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A SIMPLE PROOF OF WITTEN CONJECTURE THROUGH

LOCALIZATION

YON-SEO KIM AND KEFENG LIU

Department of Mathematics, UCLA; Center of Math Sciences, Zhejiang University

Abstract. We obtain a system of relations between Hodge integrals with one
λ-class. As an application, we show that its first non-trivial relation implies the
Witten’s Conjecture/Kontsevich Theorem [12, 6].

1. Introduction

In this paper, we obtain an alternate proof of the Witten’s Conjecture [12] which
claims that the tautological intersections on the moduli space of stable curves Mg,n

is governed by KdV hierarchy. It is first proved by M.Kontsevich [6] by constructing
combinatorial model for the intersection theory of Mg,n and interpreting the trivalent
graph summation by a Feynman diagram expansion for a new matrix integral. Also,
A.Okounkov and R.Pandharipande [11] used a connection between intersections in
Mg,n and the enumeration of branched coverings of P

1 and derived the key iden-
tity of Kontsevich, hence gave another approach to Witten’s conjecture. Recently,
M.Mirzakhani [10] derived a recursion formula by using the Weil-Petersen volume,
which lead to a proof of Virasoro constraints.

Here we take an approach using virtual functorial localization on the moduli space
of relative stable morphisms Mg(P

1, µ) [8]. Mg(P
1, µ) consists of maps from Riemann

surfaces of genus g and n = l(µ) marked points to P
1 which has prescribed ramification

type µ at ∞ ∈ P
1. As the result, we obtain a system of relations between linear Hodge

integrals. It recursively expresses each linear Hodge integral by lower-dimensional
ones. The first non-trivial relation of this system is ’cut-and-join relation’, and is of
same recursion type as that of single Hurwitz numbers [7]. Moreover, as we increase
the ramification degree, we can extract a relation between absolute Gromov-Witten
invariants from this relation. And we show this relation implies the following recursion
relation for the correlation functions of topological gravity [1]:

〈σ̃n

∏

k∈S

σ̃k〉g =
∑

k∈S

(2k + 1)〈σ̃n+k−1

∏

l 6=k

σ̃l〉g +
1

2

∑

a+b=n−2

〈σ̃aσ̃b

∏

l 6=a,b

σ̃l〉g−1

+
1

2

∑

S=X∪Y,a+b=n−2,g1+g2=g

〈σ̃a

∏

k∈X

σ̃k〉g1〈σ̃b

∏

l∈Y

σ̃l〉g2 · · · (∗)

1
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which is equivalent to the Witten’s Conjecture/Kontsevich Theorem. This recursion
relation (*) is also equivalent to the Virasoro constraints; i.e. (*) can be expressed as
linear, homogeneous differential equations for the τ -function [1]

τ(t̃) = exp
∞

∑

g=0

〈exp
∑

n

t̃nσ̃n〉g

Ln · τ = 0, (n ≥ −1)

where Ln denote the differential operators

L−1 = −1

2

∂

∂t̃0
+

∞
∑

k=1

(k +
1

2
)t̃k

∂

∂t̃k−1

+
1

4
t̃20

L0 = −1

2

∂

∂t̃1
+

∞
∑

k=0

(k +
1

2
)t̃k

∂

∂t̃k
+

1

16

Ln = −1

2

∂

∂t̃n−1

+
∞

∑

k=0

(k +
1

2
)t̃k

∂

∂t̃k+n

+
1

4

n
∑

i=1

∂2

∂t̃i−1∂t̃n−i

As a remark, it is possible that the general recursion relation obtained from our
approach implies the Virasoro conjecture for a general non-singular projective variety.

The rest of this paper is organized as follows: In section 2, we recall the recursion
formula obtained in [5] and derive cut-and-join relation as its special case. In section
3, we prove asymptotic formulas for the coefficients in the cut-and-join relation. Then
we derive first two relations of the system of relations between linear Hodge integrals,
and show that the cut-and-join relation implies (*).

* Please refer to [5] for miscellaneous notations.

2. Recursion Formula

The following recursion formula was derived in [5].

Theorem 2.1. For any partition µ and e with |e| < |µ| + l(µ) − χ, we have

(1)
[

λl(µ)−χ
]

∑

|ν|=|µ|

Φ•
µ,ν(−λ)zνD•

ν,e(λ) = 0

where the sum is taken over all partitions ν of the same size as µ.
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Here
[

λa
]

means taking the coefficient of λa, and D•
ν,e consists of linear Hodge

integrals as follows;

Dg,ν,e =
νν1−2

1

ν1!
, if

(

g, l(ν) + l(e)
)

=
(

0, 1
)

1

|Aut ν|
νν1

1 ν
ν2
2

ν1!ν2!

1

ν1 + ν2

, if
(

g, l(ν), l(e)
)

=
(

0, 2, 0
)

νν1
1

ν1!

e1
∑

k=0

1

ν1+k
1

(

e1
k

)

, if
(

g, l(ν), l(e)
)

=
(

0, 1, 1
)

1

l(e)! | Aut ν |
[

l(ν)
∏

i=1

ννi

i

νi!

]

∫

Mg,l(ν)+l(e)

Λ∨
g (1)

∏l(e)
j=1(1 − ψj)

ej

∏l(ν)
i=1

(

1 − νiψi

)
, otherwise

D(λ, p, q) =
∑

|ν|≥1

∑

g≥0

λ2g−2+l(ν)pνqeDg,ν

D•(λ, p, q) = exp
(

D(λ, p, q)
)

=:
∑

|ν|≥0

λ−χ+l(ν)pνqeD•
χ,ν,e =

∑

|ν|≥0

pνqeD•
ν(λ)

where pi, qj ’s are formal variables with pν = pν1 × · · · × pνl(ν)
, qe = qe1 × · · · × qel(e)

,
and Λ∨

g (t) is the dual Hodge bundle;

Λ∨
g (t) = tg − λ1t

g−1 + · · · + (−1)gλg

The convoluted term Φ•
µ,ν(−λ) consists of double Hurwitz numbers as follows;

Φ•
ν,µ(λ) =

∑

χ

H•
χ(ν, µ)

λ−χ+l(ν)+l(µ)

(−χ+ l(ν) + l(µ))!
Φ•(λ; p0, p∞) = 1 +

∑

ν,µ

Φ•
ν,µ(λ)p0

νp
∞
µ

Here, H•
χ(ν, µ) is the double Hurwitz number with ramification type ν,µ with Euler

characteristic χ. The recursion formula (1) was derived by integrating point-classes
over the relative moduli space Mg(P

1, µ), and the ’cut-and-join relation’ is only the
first term in this much more general formula. This can also be seen as follows:
Consider the following integral;

∫

Mg(P1,µ)

Br∗
r−2
∏

k=0

(H − k)

It is straightforward to show that preimages of pr and pr−1 are the unique graph Γr

and the ’cut-and-join graphs’ of Γr, respectively. Hence we recover the ’cut-and-join
relation’ as the restriction of (1) to the first two fixed points {pr, pr−1};

(2) rΓr =

n
∑

i=1

[

∑

j 6=i

µi + µj

1 + δµi
µj

Γij
J +

µi−1
∑

p=1

p(µi − p)

1 + δp
µi−p

(

Γi,p
C1 +

∑

g1+g2=g,ν1∪ν2=ν

Γi,p
C2

)

]
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where I denote, by abuse of notation, the contributions from ’cut-and-join’ graphs as
follows;

Γr =
1

|Aut µ|

n
∏

i=1

µµi

i

µi!

∫

Mg,n

Λ∨
g (1)

∏

(1 − µiψi)

Γij
J =

1

|Aut η|

n−1
∏

k=1

ηηk

k

ηk!

∫

Mg,n−1

Λ∨
g (1)

∏

(1 − ηkψk)
for η ∈ Jij(µ)

Γi
C1 =

1

|Aut ν|

n+1
∏

k=1

ννk

k

νk!

∫

Mg−1,n+1

Λ∨
g−1(1)

∏

(1 − νkψk)
for ν ∈ Ci(µ)

Γi
C2 =

1

|Aut ν1|
1

|Aut ν2|

n+1
∏

k=1

ννk

k

νk!

∫

Mg1,n1

Λ∨
g1

(1)
∏

(1 − ν1,kψk)

∫

Mg2,n2

Λ∨
g2

(1)
∏

(1 − ν2,kψk)

Here Jij(µ) and Ci(µ) are cut-and-join partitions:

Jij(µ) = { ηij = (µ1, · · · , µ̂i, · · · , µ̂j, · · · , µn, µi + µj)}
Ci(µ) = { νi,p = (µ1, · · · , µ̂i, · · · , µn, p, q) | p+ q = µi, p, q ≥ 1}

When there’s no confusion, we will denote by η = ηij for the join-partition and
ν = νi,p for the cut-partition of splitting µi = p+ (µi − p) for some 1 ≤ p < µi. Also
denote by ν1 and ν2 for the splitting of cut-partition ν such that ν1 ∪ ν2 = ν with
p ∈ ν1, µi − p ∈ ν2. Note that in the ΓC2-type contribution, unstable vertices (i.e.
g = 0 and n=1,2) are included. As mentioned in [9], this ’cut-and-join relation’ (2)
reduces to the recursion formula for single Hurwitz numbers [7] if the Hodge integral
terms in the graph contributions are identified with single Hurwitz numbers via ELSV
formula [2].

We can also use any set {pk0, · · · , pkn
}, n > 0 of fixed points and obtain relations

between linear Hodge integrals. And these can be applied to derive deeper relations.

3. Degree Analysis

In this section, we study asymptotic behaviour of the ’cut-and-join relation’ and
obtain a system of relations between linear Hodge integrals. The Hodge integral terms
in the graph contributions can be expanded as follows:

(3)

∫

Mg,n

Λ∨
g (1)

∏

(1 − µiψi)
=

∑

k

∏

µki

i

∫

Mg,n

∏

ψki

i + lower degree terms

where k̃ = (k1, · · · , kn) are multi-indices running over condition
∑

ki = 3g − 3 + n.
Hence the top-degree terms consist of Hodge-integral of ψ-classes and lower degree
terms involve λ-classes. This will give a system of relations between Hodge integrals
involving one λ-class. More precisely, integrals will be determined recursively by
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either lower-dimensional or lower-degree λ-class integrals. The following asymptotic
formula is crucial in degree analysis.

Proposition 3.1. As n −→ ∞, we have for k, l ≥ 0

e−n
∑

p+q=n

pp+k+1qq+l+1

p!q!
−→ 1

2

[(2k + 1)!!(2l + 1)!!

2k+l+2(k + l + 2)!

]

nk+l+2 + o(nk+l+2)

e−n
∑

p+q=n

pp+k+1qq−1

p!q!
−→ nk+ 1

2

√
2π

−
[(2k + 1)!!

2k+1k!

]

nk + o(nk)

Proof. Let m be an integer such that 1 < m < n and consider three ranges of p, q as
follows:

Rl = { (p, q) | p > n−m and q < m}
Rc = { (p, q) | m ≤ p, q ≤ n−m }
Rr = { (p, q) | p < m and q > n−m}

Recall the Stirling’s formula;

n! =

√
2πnn+1/2

en

(

1 +
1

12n
+ · · ·

)

For the summation over Rc, let m = nǫ and p = nx for some ǫ, x ∈ R>0 so that
m, p ∈ N, then we have

e−n
n−m
∑

p=m

pp+k+1

p!

qq+l+1

q!
=

n−m
∑

p=m

1

2π
pk+ 1

2 ql+ 1
2

[

1 + o(1)
]

=
nk+l+2

2π

n−m
∑

p=m

xk+ 1
2 (1 − x)l+ 1

2
1

n
+ o(nk+l+2)

−→ nk+l+2

2π

∫ 1−ǫ

ǫ

xk+ 1
2 (1 − x)l+ 1

2dx+ o(nk+l+2) as n goes to ∞

=
nk+l+2

2π

(2k + 1)!!(2l + 1)!!

(2(k + l) + 3)!!

∫ 1−ǫ

ǫ

(1 − x)k+l+ 3
2

√
x

dx+ o(nk+l+2) +O(
√
ǫ)

=
1

2

[(2k + 1)!!(2l + 1)!!

2k+l+2(k + l + 2)!

]

nk+l+2 + o(nk+l+2) +O(
√
ǫ)

As n −→ ∞, we can send ǫ −→ 0. For the summation over Rl and Rr, the top-degree
terms belong to O(nk+1/2) and O(nl+1/2), respectively. Since we assume k, l ≥ 0,
both cases belong to o(nk+l+2), and this proves the first formula. For the second
formula, Rl has highest order of nk+1/2 and one can show that the leading term in the
asymptotic behaviour is nk+1/2/

√
2π. After integration by parts, Rc gives the second
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highest term in the asymptotic behaviour

e−n
n−1
∑

p=m

pp+k+1

p!

qq−1

q!
=

n−1
∑

p=m

1

2π
pk+ 1

2 ql− 3
2

[

1 + o(1)
]

=
nk

2π

n−1
∑

p=m

xk+ 1
2 (1 − x)−3/2 1

n
+ o(nk)

−→ nk

2π

∫ 1

ǫ

xk+ 1
2 (1 − x)−3/2dx+ o(nk) as n goes to ∞

=
nk+1/2

√
2π

− nk

2π
(2k + 1)

∫ δ

ǫ

xk− 1
2

√
1 − x

dx+ o(nk)

=
nk+1/2

√
2π

−
[(2k + 1)!!

2k+1k!

]

nk + o(nk) +O(
√
ǫ)

This proves the second formula. �

Let µi = Nxi for some xi ∈ R and N ∈ N. By taking general values of xi, we can
assume, without loss of generality, that |Aut µ| = 1. As the ramification degree tends
to infinity, i.e. as N −→ ∞, the Hodge integral expansion (3) tends to

n
∏

i=1

µµi+ki

i

µi!

∫

Mg,n

∏

ψki

i +O(eNNm−1) −→ e|µ|
n

∏

i=1

µ
ki−1/2
i√

2π

∫

Mg,n

∏

ψki

i +O(eNNm−1)

where m = 3g − 3 + n − (n/2) is the highest degree of N in (3). Same expansion
applies to each term in (2). By taking out the common factor e|µ| and applying the
asymptotic formula (3.1), we find that

rΓr = Nm+1
[

(x1 + · · · + xn)
∏ x

ki−1/2
i√

2π

∫

Mg,n

∏

ψki

i

]

+ O(Nm)

Γi
C1 =

Nm+1/2

2

∑

k+l=ki−2

(2k + 1)!!(2l + 1)!!

2k+l+2(k + l + 2)!
xk+l+2

i

∏

j 6=i

x
kj−1/2
j√

2π

[

∫

Mg−1,n+1

ψk
1ψ

l
2

∏

ψ
kj

j

+
∑

g1+g2=g,ν1∪ν2=ν

∫

Mg1,n1

ψk
1

∏

ψ
kj

j

∫

Mg2,n2

ψl
1

∏

ψ
kj

j

]

+O(Nm)

Γi
C2 = Nm+1

[

(x1 + · · · + xn)
∏ x

ki−1/2
i√

2π

∫

Mg,n

∏

ψki

i

]

−Nm+1/2

n
∑

i=1

[(2ki + 1)!!

2ki+1ki!
xki

i

∏

j 6=i

x
kj−1/2
j√

2π

∫

Mg,n

∏

ψ
kj

j

]

+O(Nm)

Γij
J = Nm+1/2 (xi + xj)

ki+kj−1/2

√
2π

∏

l 6=i,j

x
kl−1/2
l√

2π

∫

Mg,n−1

ψki+kj−1
∏

ψkl

l +O(Nm)
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Putting them together in the ’cut-and-join relation’ (2) yields a system of relations
between Hodge integrals with one λ-class as follows:

• For Nm+1, we have trivial identity:

(x1 + · · · + xn)
∏ x

ki−1/2
i√

2π

∫

Mg,n

∏

ψki

i − (x1 + · · ·+ xn)
∏ x

ki−1/2
i√

2π

∫

Mg,n

∏

ψki

i = 0

• For Nm+1/2, we have a relation between cut-and-join graphs:

n
∑

i=1

[(2ki + 1)!!

2ki+1ki!
xki

i

∏

j 6=i

x
kj−1/2
j√

2π

∫

Mg,n

∏

ψ
kj

j

−
∑

j 6=i

(xi + xj)
ki+kj−1/2

√
2π

∏

l 6=i,j

x
kl−1/2
l√

2π

∫

Mg,n−1

ψki+kj−1
∏

ψkl

l

− 1

2

∑

k+l=ki−2

(2k + 1)!!(2l + 1)!!

2k+l+2(k + l + 2)!
xki

i

∏

j 6=i

x
kj−1/2
j√

2π

[

∫

Mg−1,n+1

ψk
1ψ

l
2

∏

ψ
kj

j

+
∑

g1+g2=g,ν1∪ν2=ν

∫

Mg1,n1

ψk
1

∏

ψ
kj

j

∫

Mg2,n2

ψl
1

∏

ψ
kj

j

]]

= 0 · · · (**)

• Lower degree strata will give relations for Hodge integrals involving non-trivial
λ-class in terms of lower-dimensional ones.

In particular,the first non-trivial relation (**) implies the Witten’s Conjecture (*):

Theorem 1. The relation (**) implies (*).

Proof. Introduce formal variables si ∈ R>0 and recall the Laplace Transformation:

∫ ∞

0

xk−1/2

√
2π

e−x/2sdx = (2k − 1)!! sk+1/2,

∫ ∞

0

xke−x/2sdx = k! (2s)k+1
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Applying Laplace Transformation to the Nm+1/2-stratum gives the following relation:

n
∑

i=1

[

ski+1
i (2ki + 1)!!

∏

j 6=i

s
kj+1/2
j (2kj − 1)!!

∫

Mg,n

∏

ψkl

l

−
∑

a+b=ki−2

ski+1
i (2a + 1)!!(2b+ 1)!!

∏

j 6=i

s
kj+1/2
j (2kj − 1)!!

×
(

∫

Mg−1,n+1

ψa
1ψ

b
2

∏

ψkl

l +
∑

g1+g2=g,···

∫

Mg1,n1

ψa
∏

ψkl

l

∫

Mg2,n2

ψb
∏

ψkl

l

)

−
∑

j 6=i

(2w + 1)!!√
si +

√
sj

(

sis
w+2
j + s

3/2
i s

w+3/2
j + · · ·+ sw+2

i sj

)

×
∏

l 6=i,j

s
kl+1/2
l (2kl − 1)!!

∫

Mg,n−1

ψw
∏

ψkl

l

]

= 0

where w = ki + kj − 1. The last term is derived from direct integration;

Nk+ 1
2

√
2π

∫ ∞

0

∫ ∞

0

(xi + xj)
k+ 1

2 e−xiyie−xjyjdxidxj =
Nk+ 1

2

2
√

2π

∫ ∞

0

∫ r

−r

rk+ 1
2 e−

r+s
2

yie−
r−s
2

yjdsdr

=
Nk+ 1

2

2
√

2π

∫ ∞

0

[

∫ r

−r

e
yj−yi

2
sds

]

rk+ 1
2 e−

yi+yj

2
rdr =

Nk+ 1
2

√
yi +

√
yj

(2k + 1)!!

(2yiyj)
k+ 3

2

[

yk+1
i + y

k+ 1
2

i y
1
2
j + · · ·+ yk+1

j

]

under change of variable r = xi +xj and s = xi−xj . Considering this as a polynomial
in si’s, we can isolate out coefficients to obtain

(#) · · · (2ki + 1)!!
∏

j 6=i

(2kj − 1)!!

∫

Mg,n

∏

ψkl

l =
∑

j 6=i

(2w + 1)!!
∏

l 6=i,j

(2kl − 1)!!

∫

Mg,n−1

ψw
∏

l 6=i,j

ψkl

l +

∑

a+b=ki−2

(2a+ 1)!!(2b+ 1)!!
[

∫

Mg−1,n+1

ψaψb
∏

l 6=i

ψkl

l +
∑

∫

Mg1,n1

ψa
∏

ψkl

l

∫

Mg2,n2

ψb
∏

ψkl

l

]

The reason for getting 1 as coefficient in the Join-case is due to the following expansion

1√
si +

√
sj

(sis
w+2
j + s

3/2
i s

w+3/2
j + · · ·+ sw+2

i sj)

=
1

√
sj

(1 −
√

si

sj
+
si

sj
− (

si

sj
)3/2 + · · · )(sis

w+2
j + s

3/2
i s

w+3/2
j + · · ·+ sw+2

i sj)

= · · ·+ 1 · ski+1
i s

kj+1/2
j + · · ·

In the notations of (*), we have σ̃n = (2n+ 1)!!σn = (2n+ 1)!!ψn and

〈σ̃k1 · · · σ̃kn
〉g =

[

n
∏

i=1

(2ki + 1)!!
]

∫

Mg,n

ψk1
1 · · ·ψkn

n
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After multiplying a common factor
∏

l 6=i(2kl + 1) on both sides of (#), we obtain

〈σ̃n

∏

k∈S

σ̃k〉g =
∑

k∈S

(2k + 1)〈σ̃n+k−1

∏

l 6=k

σ̃l〉g +
1

2

∑

a+b=n−2

〈σ̃aσ̃b

∏

l 6=a,b

σ̃l〉g−1

+
1

2

∑

S=X∪Y,a+b=n−2,g1+g2=g

〈σ̃a

∏

k∈X

σ̃k〉g1〈σ̃b

∏

l∈Y

σ̃l〉g2

which is the desired recursion relation (*). The factor 2k + 1 comes from missing
j-th marked point in the Join-graph contribution, and the extra 1/2-factor on Cut-
graph contributions is due to graph counting conventions. Hence we derived Witten’s
Conjecture / Kontsevich Theorem through localization on the relative moduli space.

�
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