Counting Dyons in $\mathcal{N}=8$ String Theory

David Shih,* Andrew Strominger** and Xi Yin**
Center of Mathematical Sciences
Zhejiang University, Hangzhou 310027 China

Abstract

A recently discovered relation between 4 D and 5 D black holes is used to derive exact (weighted) BPS black hole degeneracies for $4 \mathrm{D} \mathcal{N}=8$ string theory from the exactly known 5D degeneracies. A direct 4D microscopic derivation in terms of weighted 4D D-brane bound state degeneracies is sketched and found to agree.

[^0]
Contents

1. Introduction 1
2. Review of the 5D modified eliptic genus 1
3. The 4D modified elliptic genus 3
4. Microscopic derivation in 4D 6

1. Introduction

In this paper, we deduce an exact formula for the modified elliptic genus of string theory in four dimensions with $\mathcal{N}=8$ supersymmetry. The modified elliptic genus, as we review below, provides a weighted count of BPS states of $\mathcal{N}=8$ string theory. We derive a formula for it using a recently proposed exact relation [1] between 4D and 5D BPS degeneracies, together with the known degeneracies [2] in 5D. In addition we sketch a direct microscopic counting of D0-D2-D4 bound states which gives the same result. Our hope is that this example will provide a useful laboratory for testing the string theory relations recently proposed in e.g. [3].

Some years ago an explicit formula for the elliptic genus for BPS states in 4D $\mathcal{N}=4$ theories was presciently conjectured [4]. This formula was recently derived using the 4D-5D connection in [5]. The present work is an extension of [5] to $4 \mathrm{D} \mathcal{N}=8$ theories. Previous work in this direction includes [6, 7, 7,8$]$.

In the next section we review the 5D index defined and computed in [2]. In section 3 we use the 4D-5D connection to derive the 4 D index. In section 4 we sketch how this expression should follow (for one element of the U-duality class of black holes) from a microscopic analysis.

2. Review of the 5 D modified eliptic genus

In this section, we want to summarize the work of reference [2] on counting the microstates of $1 / 8 \mathrm{BPS}$ black holes in five dimensions. These can be realized in string theory as the usual D1-D5-momentum system of type IIB on $T^{4} \times S^{1}$, with Q_{1} D1-branes, Q_{5} D5branes and integral S^{1} momentum n. The reason that microstate counting of this system is more difficult than for $K 3$ compactification is because the usual supersymmetric index that counts these microstates, the orbifold elliptic genus of $H i l b^{k}(K 3)$ with $k=Q_{1} Q_{5}$, vanishes when $K 3$ is replaced with T^{4}. In [2], this difficulty was overcome by defining
(and then computing) a new supersymmetric index \mathcal{E}_{2}, closely related with the elliptic genus, which is nonvanishing for T^{4}. We will refer to this new supersymmetric index as the modified elliptic genus of $\operatorname{Hilb}^{k}\left(T^{4}\right)$. It is defined to be

$$
\begin{equation*}
\mathcal{E}_{2}^{(k)}=\operatorname{Tr}\left[(-1)^{2 J_{L}^{3}-2 J_{R}^{3}} 2\left(J_{R}^{3}\right)^{2} q^{L_{0}} \bar{q}^{L_{0}} y^{2 J_{L}^{3}}\right] \tag{2.1}
\end{equation*}
$$

where the trace is over states of the sigma model with target space $\operatorname{Hilb}^{k}\left(T^{4}\right)$. 1 Here J_{L}^{3} and J_{R}^{3} are the left and right half-integral $U(1)$ charges of the CFT, and they are identified with generators of $\mathrm{SO}(4)$ rotations of the transverse R^{4}. The S^{1} momentum is $n=L_{0}-\bar{L}_{0}$. The usual elliptic genus is given by the same formula but without the $2\left(J_{R}^{3}\right)^{2}$ factor; it is these two insertions of J_{R}^{3} that make \mathcal{E}_{2} nonvanishing for T^{4}.

As for $K 3$, here it is convenient to define a generating function for the modified elliptic genus:

$$
\begin{equation*}
\mathcal{E}_{2}=\sum_{k \geq 1} p^{k} \mathcal{E}_{2}^{(k)} \tag{2.2}
\end{equation*}
$$

In [2], this was shown to be given by the following sum

$$
\begin{equation*}
\mathcal{E}_{2}(p, q, y)=\sum_{s, k, n, \ell} s\left(p^{k} q^{n} y^{\ell}\right)^{s} \widehat{c}(n k, \ell) \tag{2.3}
\end{equation*}
$$

with the sum running over $s, k \geq 1, n \geq 0, \ell \in \mathbb{Z}$. Note that the \bar{q} dependence has dropped out - only the $\bar{L}_{0}=0$ states contribute to the modified elliptic genus. Of course, the index must have this property in order to count BPS states, since the BPS condition is equivalent to requiring $\bar{L}_{0}=0$.

It was furthermore shown in [2] that the integers $\widehat{c}(n m, \ell)$ are the coefficients in the following Fourier expansion

$$
\begin{equation*}
Z(q, y) \equiv-\eta(q)^{-6} \vartheta_{1}(y \mid q)^{2}=\sum_{n, \ell} \widehat{c}(n, \ell) q^{n} y^{\ell} \tag{2.4}
\end{equation*}
$$

where $\eta(q)$ is the usual Dedekind eta function, and $\vartheta_{1}(y \mid q)$ is defined by the product formula

$$
\begin{equation*}
\vartheta_{1}(y \mid q)=i\left(y^{1 / 2}-y^{-1 / 2}\right) q^{1 / 8} \prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1-y q^{n}\right)\left(1-y^{-1} q^{n}\right) \tag{2.5}
\end{equation*}
$$

1 A free sigma model on $R^{4} \times T^{4}$ is factored out here, and our definition differs by a factor of 2 from [2].

Finally, it was observed in [2] that $\widehat{c}(n, \ell)$ actually only depends on a single combination of parameters $4 n-\ell^{2}$:

$$
\begin{equation*}
\widehat{c}(n, \ell)=\widehat{c}\left(4 n-\ell^{2}\right) \tag{2.6}
\end{equation*}
$$

Using (2.6) in (2.3) yields

$$
\begin{equation*}
\mathcal{E}_{2}(p, q, y)=\sum_{s, k, n, \ell} s\left(p^{k} q^{n} y^{\ell}\right)^{s} \widehat{c}\left(4 n k-\ell^{2}\right) \tag{2.7}
\end{equation*}
$$

When (k, n, ℓ) are coprime, $\widehat{c}\left(4 n k-\ell^{2}\right)$ counts BPS black holes with $k=Q_{1} Q_{5}, S^{1}$ momentum n and spin $J_{L}^{3}=\frac{\ell}{2}$, multiplied by an overall $(-)^{\ell}$ and summed over J_{R}^{3} weighted by $2\left(J_{R}^{3}\right)^{2}(-)^{2 J_{R}^{3}}$:

$$
\begin{equation*}
\left.\widehat{c}\left(4 n k-\ell^{2}\right)\right|_{(k, n, \ell) \text { coprime }}=(-)^{\ell} \sum_{J_{R}, B P S \text { states }} 2\left(J_{R}^{3}\right)^{2}(-)^{2 J_{R}^{3}} \tag{2.8}
\end{equation*}
$$

When they are not coprime, the black hole can fragment, and the situation is more complicated due to multiple contributions in \mathcal{E}_{2} [2]. In this paper we will always avoid this complication by choosing coprime charges.

We should note that $Z(q, y)$ is also the modified elliptic genus of T^{4}, i.e.

$$
\begin{equation*}
\mathcal{E}_{2}^{(1)}=\sum_{n, \ell} \widehat{c}(n, \ell) q^{n} y^{\ell}=Z(q, y) \tag{2.9}
\end{equation*}
$$

This corresponds to the coprime D1-D5 system with $k=1=Q_{1}=Q_{5}$. By writing

$$
\begin{equation*}
Z(q, y)=\sum_{m} \widehat{c}(4 m) q^{m} \sum_{k} q^{k^{2}} y^{2 k}+\sum_{m} \widehat{c}(4 m-1) q^{m} \sum_{k} q^{k^{2}+k} y^{2 k+1} \tag{2.10}
\end{equation*}
$$

and using (2.4) along with the standard Fourier expansion of the theta function

$$
\begin{equation*}
\vartheta_{1}(y \mid q)=i \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(n-1 / 2)^{2} / 2} y^{n-1 / 2} \tag{2.11}
\end{equation*}
$$

one can reorganize the generating functions for \widehat{c} as

$$
\begin{align*}
& \sum_{m} \widehat{c}(4 m) q^{m}=-q^{\frac{1}{4}} \eta(q)^{-6} \sum_{m \in \mathbb{Z}} q^{m^{2}+m} \\
& \sum_{m} \widehat{c}(4 m-1) q^{m}=q^{\frac{1}{4}} \eta(q)^{-6} \sum_{m \in \mathbb{Z}} q^{m^{2}} \tag{2.12}
\end{align*}
$$

These expressions will analyzed microscopically below in section 4 .

3. The 4D modified elliptic genus

In this section we use the conjecture of [1] to transform the 5D degeneracies into 4D ones. The fact that the \widehat{c} coefficients depend only on the combination $4 n k-\ell^{2}$ is very encouraging, for the following reason. We expect the $1 / 8$ BPS 5D degeneracies to be related to degeneracies of $1 / 8 \mathrm{BPS}$ black holes in 4D, and in 4D U-duality implies [9] that the black hole entropy must depend on the unique quartic invariant of $E_{7,7}$, the so-called Cremmer-Julia invariant [10]. In an $\mathcal{N}=4$ language, this invariant takes the form

$$
\begin{equation*}
\mathcal{J}=q_{e}^{2} q_{m}^{2}-\left(q_{e} \cdot q_{m}\right)^{2} \tag{3.1}
\end{equation*}
$$

where q_{e} and q_{m} are the electric and magnetic charge vectors for $\mathcal{N}=4 \mathrm{BPS}$ states. (See e.g. [5] for details on the notation.) This is precisely the dependence of \widehat{c} on n, m, ℓ, provided we identify

$$
\begin{equation*}
k=\frac{1}{2} q_{e}^{2}, \quad n=\frac{1}{2} q_{m}^{2}, \quad \ell=q_{e} \cdot q_{m} \tag{3.2}
\end{equation*}
$$

Note that from the purely 5D point of view, there was no obvious reason that \widehat{c} should depend only on the combination $4 n k-\ell^{2}$ as there is no 5 D U-duality which mixes spins with charges.

Let us now derive the identification (3.2) from the dictionary of [1] , beginning from the IIB spinning 5D D1-D5-n black hole of the previous section. First we T-dual on S^{1} to obtain a black hole with spin $\frac{\ell}{2}$, F-string winding $n, Q_{1} \mathrm{D} 0$-branes, and $Q_{5} \mathrm{D} 4$-branes. Now T-dual so that there are $Q_{1}+Q_{5} \mathrm{D} 2$ branes with intersection number $Q_{1} Q_{5}=k$ on the T^{4}. Next we compactify on a single center Taub-NUT, whose asymptotic circle we identify as the the new M-theory circle. The result is three orthogonal sets of (n, Q_{1}, Q_{5}) D 2 -branes on T^{6}, ℓ D0-branes, and one D6-brane. For IIA D-brane configurations with D0, D2, D4, D6 charges $\left(q_{0}, q_{i j}, p^{i j}, p^{0}\right)$, where $i=1, \ldots 6$ runs over the T^{6} cycle and $p^{i j}=-p^{j i}, q_{i j}=-q_{j i} \mathcal{J}$ reduces to目

$$
\begin{align*}
\mathcal{J}=\frac{1}{12} & \left(q_{0} \epsilon_{i j k l m n} p^{i j} p^{k l} p^{m n}+p^{0} \epsilon^{i j k l m n} q_{i j} q_{k l} q_{m n}\right) \tag{3.3}\\
& -p^{i j} q_{j k} p^{k l} q_{l i}+\frac{1}{4} p^{i j} q_{i j} p^{k l} q_{k l}-\left(p^{0} q_{0}\right)^{2}+\frac{1}{2} p^{0} q_{0} p^{i j} q_{i j} .
\end{align*}
$$

${ }^{2}$ See e.g. [1], equation (66), and take $p^{0}=p_{87}, \quad p_{8 i}=0$, etc. Our definition of \mathcal{J} differs from that of (11] by a sign.

For our D0-D2-D6 configuration, we can pick a basis of cycles without loss of generality such that the nonzero charges are

$$
\begin{equation*}
p^{0}=0, \quad q_{0}=\ell, \quad q_{12}=-q_{21}=n, \quad q_{34}=-q_{43}=Q_{1}, \quad q_{56}=-q_{65}=Q_{5} \tag{3.4}
\end{equation*}
$$

Then (3.3) reduces to

$$
\begin{equation*}
\mathcal{J}=4 n k-\ell^{2}, \tag{3.5}
\end{equation*}
$$

which, as stated above, is exactly the argument of (2.3).
According to [1] the weighted degeneracy of the 4D black hole resulting from U-duality and Taub-NUT compactification equals that of the original 5D black hole, when J_{R}^{3} in (2.8) is identified with the generator J^{3} of \mathbb{R}^{3} rotations in 4 D . Note that, since \mathcal{J} is odd if and only if ℓ is, we may trade $(-)^{\ell}$ for $(-)^{\mathcal{J}}$ in (2.8). Therefore, for fixed coprime charges, the weighted 4D BPS degeneracy depends only on the the Cremmer-Julia invariant and is given by

$$
\begin{equation*}
\sum_{J^{3}, B P S \text { states }} 2\left(J^{3}\right)^{2}(-)^{2 J^{3}}=(-)^{\mathcal{J}} \widehat{c}(\mathcal{J}) \tag{3.6}
\end{equation*}
$$

Note that, although this formula for the 4D BPS degeneracy was derived assuming a specific D6-D2-D0 configuration, it applies to all D-brane configurations by U-duality.

As a first check on this conjecture, we note that for large charges $\widehat{c}(\mathcal{J}) \sim e^{\pi \sqrt{J}}$. From the supergravity solutions Area $=4 \pi \sqrt{J}$, so there is agreement with the BekensteinHawking entropy.

As an example, let's consider the modified elliptic genus for the D4-D0 black hole on T^{6}, in which we fix the D4 charges and sum over D0 charge q_{0}. Consider the T^{6} of the form $T^{2} \times T^{2} \times T^{2}$ with $\alpha_{1}, \alpha_{2}, \alpha_{3}$ being the three 2-cycles associated with the T^{2} 's. Let A^{1}, A^{2}, A^{3} be the dual 4-cycles. We shall consider the D4-brane wrapped on the cycle $[P]=A^{1}+A^{2}+A^{3}$. Its triple self-intersection number is $D=P \cdot P \cdot P=6$. From (3.3) we have

$$
\begin{equation*}
\mathcal{J}=4 q_{0} \tag{3.7}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\mathcal{E}_{2}(q)=\sum_{q_{0} \in \mathbb{Z}} \widehat{c}\left(4 q_{0}\right) q^{q_{0}}=-q^{\frac{1}{4}} \eta(q)^{-6} \sum_{m \in \mathbb{Z}} q^{m^{2}+m} . \tag{3.8}
\end{equation*}
$$

according to (2.12).

A straightforward generalization of this example is the D4-D2-D0 system, where we wrap $\left(q_{1}, q_{2}, q_{3}\right) \mathrm{D} 2$ branes on the 2-cycles $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. In this case, the Cremmer-Julia invariant becomes

$$
\begin{equation*}
\mathcal{J}=4\left(q_{0}+q_{1} q_{2}+q_{1} q_{3}+q_{2} q_{3}\right)-\left(q_{1}+q_{2}+q_{3}\right)^{2} \tag{3.9}
\end{equation*}
$$

and the sum over q_{0} produces

$$
\mathcal{E}_{2}(q)=\sum_{q_{0} \in \mathbb{Z}}(-1)^{\mathcal{J}} \widehat{c}(\mathcal{J}) q^{q_{0}}= \begin{cases}-q^{\frac{1}{4}} \eta(q)^{-6} \sum_{m \in \mathbb{Z}} q^{m^{2}+m-\frac{1}{4} \tilde{\mathcal{J}}} & q_{1}+q_{2}+q_{3} \text { even } \tag{3.10}\\ -q^{\frac{1}{4}} \eta(q)^{-6} \sum_{m \in \mathbb{Z}} q^{m^{2}-\frac{1}{4} \tilde{\mathcal{J}}-\frac{1}{4}} & q_{1}+q_{2}+q_{3} \text { odd }\end{cases}
$$

where $\tilde{\mathcal{J}}=4\left(q_{1} q_{2}+q_{1} q_{3}+q_{2} q_{3}\right)-\left(q_{1}+q_{2}+q_{3}\right)^{2}$. Now let us turn to the 4 D derivation of (3.8) and (3.10).

4. Microscopic derivation in 4D

In this section we sketch a derivation of (3.8) and (3.10) using a 4D microscopic analysis. The derivation is not complete because, as we will discuss below, we ignore some potential subtleties associated to the fact that P is not simply connected. In principle it should be possible to close this gap. A microscopic description of T^{6} black holes using the M-theory picture of wrapped fivebranes has been given in [8], adapting the description given in [12] for a general Calabi-Yau, in terms of a $(0,4)$ 2D CFT living on the M-theory circle. For uniformity and simplicity of presentation, we here will use the IIA description in which fivebrane momenta around the M-theory circle become bound states of D0 branes to D 4 branes.

As above (3.7) we examine the special case of the D4-D0 system wrapped on $[P]=$ $A^{1}+A^{2}+A^{3}$. The D4-D0 system can be described in terms of the quantum mechanics of q_{0} D0-branes living on the D 4 -brane world volume P. The D4-brane world volume P is holomorphically embedded in the T^{6}. One can compute its Euler character, $\chi(P)=6$. It follows from the Riemann-Roch formula that the only modulus of P is the overall translation in $T^{6} 3$ Since $\chi(P)=6, P$ has $4+2 b_{1} 2$-cycles. By the Lefschetz hyperplane theorem we have $b_{1}(P)=b_{1}\left(T^{6}\right)=6$, and therefore $b_{2}(P)=16$. All but one of the 2 -cycles

3 The dual line bundle \mathcal{L}_{P} of the divisor P has only one holomorphic section. However as T^{6} is not simply connected, the line bundle \mathcal{L}_{P} is not only determined by $c_{1}\left(\mathcal{L}_{P}\right)=[P]$. In fact the translation of T^{6} takes it to a different line bundle.
come from the intersection of P with $\binom{6}{4}=154$-cycles in T^{6}. We will be mostly interested in 3 of these, denoted by $\tilde{\alpha}_{i}$, corresponding to intersections of A^{i} with P. Turning on fluxes along these three 2-cycles corresponds to having charges of D2-branes wrapped on the α_{i} 's. Their intersection numbers are

$$
\tilde{\alpha}_{i} \cdot \tilde{\alpha}_{j}= \begin{cases}0, & i=j \tag{4.1}\\ 1, & i \neq j\end{cases}
$$

There is, however, one extra 2 -cycle in P, which we shall denote by β, that does not correspond to any cycle in the T^{6}.

One can show from the adjunction formula that $c_{1}(P)$ is Poincaré dual to $-\left(\tilde{\alpha}_{1}+\tilde{\alpha}_{2}+\right.$ $\left.\tilde{\alpha}_{3}\right)$. It then follows from Hirzebruch signature theorem that

$$
\begin{equation*}
\sigma(P)=-\frac{2}{3} \chi(P)+\frac{1}{3} \int_{P} c_{1}^{2}=-2 . \tag{4.2}
\end{equation*}
$$

We conclude that the intersection form on P is odd (and that P is not a spin manifold). Essentially the unique way to extend (4.1) to an odd rank 4 unimodular quadratic form is to have an extra 2-cycle γ with

$$
\begin{equation*}
\gamma \cdot \tilde{\alpha}_{i}=1, \quad \gamma \cdot \gamma=1 \tag{4.3}
\end{equation*}
$$

Now if we choose $\beta=2 \gamma-\sum \tilde{\alpha}_{i}$, we have

$$
\begin{equation*}
\beta \cdot \tilde{\alpha}_{i}=0, \quad \beta \cdot \beta=-2 . \tag{4.4}
\end{equation*}
$$

Note that $\left(\tilde{\alpha}_{i}, \beta\right)$ is not an integral basis for $H_{2}(P, \mathbb{Z})$, yet β is the smallest 2-cycle that doesn't intersect $\tilde{\alpha}_{i}$. The total intersection form on P is the sum of this rank 4 form together with 6 copies of σ_{1} coming from the 12 other 2-cycles in P.

Now one can turn on gauge field flux on the D4-brane world volume along β, which does not correspond to any D2-brane charge. This flux nevertheless induces D0-brane charge. There is a subtlety in the quantization of this flux. As well known, the curvature of the D4-brane world volume induces an anomalous D0-brane charge $-\chi(P) / 24=-\frac{1}{4}$. In order that the total D 0 charge be integral the flux along the cycle β on the D 4 -brane must be half-integer, i.e. of the form $\left(m+\frac{1}{2}\right) \beta$. The total induced D0-brane charge is $\Delta q_{0}=-\frac{1}{2}\left(m+\frac{1}{2}\right)^{2} \beta \cdot \beta-\frac{1}{4}=m^{2}+m$, which is indeed an integer.4

[^1]We ignore here the facts arising form nonzero $b_{1}(P)$ that there is a moduli space of flat connections as well as overall T^{6} translations which must be quantized. These factors are treated in the language of the 2D CFT in [8]. They are found to lead to extra degrees of freedom which are however eliminated by extra gauge constraints. A complete microscopic derivation, not given here, would have to show that a careful accounting of these factors give a trivial correction to our result.

It is now straightforward to reproduce (3.8). Each D0-D4 bound state is in a hypermultiplet which contributes minus one to $\operatorname{Tr}\left[2\left(J^{3}\right)^{2}(-)^{2 J^{3}}\right]$. Counting the number of ways of distributing $n \mathrm{D} 0$-branes among the $\chi(P)=6$ ground states of the supersymmetric quantum mechanics, and then summing over n, gives the factor of $q^{1 / 4} \eta(q)^{-6}=\prod_{k=1}^{\infty}\left(1-q^{k}\right)^{-6}$ in (3.8). Including finally the sum over fluxes on β, we precisely reproduce the degeneracy (3.8)!

Let us now consider the more general case of D4-D2-D0 system. Again we shall assume $\left(p^{1}, p^{2}, p^{3}\right)=(1,1,1)$. The D2-brane charges are labelled by $\left(q_{1}, q_{2}, q_{3}\right)$. The bound state is described by the D4-brane with D2-brane dissolved in its world volume. We end up with the gauge flux

$$
\begin{equation*}
F=(m+1 / 2) \beta+\sum_{i=1}^{3} q_{i} \delta_{i}, \quad \delta_{i} \cdot \tilde{\alpha}_{j}=\delta_{i j} . \tag{4.5}
\end{equation*}
$$

In above expression δ_{i} is defined up to a shift of an integer multiple of β. Since we are summing over m, this ambiguity is irrelevant. We can choose $\delta_{i}=\gamma-\tilde{\alpha}_{i}$. The total induced D0-brane charge is then

$$
\begin{align*}
\Delta q_{0} & =-\int \frac{1}{2} F^{2}-\frac{1}{4} \\
& =(m+1 / 2)^{2}+(m+1 / 2) \sum q_{i}+\frac{1}{2} \sum q_{i}^{2}-\frac{1}{4} \tag{4.6}\\
& =\left(m+\frac{1}{2}+\frac{1}{2} \sum q_{i}\right)^{2}-\frac{1}{12} D^{A B} q_{A} q_{B}-\frac{1}{4},
\end{align*}
$$

where $D^{A B}$ is the inverse matrix of $D_{A B} \equiv D_{A B C} p^{C}$,

$$
\begin{equation*}
D^{A B} q_{A} q_{B}=3\left(2 q_{1} q_{2}+2 q_{2} q_{3}+2 q_{3} q_{1}-q_{1}^{2}-q_{2}^{2}-q_{3}^{2}\right) . \tag{4.7}
\end{equation*}
$$

Note that $\frac{1}{3} D^{A B} q_{A} q_{B}=0 \bmod 4$ if $\sum q_{i}$ is even, and $\frac{1}{3} D^{A B} q_{A} q_{B}=-1 \bmod 4$ if $\sum q_{i}$ is odd. Therefore Δq_{0} is always an integer, as expected. The Cremmer-Julia invariant is in this case

$$
\begin{equation*}
\mathcal{J}=4\left(q_{0}+\frac{1}{12} D^{A B} q_{A} q_{B}\right) . \tag{4.8}
\end{equation*}
$$

The counting of D0-brane states as before gives the generating function

$$
\begin{equation*}
\sum_{q_{0}}(-)^{\mathcal{J}} c(\mathcal{J}) q^{q_{0}}=-\prod_{k=1}^{\infty}\left(1-q^{k}\right)^{-6} \sum_{m \in \mathbb{Z}} q^{m^{2}+m-\frac{1}{12} D^{A B}} q_{A} q_{B} \tag{4.9}
\end{equation*}
$$

in the case $\sum q_{i} \in 2 \mathbb{Z}$ and $\mathcal{J} \equiv 0 \bmod 4$, and

$$
\begin{equation*}
\sum_{q_{0}}(-)^{\mathcal{J}} c(\mathcal{J}) q^{q_{0}}=-\prod_{k=1}^{\infty}\left(1-q^{k}\right)^{-6} \sum_{m \in \mathbb{Z}} q^{m^{2}-\frac{1}{12} D^{A B} q_{A} q_{B}-\frac{1}{4}} \tag{4.10}
\end{equation*}
$$

in the case $\sum q_{i} \in 2 \mathbb{Z}+1$ and $\mathcal{J} \equiv-1 \bmod 4$. These are precisely the degeneracies (3.19) we derived from 5D earlier!

Acknowledgments

This work was supported in part by DOE grant DEFG02-91ER-40654. We are grateful to Greg Moore and Boris Pioline for useful correspondence.

References

[1] D. Gaiotto, A. Strominger and X. Yin, "New connections between 4D and 5D black holes," arXiv:hep-th/0503217.
[2] J. M. Maldacena, G. W. Moore and A. Strominger, "Counting BPS black holes in toroidal type II string theory," arXiv:hep-th/9903163.
[3] G. Lopes Cardoso, B. de Wit and T. Mohaupt, "Corrections to macroscopic supersymmetric black-hole entropy," Phys. Lett. B 451, 309 (1999) [arXiv:hep-th/9812082]; H. Ooguri, A. Strominger and C. Vafa, "Black hole attractors and the topological string," Phys. Rev. D 70, 106007 (2004) [arXiv:hep-th/0405146]; A. Dabholkar, F. Denef, G. W. Moore and B. Pioline, "Exact and asymptotic degeneracies of small black holes," arXiv:hep-th/0502157; G. L. Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, "Asymptotic degeneracy of dyonic $\mathrm{N}=4$ string states and black hole entropy," JHEP 0412, 075 (2004) [arXiv:hep-th/0412287]; A. Dabholkar, "Exact counting of black hole microstates," arXiv:hep-th/0409148; E. Verlinde, "Attractors and the holomorphic anomaly," arXiv:hep-th/0412139;
[4] R. Dijkgraaf, E. Verlinde and H. Verlinde, "Counting dyons in N = 4 string theory," Nucl. Phys. B 484, 543 (1997) [arXiv:hep-th/9607026].
[5] D. Shih, A. Strominger and X. Yin, "Recounting dyons in N = 4 string theory," arXiv:hep-th/0505094.
[6] V. Balasubramanian and F. Larsen, "On D-Branes and Black Holes in Four Dimensions," Nucl. Phys. B 478, 199 (1996) [arXiv:hep-th/9604189].
[7] V. Balasubramanian, "How to count the states of extremal black holes in $\mathrm{N}=8$ supergravity," arXiv:hep-th/9712215.
[8] M. Bertolini and M. Trigiante, "Microscopic entropy of the most general fourdimensional BPS black hole," JHEP 0010, 002 (2000) [arXiv:hep-th/0008201.
[9] R. Kallosh and B. Kol, "E(7) Symmetric Area of the Black Hole Horizon," Phys. Rev. D 53, 5344 (1996) [arXiv:hep-th/9602014].
[10] E. Cremmer and B. Julia, "The SO(8) Supergravity," Nucl. Phys. B 159, 141 (1979).
[11] S. Ferrara and R. Kallosh, "Universality of Supersymmetric Attractors," Phys. Rev. D 54, 1525 (1996) [arXiv:hep-th/9603090].
[12] J. M. Maldacena, A. Strominger and E. Witten, "Black hole entropy in M-theory," JHEP 9712, 002 (1997) [arXiv:hep-th/9711053].

[^0]: * Permanent address: Department of Physics, Princeton University, Princeton, NJ 08544, USA.
 ** Permanent address: Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA.

[^1]: 4 In the M-theory picture the anomalous D0 charge is the left-moving zero point energy $-\frac{c_{L}}{24}=$ $-\frac{1}{4}$, and the 2 -cycle fluxes correspond to momentum zero modes of scalars on a Narain lattice.

