomery Duality

Theorem, (A#σH)#H∗ ∼= Mn(A) which is Morita equivalent to A. Thus A is of finite

representation type.

(ii): By (i) and Theorem 1.3. ¤

For a finite dimensional algebra Λ, the so-called generic category [11] from Λ, denoted

as GC(Λ), is defined as that whose objects are all Λ-k[T ]-bimoduls which are free as right

k[T ]-modules and whose morphisms are all Λ-k[T ]-morphisms. It is closely related with

tame algebras and thus with generic modules [7].

The following lemma and its proof is from [11]:

Lemma 2.3 Let X ∈ GC(Λ). X is indecomposable in GC(Λ) if and only if X ⊗k[T ]

k[T ]/(T − λ) is indecomposable as a Λ-k[T ]/(T − λ)-bimodule for λ ∈ k.

Proof: “If”: If X is decomposed as X = X1⊕X2 in GC(Λ), then X⊗k[T ] k[T ]/(T −λ) =
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X1 ⊗k[T ] k[T ]/(T − λ)⊕X2 ⊗k[T ] k[T ]/(T − λ) as Λ-k[T ]/(T − λ)-bimodules.

“Only if”: Assume X ⊗k[T ] k[T ]/(T − λ) = N1 ⊕N2 for Λ-k[T ]/(T − λ)-bimodules N1

and N2.

It is easy to see k[T ]/(T − λ) ∼= k as algebras. So, we can say k[T ] is a k[T ]/(T − λ)-

module with suitable module structure. Then

X ∼= X ⊗k[T ] k[T ] ∼= X ⊗k[T ] k[T ]/(T − λ)⊗k[T ]/(T−λ) k[T ]

= (N1 ⊗k[T ]/(T−λ) k[T ])⊕ (N2 ⊗k[T ]/(T−λ) k[T ])

It follows that N1 = 0 or N2 = 0 from the indecomposability of X. That is, X ⊗k[T ]

k[T ]/(T − λ) is indecomposable. ¤

Proposition 2.4 Let H and H∗ be finite dimensional semisimple Hopf algebras over a

field k. Then the following hold:

(i) If a finite dimensional twisted H-module algebra A such that A#σH exists as a crossed

product algebra, then A is tame if and only if A#σH is tame;

(ii) If A and B are finite dimensional k-algebras and A ⊂ B is an H-cleft extension,

then A is tame if and only if B is tame.

Proof: “Only if” of (i): Our proof is based on the definition of tame algebra. By

Proposition 2.2, A#σH is not of finite representation type. Let d be a positive integer

and X an indecomposable left (A#σH)-module with dimension d over k.

By Lemma 2.1, X|(A#σH) ⊗A X. Denote X by AX when X is considered as a left

A-module in the canonical way.

Since A is a tame algebra, there are a finite number of A-k[T ]-bimodules Mj (j =

1, . . . , n) which are free as right k[T ]-modules such that all, but a finite number, of inde-

composable A-modules of dimension d are isomorphic to Mj ⊗k[T ] k[T ]/(T −λ) for some j

and some λ ∈ k. No loss of generality, for each Mj , suppose there is at least one indecom-

posable A-module Y of dimension d such that Y ∼= Mj⊗k[T ]k[T ]/(T−λ). Equivalently, let

{Mj : j = 1, . . . , n} be the minimal such set. It is easy to see that (A#σH)⊗AMj is free as

a right k[T ]-module from the same property of Mj . Hence, (A#σH)⊗AMj ∈ GC(A#σH).

Since Mj is finitely generated over A, (A#σH) ⊗A Mj is finitely generated over

(A#σH). And, since dim(A#σH) < ∞, one can decompose (A#σH)⊗A Mj into a direct

sum of a finite number of indecomposable objects Mjl in GC(A#σH), i.e. (A#σH) ⊗A

Mj = ⊕l∈IjMjl for a finite index set Ij . Then {Mjl : j = 1, . . . , n, l ∈ Ij} is a finite set

of (A#σH)-k[T ]-bimodules which are free as right k[T ]-modules.

By Lemma 2.3, Mjl⊗k[T ]k[T ]/(T−λ) is indecomposable as an (A#σH)-(k[T ]/(T−λ))-

bimodule. This is equivalent to say that Mjl ⊗k[T ] k[T ]/(T − λ) is indecomposable as an

A#σH-module since k[T ]/(T − λ) ∼= k as algebras.
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Let AX = X1 + . . . + Xm be a direct sum of indecomposable A-modules. Now, we

claim for all, but a finite number, of X, there exists an indecomposable A-submodule

Xt of AX such that X|(A#σH) ⊗A Xt and Xt
∼= Mjt ⊗k[T ] k[T ]/(T − λ) for some Mjt

where jt ∈ {1, . . . , n}. In fact, by Lemma 2.1, X|(A#σH) ⊗A X. But, (A#σH) ⊗A X =

((A#σH) ⊗A X1) ⊕ . . . ⊕ ((A#σH) ⊗A Xm). So, by Krull-Schmidt theorem, there exists

t such that X|(A#σH) ⊗A Xt. However, since A is tame, for all, but a finite number, of

such X and Xt, it satisfies that Xt
∼= Mjt ⊗k[T ] k[T ]/(T − λ) for some Mjt and λ.

Moreover, (A#σH) ⊗A Xt
∼= (A#σH) ⊗A Mjt ⊗k[T ] k[T ]/(T − λ) = ⊕l∈Ijt

Mjtl ⊗k[T ]

k[T ]/(T − λ). We have known above each Mjtl ⊗k[T ] k[T ]/(T − λ) is indecomposable as

left A#σH-module. Therefore, there exists s ∈ Ijt such that X ∼= Mjts⊗k[T ] k[T ]/(T −λ).

We have known {Mjl : j = 1, . . . , n, l ∈ Ij} is a finite set of (A#σH)-k[T ]-bimodules

which are free as right k[T ]-modules and such X are of almost all. Therefore, A#σH is

tame.

“If” of (i): In similar to the “if” part of Proposition 2.2, we can use the the necessity

as above to know that (A#σH)#H∗ is of tame representation type due to A#σH is so.

By the Blattner-Montgomery Duality Theorem, (A#σH)#H∗ ∼= Mn(A) which is Morita

equivalent to A. Thus A is of tame representation type.

(ii): By (i) and Theorem 1.3. ¤

In order to make the major conclusions in this paper to be more self-contained, it

would be better to remark that the tame representation type property of algebras is a

Morita invariant which has been used in the “if” part of the proof of Proposition 2.4. In

fact, let two algebras A and B be Morita equivalent, denote their basic algebras as IA and

IB respectively, then IA and IB are Morita equivalent each other, thus by Lemma I.2.6 of

[10], IA and IB are isomorphic. It follows that IA is of tame representation type if and

only if IB is so. But, note that an algebra is tame if and only if its basic algebra is tame.

Therefore, A is tame if and only if B is tame.

With the additional condition for the ground field k to be algebraically closed, ac-

cording to the Drozd’s tame-and-wild theorem and Proposition 2.2 and 2.4, we obtain the

following:

Corollary 2.5 Let H and H∗ be finite dimensional semisimple Hopf algebras over an

algebraically closed field k. Then the following hold:

(i) If A is a finite dimensional twisted H-module algebra such that A#σH exists as a

crossed product algebra, then A is wild if and only if A#σH is wild;

(ii) If A and B are finite dimensional k-algebras and A ⊂ B is an H-cleft extension,

then A is wild if and only if B is wild.
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Finally, as a summary, we get the main results in this section as follows:

Theorem 2.6 Let H and H∗ be finite dimensional semisimple Hopf algebras over an

algebraically closed field k. Then the following hold:

(i) If A is a finite dimensional twisted H-module algebra such that A#σH exists as a

crossed product algebra, then A and A#σH have the same representation type;

(ii) If A and B are finite dimensional k-algebras and A ⊂ B is an H-cleft extension,

then A and B have the same representation type.

Only due to the Drozd’s tame-and-wild theorem, the condition for the ground field k

to be algebraically closed is added to Corollary 2.5 and Theorem 2.6. It is the reason that

this condition is not necessary for Proposition 2.2 and 2.4.

3 Nakayama Property

This section is devoted to discuss when a crossed product is a Nakayama algebra and

equivalently, to characterize the Nakayama property of cleft extensions.

In this section, we always assume A is an artin R-algebra over a commutative ring R

unless in some special cases we will explain. And, for any ring Γ, denote its (Jacobson)

radical as J(Γ).

It is known that a module M is called a uniserial module if the set of submodules

is totally ordered by inclusion, an aritn algebra A is said to be a Nakayama algebra if

its both indecomposable projective and indecomposable injective modules are uniserial.

Nakayama algebras are of considerable interest because next to semisimple algebras they

are the best understood artin algebras. For examples, the following valid conclusions [1]

hold for them.

Lemma 3.1 Let A be an artin algebra and J(A) the Jacobson radical of A. Then A is a

Nakayama algebra if and only if A/J(A)2 is Nakayama.

Lemma 3.2 Let A be an artin algebra with J(A)2 = 0. Then A is a Nakayama algebra

if and only if the injective envelope I(A) of A is a projective module.

Lemma 3.3 Let f : Λ → Γ be a morphism of artin algebras. Consider Γ as the Λ-module

induced naturally by f . Then the following are equivalent:

(i) Γ is a projective right Λ-module;

(ii) Every injective left Γ-module is an injective left Λ-module.

The major result in this section is as follows:
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Theorem 3.4 Let H be a finite dimensional Hopf algebra such that H and H∗ are both

semisimple and A a twisted H-module artin algebra such that A#σH exists as a crossed

product algebra. If the radical J(A) of A is H-stable, then A#σH is a Nakayama algebra

if and only if A is Nakayama.

The following lemmas are needed for our discussion.

Lemma 3.5 Let H be a semisimple Hopf algebra and A an artinian twisted H-module

algebra such that A#σH exists as a crossed product algebra. If the radical J(A) of A is

H-stable, then J(A#σH) = J(A)#σH.

Proof: Let J = J(A). Since J is H-stable, we have the crossed product J#σH. Denote

the canonical projection A → A/J by p which induces the canonical algebra morphism

π : A#σH → (A/J)#σH by π(
∑

a#h) =
∑

p(a)#h for all a ∈ A, h ∈ H. Then Kerπ =

J#σH. Therefore, (A#σH)/(J#σH) ∼= (A/J)#σH. Since A/J and H are semisimple,

(A/J)#σH is a semisimple algebra by [3]. It implies J(A#σH) ⊆ J#σH. And, since

(J#σH)i = J i#σH for any positive integer i and A is artinian, J#σH is a nilpotent ideal

of A#σH and therefore J#σH ⊆ J(A#σH). Thus J(A#σH) = J#σH. ¤

Note that (i) In this lemma, A is supposed to be artinian, i.e. satisfying the descending

chain condition. This condition is more general than that A is an artin R-algebra. (ii)

Since ab#g = (a#1)(b#g) for a, b ∈ A, g ∈ H, we have (I#σH)i = Ii#σH for any ideal

I of A and positive integer i.

For an artin R-algebra and its radical J = J(A), A#σH is also an artin R-algebra.

Then by Lemma 3.1, A#σH is Nakayama if and only if (A#σH)/(J(A#σH))2 is Nakayama.

By Lemma 3.5, J(A#σH) = J#σH. So, (J(A#σH))2 = J2#σH. Then, using of the simi-

lar discussion as in the proof of Lemma 3.5, (A#σH)/(J(A#σH))2 = (A#σH)/(J2#σH) ∼=
(A/J2)#σH. Hence, A#σH is Nakayama if and only if (A/J2)#σH is so. It implies that

in order to prove Theorem 3.4, no loss of generality, we can assume that J2 = 0 for

J = J(A) from now on.

Proof of Theorem 3.4:

“Only if”: Since J2 = 0, (J(A#σH))2 = J2#σH = 0. By Lemma 3.2, the A#σH-

injective envelope I(A#σH) of A#σH is A#σH-projective. Then it suffices to prove the

A-injective envelope I(A) of A is A-projective.

In fact, A#σH is both a right and left free A-module by means of the inclusion

A ↪→ A#σH(see [13]). Of course, A#σH is a projective right A-module, then by Lemma

3.3, every left injective A#σH-module is a left injective A-module. So, I(A#σH) is a

left injective A-module. Since I(A#σH) is a projective A#σH-module and A#σH is a
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projective A-module, it is easy to see that I(A#σH) is a projective A-module. And,

A ↪→ A#σH ↪→ I(A#H) as left A-modules. Hence by The Fundamental Lemma for

Injective Envelopes, I(A) is a summand of I(A#H) as a left A-module. As a result, I(A)

is also a projective A-module.

Before proving “if”, we first give the following lemma:

Lemma 3.6 For any positive integer n, if an algebra A is Nakayama, then the n× n full

matrix algebra Mn(A) is also Nakayama.

Proof: We know from [1] that an algebra Λ is Nakayama if and only if its all in-

decomposable projective Λ-modules and Λop-modules are uniserial. It implies that Λ is

Nakayama if and only if Λop is Nakayama. So, we only need to verify any indecomposable

projective Mn(A)-modules are uniserial.

Since A is artin, there are a finite number of primitive idempotents in A, which are

denoted as e1, · · · , em. Then Pi = Aei (i = 1, · · · ,m) is the complete set of non-isomorphic

indecomposable projective A-modules. From this, we get the complete set of primitive

idempotents in Mn(A) as follows:



ei

0
. . .

0




,




0

ei

. . .

0




, · · · ,




0

0
. . .

ei




for all i = 1, · · · ,m. Moreover, the complete set of non-isomorphic indecomposable pro-

jective Mn(A)-modules consists of the following:




Pi 0 · · · 0

Pi 0 · · · 0

· · · · · · · · · · · ·
Pi 0 · · · 0




,




0 Pi · · · 0

0 Pi · · · 0

· · · · · · · · · · · ·
0 Pi · · · 0




, · · · ,




0 0 · · · Pi

0 0 · · · Pi

· · · · · · · · · · · ·
0 0 · · · Pi




for all i = 1, · · · ,m. It is easy to see that any Mn(A)-submodule of




0 · · · Pi · · · 0

0 · · · Pi · · · 0

· · · · · · · · · · · · · · ·
0 · · · Pi · · · 0




is of the form




0 · · · Q · · · 0

0 · · · Q · · · 0

· · · · · · · · · · · · · · ·
0 · · · Q · · · 0




for a submodule Q of Pi.
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Because A is Nakayama, Pi is uniserial, i.e. all A-submodule Q of Pi compose a totally

ordered set by inclusion. From this, all Mn(A)-submodules




0 · · · Q · · · 0

0 · · · Q · · · 0

· · · · · · · · · · · · · · ·
0 · · · Q · · · 0




of




0 · · · Pi · · · 0

0 · · · Pi · · · 0

· · · · · · · · · · · · · · ·
0 · · · Pi · · · 0




compose a totally ordered set by inclusion. It means that




0 · · · Pi · · · 0

0 · · · Pi · · · 0

· · · · · · · · · · · · · · ·
0 · · · Pi · · · 0




is uniserial. Finally, Mn(A) is Nakayama. ¤

Now, we return to prove Theorem 3.4:

“If”: Assume that A is a Nakayama algebra. Let dimH = n. By the Blattner-

Montgomery Duality Theorem and Lemma 3.6, (A#σH)#H∗ ∼= Mn(A) is a Nakayama

algebra.

By Lemma 3.5, J(A#σH) = J#σH. Due to the definition of (A#σH)#H∗ in [2], H∗

acts trivially on A and on H by the usual → action. Obviously, J#σH is H∗-stable. Thus

according to the “only if” part of Theorem 3.4, A#σH is Nakayama. ¤

It is known that for a finite dimensional Hopf algebra H with antipode S, H and

H∗ are both semisimple if and only if Tr(S2) 6= 0. Therefore, in Proposition 2.2, 2.4,

Corollary 2.5, Theorem 2.6 and Theorem 3.4, we can replace the condition for H and H∗

to be semisimple by Tr(S2) 6= 0. In particular, when chark = 0, this condition is satisfied

naturally. Hence all major results in this paper hold when H is a semisimple Hopf algebra

over a field k of characteristic 0. Of course, for Corollary 2.5 and Theorem 2.6, the field

k is required to be algebraically closed at the same time.
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