
CALABI-YAU VARIETIES WITH FIBRE STRUCTURES I.

YI ZHANG AND KANG ZUO

Abstract. Motivated by the Strominger-Yau-Zaslow conjecture, we study fibre spaces
whose total space has trivial canonical bundle. Especially, we are interest in Calabi-
Yau varieties with fibre structures. In this paper, we only consider semi-stable families.
We use Hodge theory and the generalized Donaldson-Simpson-Uhlenbeck-Yau correspon-
dence to study the parabolic structure of higher direct images over higher dimensional
quasi-projective base, and obtain some results on parabolic-semi-positivity. We then ap-
ply these results to study nonisotrivial Calabi-Yau varieties fibred by Abelian varieties
(or fibred by hyperkähler varieties), we obtain that the base manifold for such a family
is rationally connected and the dimension of a general fibre depends only on the base
manifold.
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1. The Generalized Donaldson-Simpson-Uhlenbeck-Yau Correspondence

An introduction to the correspondence. Let the base M be a quasi-projective man-
ifold such that there is a smooth projective completion M with a reduced normal crossing
divisor D∞ = M −M.

Definition 1.1. Let M be a quasi-projective manifold as above. A smooth projective
curve C ⊂ M is sufficiently general if it satisfies that

(1) C intersects D∞ transversely;
(2) π1(C0) ³ π1(M) → 0 is surjectve where C0 = C ∩M.

Remark. It is obvious that there are many sufficiently general curves: Let C be a
complete intersection of very ample divisors such that it is a smooth projective curve in
M intersecting D∞ transversally. The quasi-projective version of the Lefschetz hyperplane
theorem guarantees the subjectivity of π1(C0) ³ π1(M) → 0 (cf. [6]).

1. Let (V,∇) be a flat GL(n,C) vector bundle on M. (V,∇) one to one corresponds to a
fundamental representation ρ : π1(M) → GL(n,C). A Hermitian metric H on V leads
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to a decomposition ∇ = DH + ϑ corresponding to the Cartan decomposition of Lie
algebra gl(n,C) = u(n)⊕p. DH is a unitary connection preserving the metric H. With
respect to the complex structure of M, one has the decomposition

DH = D1,0
H + D0,1

H , ϑ = ϑ1,0 + ϑ0,1.

The following two conditions are equivalent:
• ∇∗

H(ϑ) = 0 (∇∗
H is defined by (e,∇∗

H(f))H := (∇(e), f)H );
• (D0,1

H )2 = 0, D0,1
H (ϑ1,0) = 0, ϑ1,0 ∧ ϑ1,0 = 0.

If one of the above conditions holds, the metric H is called harmonic (or V is called
harmonic). Altogether, if H is harmonic one has:
a) (E, ∂E, θ) is a Higgs bundle with respect to the holomorphic structure ∂E := D0,1

H

where E takes the underlying bundle as V and θ := ϑ1,0.
b) DH is the unique metric connection with respect to ∂E.
c) H is the Hermitian-Yang-Mills metric of (E, θ), i.e.,

D2
H = −(θ∗H ∧ θ + θ ∧ θ∗H).

The existence of the harmonic metric was proven by Simpson in case that dim M = 1
(cf. [21]), by Jost-Zuo in case that M is of higher dimension (cf. [8]). If M is a
projective manifold, the harmonic metric on V is unique and depends only on the
fundamental representation ρ, but the uniqueness does not hold if M is not compact.
One can extend the induced Higgs bundle E over M to get a coherent sheaf E, also
extend θ to θ ∈ Γ(M, End(E) ⊗ Ω1

M
(log D∞)). Though the extension of (E, θ) is not

unique, one can treat this nonuniqueness by taking filtered extensions (E, θ)α, and
obtains a filtered Higgs bundle {(E, θ)α}.

Conversely, let (E, ∂E, θ) be a Higgs bundle equipped with a Hermitian metric H.
there is a unique metric connection DH on (E, θ) with respect to the holomorphic
structure ∂E, and θ has an H-adjoint (0, 1)-form θ∗H . Denote

∂E := DH − ∂E, ∇′
:= ∂E + θ∗H , and ∇′′

:= ∂E + θ.

Then, ∇′′ ◦ ∇′′
= 0 and (∂E)2 = 0 as D2

H = π1,1(D2
H). With respect to ∇′′

, there is
another holomorphic vector bundle (V,∇′′

) where V takes the underlying bundle as E.
The metric H on (E, θ) is called Hermitian-Yang-Mills if ∇ := ∇′

+∇′′
is integrable,

and then H is said to be a harmonic metric on V (cf. [7]).
If M is a compact Kähler manifold or a quasi-projective curve, one has the Donaldson-

Simpson-Uhlenbeck-Yau correspondence (DSUY correspondence), i.e., the Hermitian-
Yang-Mills metric exists (cf. [5],[20],[21],[23]). Suppose that (V,∇) is flat, one has

∂E(θ) = ∂E(θ∗H) = 0.

Hence ∇′ ◦ ∇′
= 0 and ∇′

then is the Gauss-Manin connection of (V,∇′′
).

2. An algebraic vector bundle E over M is said to have a parabolic structure if there
is a collection of algebraic bundles Eα extending E over M whose extensions form
a decreasing left continuous filtration such that Eα+1 = Eα ⊗ OM(−D∞) and Eα ⊂
Eβ for α ≥ β as sheaves with Eα−ε = Eα for small ε.
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One only needs to consider the index 0 ≤ α < 1. The set of values where the filtration
jumps is discrete, so it is finite and that the filtration is actually a proper filtration.
Over a punctured curve C0 = C − S, the parabolic degree of E is defined by

(1.1.1) par.deg(E) = deg E +
∑
s∈S

∑
0≤α<1

α dim(GrαE(s))

where E := E0 = ∪Eα. The parabolic degree of a filtered bundle {Eα} on a higher
dimensional M is defined by taking the parabolic degree of the restriction {(Eα)|C}
over a sufficiently general curve C in M. Since any subsheaf of a parabolic vector
bundle E has a parabolic structure induced from E, one then has the definition of the
stability for parabolic bundles (cf.[21]).

3. A harmonic bundle (V, H,∇) is called tame if the metric H has at most polynomial
growth near the infinity. In other words, a harmonic bundle (V, H,∇) is tame if and
only if (V,∇) has only regular singularity at D∞. Hence any tame harmonic bundle
and its induced Higgs bundle over M are algebraic.

Simpson and Jost-Zuo proved that any C-local system on M has a tame harmonic
metric. Moreover, if (E, θ) is a Higgs bundle induced from a tame harmonic bundle, E
has a parabolic structure which is compatible with the extensive Higgs field, i.e., there is
a filtered regular Higgs bundle {(E, θ)α}. If local monodromies are all quasi-unipotent,
the extension E = E0 can be chosen to be the Deligne quasi-unipotent extension.

If M is a punctured curve, Simpson proved that a filtered Higgs bundle {(E, θ)α} is
ploy-stable of parabolic degree zero if and only if it corresponds to a ploy-stable local
system of degree zero (cf.[21]). For higher dimensional base, we have the following
generalized Donaldson-Simpson-Uhlenbeck-Yau correspondence obtained by Simpson
and Jost-Zuo:

Theorem 1.2 (cf. [8],[21],[23], [29]). Let M be a quasi-projective manifold such that it
has a smooth projective completion M and D∞ = M \M is a normal crossing divisor.
Let (V, H,∇) be a tame harmonic bundle on M and {(E, θ)α} be the induced filtered
Higgs bundle. Then, one has:
1. (V, H,∇) is a direct sum of irreducible ones and {(E, θ)α} is a poly-stable filtered

Higgs bundle of parabolic degree zero.
2. If (V, H,∇) is irreducible, {(E, θ)α} is a stable filtered Higgs bundle of parabolic

degree zero.

Remark. The parabolic stability of Higgs sheafs which induced from of harmonic
bundles is independent of the choice of sufficiently general curve.

Chern classes of Hodge bundles. Let the base M be a quasi-projective manifold such
that there is a smooth projective completion M with a reduced normal crossing divisor
D∞ = M −M. Let V be a Q-local system over M . Assume that V underlies a polarizable
variation of Hodge structure of weight k such that all local monodromies around D are
quasi-unipotent. Let V be the Deligne quasi-canonical extension of the holomorphic vector
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bundle V = V⊗OM to M with the regular Gauss-Manin connection

∇ : V → V ⊗ Ω1
M

(log D).

The Hodge filtration F • on V can also extend to V . Denote Fp
= F pV . For any polarized

VHS over M, the Hodge metrics are polynomial growth near D∞ by Schmid’s nilpotent
orbit theorem (cf. [18]), thus V is is a tame harmonic bundle and it gives rise to a Higgs
bundle (E = ⊕Ep,q, θ = ⊕θp,q) with the Higgs structure θp,q : Ep,q → Ep−1,q+1⊗Ω1

M . The
Higgs bundle (E, θ) has a parabolic structure with only regular singularity at D∞, and it
has Deligne canonical extension:

(E =
⊕

E
p,q

, θ =
⊕

θp,q),

where θ
p,q

: E
p,q → E

p−1,q+1⊗Ω1
M

(log D), and so θ is an OM -liner map and θ ∧ θ = 0. As
this extensive Higgs bundle comes from VHS, it is calledHodge bundle.

The most important fact is that (E, θ) is a poly-stable parabolic Higgs bundle of parabolic
degree 0 (cf. [18],[20, 21]). The following results related to the Chern classes of Hodge
bundles are well-known:

1. Let (V, H,∇) is a tame harmonic bundle over a quasi-projective smooth curve C0 and
(E, θ) be the induced parabolic Higgs bundle. Let F be a holomorphic subbundle of E
(it takes the parabolic structure of E) and HF be the restricted metric on F. Simpson
showed that

∫
C0

c1(F,HF ) is convergent (cf. [21]), moreover

par.deg(F ) =

∫

C0

c1(F,HF ) =

∫

C0

Trace(Θ(F,HF )).

2. Suppose that all monodromies are unipotent. Cattani-Kaplan-Schmid proved that the
Chern form of the Hodge metric on the various Ep,q defines current on M (cf.[2]).
Moreover, the first Chern form computes the first Chern class of the Deligne canonical
extension E

p,q
on M.

2. The Parabolic-Semi-Positivity of Bottom Filtrations of VHSs

Definition 2.1. Let π : X → Y be an algebraic fibre space with d = dim X − dim Y. We
say π has unipotent reduction condition (URC) if the following conditions are satisfied:

(1) there is a Zariski open dense subset Y0 of Y such that D = Y \ Y0 is a divisor of

normal crossing on Y , i.e., D is a reduced effective divisor and if D =
∑N

i=1 Di

is the decomposition to irreducible components, then all Di are non-singular and
cross normally;

(2) π : X0 → Y0 is smooth where X0 = π−1(Y0);
(3) all local monodromies of Rdπ∗QX0 around D are unipotent.

The URC holds automatically for a semistable family, and one always has the semistable
reduction if the base is a curve. But for any higher dimensional base, the semistable
reduction theorem is still an enigma. Fortunately, one always has the unipotent reduction.
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Proposition 2.2 (Fujita-Kawamata’s positivity cf. [9]). Let π : X → Y be a proper
algebraic family with connected fibre and ωX/Y := ωX ⊗ π∗ω−1

Y be the relative dualizing
sheaf. Assume that π satisfies URC as in the definition 2.1. Let F be the bottom filtration
of the VHS Rdπ∗QX0 where X0 = f−1(Y0) and d = dim X − dim Y. Then, one has:

1. π∗ωX/Y = F , where F is the Deligne canonical extension. Thus, π∗ωX/Y is locally free.
2. π∗ωX/Y is semi-positive, i.e., for every projective curve T and morphism g : T → Y

every quotient line bundle of g∗(π∗ωX/Y ) has non-negative degree.

Viehweg obtained more advanced results on the weak positivity without the assumption
of URC. Studying VHSs with quasi-unipotent local monodromies and corresponding Higgs
bundles, we obtain one useful generalization as follows:

Theorem 2.3. Let M be a quasi-projective n-fold with a smooth projective completion
M such that D∞ = M − M is a reduced normal crossing divisor. Let V be a polarized
R-VHS over M and F be the bottom filtration of the VHS. Assume all local monodromies
of V are quasi-unipotent. Then, we have:

1. There is a unique decomposition

F = A⊕ U ,

where F is the Deligne quasi-canonical extension of F over M such that
a) A has no flat quotient even after a finite ramified cover.
b) U|M is a unitary bundle on M and there is a covering τ of M ramified over D∞

such that τ ∗U is unitary (if all local monodromies are unipotent, then U is unitary).
2. For any sufficiently general curve C in M, we have:

par.deg(A|C0) > 0,

where C0 = M∩C. By the definition of parabolic degree, it says that par.deg(A|M) > 0.
Moreover, if all local monodromies are unipotent then A|C is an ample vector bundle.

Remark. If all local monodromies are unipotent, A is semi-positive, i.e., degT h∗A ≥ 0
for any morphism h : T → M from a smooth projective curve T.

Proof. Let (E, θ) be the Higgs bundle induced from the polarized VHS V and h be the
Hodge metric on E. The Deligne quasi-canonical extension of (E, θ) is (E, θ). Omitting
the Higgs structure, we have E∨ = E and the equality of the Deligne quasi-canonical

extensions H∨
= H∨ for any holomorphic subbundle H of E.

1. Suppose M is a quasi-projective curve.
a) Let F → Q → 0 be any quotient bundle, the dual exact sequence of holomorphic

bundles is 0 → Q∨ → F∨
. Q∨|M is then a parabolic vector bundle. Define QM to

Q|M and Q∨
M = Q∨|M . The Hodge metric on E induces a singular metric on Q∨,

we still denote it h. We claim that par.deg(Q∨
M) ≤ 0. By Simpson’s result, it is

equivalent to show that ∫

M

c1(Q∨
M , h) ≤ 0.
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Let Θ(E, h) be the curvature form of the Hodge metric h on E. From Griffiths-
Schmid’s curvature formula (cf. [18]), we have

Θ(E, h) + θ ∧ θ̄h + θ̄h ∧ θ = 0.

where θ̄h is the complex conjugation of θ with respect to h. On the other hand, we
have a C∞-decomposition

E = Q∨
M ⊕ (Q∨

M)⊥

with respect to the metric h. Then,

Θ(Q∨
M , h) = Θ(E, h)|Q∨M + Āh ∧ A

= −θ ∧ θ̄h|Q∨M − θ̄h ∧ θ|Q∨M + Āh ∧ A,

where A ∈ A1,0(Hom(Q∨
M , (Q∨

M)⊥) is the second fundamental form of the sub-
bundleQ∨

M ⊂ E0, and Āh is its complex conjugate with respect to h. Since θ(Q∨
M) =

0 by θ(F∨) = 0, we have:

Θ(Q∨
M , h) = −θ ∧ θ̄h|Q∨M + Āh ∧ A.

Thus, ∫

M

c1(Q∨
M , h) ≤ 0.

b) That par.degQ∨
M = 0 induces

θ|Q∨M ≡ θ̄h|Q∨M ≡ 0 and Āh ≡ A ≡ 0.

Because (E, θ) is a ploy-stable parabolic Higgs bundle, that

par.degQ∨
M = 0

not only implies that Q∨
M is a sub-Higgs bundle of (E, θ) but also show that there

is a splitting of the Higgs bundle

(E, θ) = (N , θ)⊕ (Q∨
M , 0).

By the Simpson theorem for quasi-projective curve, the Higgs splitting corresponds
to a splitting f C-local system

V = VN ⊕ VQ∨M ,

VQ∨M corresponds to Q∨
M and it is unitary on M.

c) i. Because (E, θ) is a poly-stable parabolic Higgs bundle, there exists a maximal
subbundle B of F such that

par.deg(B|M) = 0,

i.e., any subbundle G of F∨
with par.deg(G|M) = 0 must be contained in B.

Denote U = B∨ and A is the quotient bundle F/B. We have the exact sequence
of vector bundles

0 −−→ A∨ −−→ F∨ −−→ U −−→ 0,



CALABI-YAU VARIETIES WITH FIBRE STRUCTURES I. 7

and for every quotient A → Q→ 0 we have

par.deg(Q∨|M) < 0

even after a generically finite pull back.
ii. We claim that Hom(A,U) = 0. Otherwise there would exist a nonzero bundle

map 0 6= s ∈ Hom(A,U) = 0. Let I be that nonzero vector bundle (we can
extend the image sheaf to be a bundle). As U is a poly-stable parabolic vector
bundle with parabolic degree zero, we have par.deg(I|M) ≤ 0, i.e.,

∫

M

c1(I, h) ≤ 0.

It is a contradiction. Thus

F = A⊕ U
by Ext1(U ,A) = Hom(A,U) = 0, and A is a parabolic bundle with

par.deg(A|M) > 0.

d) i. In case that all local monodromies of V around D∞ are unipotent, we have

par.deg(E) = deg E

as the index of the filtered Higgs bundle jumps only at α = 0. Because all local
monodromies of U are trivial, U is a unitary vector bundle over M and A is an
ample bundle on M by Hartshorne’s characterization of ampleness: A locally
free sheaf G over a smooth projective curve C is ample if and only if degC R > 0
for any nonzero quotient vector bundle G → R → 0.

ii. In case that all local monodromies for V around D∞ are quasi unipotent. Using
the method(the Kawamata covering trick) in [9], we can find the cyclic cover τ
ramified over D∞ described in the statement 1.

2. Suppose that M is a higher dimensional quasi-projective manifold. Choose a suffi-
ciently general curve C in M.
a) We have shown that

F|C = A′ ⊕ U ′
such that U ′|C0 is unitary on C0 and any quotient Q of A′ has par.deg(Q∨|C0) < 0,
and the Higgs splitting

(E|C0 , θC0) = (N ′, θC0)⊕ ((U ′C0
)∨, 0)

corresponds to a splitting of C-local system

V|C0 = W′ ⊕ B′
over C0. By the subjectivity of π1(C0) ³ π1(M), we have a splitting of harmonic
bundle on M :

V = W⊕ B,

such that B is unitary, and W|C0 = W′,B|C0 = B′.
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b) The generalized Donaldson-Simpson-Uhlenbeck-Yau correspondence for higher di-
mensional quasi-projective manifolds says that we have

(E, θ) = (N , θ)⊕ (B0, 0)

over M such that B∨0 |C0 = U ′|C0 . Let B be the quasi-canonical extension of B0 to
M . Denote U = B∨ and A = F/B, then U|C = U ′. Actually the splitting of the
Higgs bundle over M is independent of the choice of the curve C. A and U are
indeed what we ask for.

c) If there is another generic curve C ′ such that there exists a quotient Q of A|C′ with
par.degC′(Q∨|C′0) = 0. It will induce a splitting of the harmonic bundle V = G⊕K
such that K is unitary over M. Our choice of U implies that

K|C0 ⊂ BC0 , K ⊂ B and par.degC(Q∨|C′0) = 0,

it is a contradiction. Other statements follow directly from the standard Kawa-
mata’s covering trick as in [9].

¤
Corollary 2.4 (Kollár cf. [12]). Let C be a smooth projective curve V be a polarized VHS
over a Zariski open set U of C. Let F be the bottom filtration of the VHS.

Assume that all local monodromies are unipotent. On the curve C, there is a decompo-
sition of the Deligne canonical extension:

F = A⊕ U
such that A is an ample vector bundle and U is a flat vector bundle. Moreover, A is
unique as a subbundle of F .

Corollary 2.5 (Kawamata cf. [11]). Let Y be projective manifold and Y0 be a dense open
set of Y such that S = Y \ Y0 is a reduced normal crossing divisor. Let V be polarized
VHS of strict weight k over Y0 such that all local monodromies are unipotent.

Assume that
TY,p −−→ Hom(Fk

p ,Fk−1
p /Fk

p )

is injective at p ∈ Y0 where Fk = F kV is the bottom filtration of the VHS V. Then, detFk

is a big line bundle.

Proof. Let N = F∨. Then θ(N ) = 0 and Θ(N , h) = −θ ∧ θ̄h|N + Āh ∧A. The injectivity
of the morphism TY,p → Hom(Fk

p ,Fk−1,1
p ) induces that

∫

Y0

c1(F , h)dim Y > 0.

Since det(F) is a nef and c1(F , h) is a current due to Cattani- Kaplan-Schmid’s theorem,
then det(F) is big by Sommese-Kawamata-Siu’s numerical criterion of bigness:

If L is a hermitian semi-positive line bundle on a compact complex manifold X such
that

∫
X
∧dim Xc1(L) > 0, then L is a big line bundle on X. In particular, if the line bundle

L is nef with (L)dim X > 0, then L is big.
¤
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3. Calabi-Yau Manifolds with Semistable Fibre Structures

Our main goal is to study Calabi-Yau varieties with fibre structures. By the motivation
from SYZ conjecture, we study the fibration f : X → Y with connected fibres such that
the total space X has trivial canonical line bundle.

Definition 3.1. 1. A projective manifold X is called Calabi-Yau if its canonical line
bundle ωX is trivial and H0(X, Ωp

X) = 0 for p with 0 < p < dim X.
2. A compact Kähler manifold X is called hyperkähler if its dimension is 2n ≥ 4,

H1(X,OX) = 0 and there is a non-zero holomorphic two form βX unique up to scalar
with det(βX) 6= 0.
(Thus, if X is hyperkähler, then h0,2(X,OX) = 1 and ωX is trivial since it has non-zero

section det βX).

Some observations. Let f : X → C be a semistable family from a projective manifold o
a smooth projective curve. Since ω−1

C = OC(
∑

ti−
∑

tj) with #{i}−#{j} = 2− 2g(C),
we have:

ωX/C = ωX ⊗ f ∗ω−1
C = f ∗ω−1

C = OX(
∑

Xti −
∑

Xtj).

Assume X has trivial canonical line bundle. Then, by projection formula f∗ωX/C = ω−1
C

and so the canonical line bundle of any smooth closed fibre is trivial. In particular, if
X is a Calabi-Yau manifold, then a general fibre can be one of Abelian variety, lower
dimensional Calabi-Yau variety or hyperkähler variety.

Observation 3.2. Let f : X → Y be a semistable family of Calabi-Yau varieties over
a higher dimension base such that f is smooth over Y0 and Y \ Y0 is a reduced normal
crossing divisor. We have:

1. If the induced moduli morphism is generically finite, then f∗ωX/Y is big and nef.
2. If f is smooth and the induced period map has no degenerated point, then f∗ωX/Y is

ample.

Observation 3.3. Let f : X → C be a semistable non-isotrivial family over a smooth
projective curve C. Assume that ωX is trivial. Then, we have that the line bundle f∗ωX/C

is big and the curve C is a projective line P1.

The observation 3.3 is a special case of the following proposition 3.4.

Let Z be an algebraic n-fold with trivial canonical bundle. One has an isomorphism

H1(Z, TZ) → Hom(H0(Z, Ωn
Z), H1(Z, Ωn−1

Z ))

from Ωn−1
Z

∼= TZ , i.e., the infinitesimal Torelli theorem holds true.
Let f : X → Y be a semistable proper family smooth over a Zariski open dense set Y0

such that S = Y −Y0 is a reduced normal crossing divisor. Suppose that X is a projective
manifold with trivial canonical line bundle, then a general fibre is a smooth projective
manifold with trivial canonical bundle and has certain type ‘K’. It is well known that the
coarse quasi-projective moduli scheme MK exists for the set of all polarized projective
manifolds with trivial canonical line bundle and type ‘K’ (cf.[24]).
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By the infinitesimal Torelli theorem, that the family f satisfies the condition in the
corollary 2.5 if and only if the unique moduli morphism ηf : Y0 → MK for f is a generically
finite morphism. Moreover, the condition is equivalent to that f contains no isotrivial
subfamily whose base is a subvariety passing through a general point of Y. If Y is a curve,
that f satisfies the condition in 2.5 if and only if that f is non-isotrivial.

Proposition 3.4. Let f : X → Y be a surjective morphism between two non-singular
projective varieties such that every fibre is irreducible and f : X0 = X \∆ → Y \S be the
maximal smooth subfamily where S = Y \ Y0 is a reduced normal crossing divisor.

Assume that X is a projective n-fold with trivial canonical line bundle. Let

F = F n−1Rn−1f∗(QX0)

and F be the quasi-canonical extension. If the moduli morphism of f is generically finite,
then we have:

1. The parabolic degree of F is positive over any sufficient general curve in Y.
2. Moreover, if f is weakly semistable (resp. semistable), i.e., ∆ = f ∗S is a relative

normal crossing divisor in X (resp. reduced divisor), then f∗Ωn−1
X/Y (log ∆) is a parabolic

line bundle with positive parabolic degree (resp. f∗ωX/Y is a big and nef line bundle).

Definition 3.5 (Rationally connected varieties cf. [14], [1]). Let X be a smooth projective
variety over C (or any uncountable algebraically closed field of characteristic 0). X is
called rationally connected if it satisfies the following equivalent conditions:

a) There is an open subset ∅ 6= X0 ⊂ X, such that for every x1, x2 ∈ X0, there is a
morphism f : P1 → X satisfying x1, x2 ∈ f(P1).

b) There is a morphism f : P1 → X such that H1(P1, f ∗TX(−2)) = 0. It is equivalent to:

f ∗TX =
dim X∑
i=1

OP1(ai) with ai ≥ 1.

We call this f very free (If all ai ≥ 0 then H1(P1, f ∗TX(−1)) = 0, f is called free).
c) There is a smooth variety Y of dimension dim X − 1 and a dominant morphism F :
P1 × Y → X such that F ((0 : 1)× Y ) is a point. We can also assume that

H1(P1, F ∗
y TX(−2)) = 0

for every y ∈ Y where Fy := F |P1×{y}.

The class of rationally connected varieties contains the class of unirational varieties.
This class of varieties has many nice properties:

Properties 3.6. (Results for rationally connected varieties).

a) Kollár-Miyaoka-Mori and Campana (cf. [14],[1]) showed:
i. The class of rationally connected varieties is closed under birational equivalence.
ii. A smooth projective rationally connected variety X must satisfy

H0(X, (Ω1
X)⊗m) = 0 with ∀ m ≥ 1.
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If dim X = 3, the converse also holds. Thus, rationally connected varieties are
simply connected.

iii. Being rationally connected is deformation invariant for smooth projective varieties.
b) Recently, Zhang proved that log Q-Fano varieties are rationally connected (cf. [28])

and it implies that any higher dimensional variety with a big and nef anticanonical
bundle must be rationally connected. Kollár-Miyaoka-Mori obtained this result in case
of threefold (cf. [14]).

Observation 3.7. Let f : X → Y be a semistable proper family between two non-
singular projective varieties. Assume that X has a trivial canonical line bundle and the
induced moduli morphism ηf is generically finite. Then, Y has a big and nef anti-canonical
line bundle, and is rationally connected.

Vanishing of unitary subbundles.

Theorem 3.8. Let f : X → Y be semistable family between two non-singular projective
varieties with

f : X0 = f−1(Y0) → Y0

smooth, S = Y \ Y0 a reduced normal crossing divisor and ∆ = f ∗S a relative reduced
normal crossing divisor in X. Assume that f satisfies that

a) the polarized VHS Rkf∗QX0 is strictly of weight k;
b) Hk(X,OX) = 0;
c) Y is simply connected.

Then f∗Ωk
X/Y (log ∆) is locally free on Y without flat quotient, and S 6= ∅. Moreover,

degC(f∗Ωk
X/Y (log ∆)) > 0

for any sufficiently general curve C ⊂ M.

Proof. That Rkf∗QX0 is of weight k guarantee that f∗Ωk
X/Y (log ∆) 6= 0. Then, we have:

f∗Ωk
X/Y (log ∆) = A⊕ U

such that A has no flat quotient and U is flat (so it is trivial here) by 2.3.
It is sufficient to show that f∗Ωk

X/Y (log ∆) has no flat direct summand. Otherwise,

there is a nonzero global section s ∈ H0(Y0, R
kf∗(C)) of (k, 0)-type. Let y ∈ Y0 be a fixed

point. Consider Hodge theory, we have the following commutative diagram:

Hm(X,C)
i∗−−−−−−−−−−−−−−→ Hm(X0,C)

J
Ĵ

i
∗
y

­
­À

i∗y

Hm(Xy,C)π1(Y0,y)

where iy : Xy ↪→ X0, iy : Xy ↪→ X are natural embeddings. For each pair (p, q) with
p + q = m, the following restriction map induced by Xy ⊂ X is a Hodge morphism:

rp,q
y : Hq(X, Ωp

X)
↪→−−→ Hm(X,C)

i
∗
y−−→ Hm(Xy,C)π1(Y0,y) ↪→−−→ Hm(Xy,C) → Hq(Xy, Ω

p
Xy

).
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Since i
∗
y is a surjective Hodge morphism, we have: The component of type (p, q) of the

group Hm(Xt,C)π1(Y0,y) is just the image of Hq(X, Ωp
X) under rp,q

y .

Let m = k. We then have a nonzero lifting s̃ ∈ H0(X, Ωk
X) of s, it is a contradiction.

With same method, we have S 6= ∅. ¤
Corollary 3.9. Let f : X → Y be semistable family between two non-singular projective
varieties with

f : X0 = f−1(Y0) → Y0

smooth, S = Y \ Y0 a reduced normal crossing divisor and ∆ = f−1(S) a relative reduced
normal crossing divisor in X. Assume that X is a Calabi-Yau n-fold and Y is simply
connected. Then,

a) f is a nonisotrivial family with S 6= ∅;
b) f∗ωX/Y is an ample line bundle over any sufficiently general curve.

Proof. Consider the polarized VHS Rn−1f∗(QX0). Suppose that f is isotrivial then the
holomorphic period map for the VHS Rn−1f∗(QX0) is constant over Y0 by the infinitesimal
Torelli theorem. Then the line bundle f∗ωX0/Y0 is unitary over Y0, and so f∗ωX/Y is
unitary by the semi-stability of f. Since Y is simply-connected, f∗ωX/Y then is a trivial
line bundle on Y, it is a contradiction to the theorem 3.8. By similar arguments we then
obtain S 6= ∅. ¤
Remark. Without the assumptions that X is a Calabi-Yau manifold and Y is simply
connected, if X has trivial KX then we have the following results:

1. If f is isotrivial then the line bundle f∗ωX/Y is unitary.
2. Conversely, if f∗ωX/Y is unitary and the global Torelli theorem hold for a general fiber

(e.g. a general fiber is K3 or Abelian variety) then f is isotrivial.

Corollary 3.10. Let f : X → P1 be semistable family with f : X0 = f−1(C0) → C0

smooth, S = P1 \ C0, and ∆ = f ∗S. Assume that X is a projective manifold with
Hk(X,OX) = 0 and the polarized VHS Rkf∗QX0 is strictly of weight k. Then, S 6= ∅ and
f∗Ωk

X/P1(log ∆) is an ample bundle on P1.

Proposition 3.11. Let f : X → C be a semistable family over a smooth projective curve
with f : X0 = f−1(C0) → C0 smooth, S = C \ C0, and ∆ = f−1(S). If X is a projective
n-fold with trivial ωX then the following conditions are equivalent:

(1) f is a non isotrivial family.
(2) f∗ωX/C is an ample line bundle on C.
(3) C = P1 and #S = 3.

If one of the following conditions are satisfied then #S = 3.

Proof. Each smooth closed fibre of f has trivial canonical line bundle.

a) The infinitesimal Torelli theorem holds for the VHS Rn−1f∗(QX0) because there is an
isomorphism for any t ∈ C0:

H1(Xt, TXt) → Hom(H0(Xt, Ω
n−1
Xt

), H1(Xt, Ω
n−2
Xt

)).
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b) f is isotrivial ⇐⇒ f∗ωX0/C0 is a unitary line bundle on C0.
c) Since f is semistable, f∗ωX0/C0 is unitary on C0 ⇐⇒ f∗ωX/C = ω−1

C is unitary on C.
d) ω−1

C is unitary on C ⇐⇒ 0 = deg ω−1
C ⇐⇒ C is elliptic.

Deligne’s complete reducible theorem say that the global monodromy is semi-simple. If
C = P1 and S ≤ 2, then the the global monodromy is same as the locally mondromy
around S, a contradiction. Thus #S = 3. ¤
Remarks. Actually, our proof shows that the following conditions are equivalent:

(1) f is an isotrivial family;
(2) f∗ωX/C is an unitary line bundle on C;
(3) C is an elliptic curve.

We have an interesting property: It is impossible that C = P1 with #S 5 2 even f is
isotrivial.

Question 3.12. Let f : X → Y be semistable family between two non-singular projective
varieties with f : X0 = f−1(Y0) → Y0 smooth, S = Y \ Y0 a reduced normal crossing
divisor and ∆ = f−1(S) a relative reduced normal crossing divisor in X. Assume that X
is a Calabi-Yau n-fold. Are the following two statements equivalent?

(1) The induced moduli map of f is of generally finite.
(2) Y is rationally connected and S is not empty.

In general, “(1) ⇒ (2)”. When Y is curve, the question has a positive answer by 3.11.

4. Dimension Counting for Fibered Calabi-Yau Manifolds

Calabi-Yau manifolds fibred by Abelian varieties.

Theorem 4.1. Let f : X → P1 be a semistable family fibred by Abelian varieties such
that f : X0 = f−1(C0) → C0 is smooth with finite singular values S = P1 \ C0 and a
normal crossing ∆ = f−1(S). Assume X is a projective manifold with trivial canonical
line bundle and H1(X,OX) = 0. Then, f is nonisotrivial and dim X ≤ 3.

In particular, if X is a Calabi-Yau manifold, X is one of the following cases:

a) K3 with #S ≥ 6. Moreover, if #S = 6 then X → P1 is modular, i.e., C0 is the
quotient of the upper half plane H by a subgroup of SL2(Z) of finite index.

b) Calabi-Yau threefold with #S ≥ 4. Moreover, if #S = 4 then this family is rigid and
there exists an étale covering π : Y ′ → P1 such that f ′ : X ′ = X ×P1 Y ′ → Y ′ is
isogenous over Y ′ to a product E ×Y ′ E, where h : E → Y ′ is a family of semistable
elliptic curves and modular.

Proof. Consider the Higgs bundle (E, θ) corresponding to R1f∗QX0 . The semi-stability of
f shows that all local monodromies of R1f∗QX0 are unipotent, thus there is the Deligne
canonical extension

E = f∗Ω1
X/P1(log ∆)

⊕
R1f∗(OX)

where ∆ = f ∗(S), and both pieces are locally free.
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1. Let n = dim f−1(t). Then, n = rkf∗Ω1
X/P1(log ∆) as a general fibre is an Abelian

variety. It has been shown in 3.10 and 3.9 that f is a non-isotrivial family and the
bundle f∗Ω1

X/P1(log ∆) is ample on P1. The Grothendieck splitting theorem says that

there is a decomposition:

f∗Ω1
X/P1(log ∆) =

n⊕
i=1

OP1(di),

and all integers di are positive by the ampleness of the f∗Ω1
X/P1(log ∆).

On the other hand, the commutative diagram of morphisms

∧nf∗Ω1
X/P1(log ∆)

6=0−−−→ f∗(∧nΩ1
X/(log ∆))y=

y=

OP1(
∑n

i=1 di)
6=0−−−→ f∗ωX/P1 .

induces that

n ≤
n∑

i=1

di ≤ deg f∗ωX/P1 .

By Zariski main theorem, f only having connected fibres is same as f∗OX = OP1 .
Hence deg f∗ωX/P1 = 2, and so the dimension of a general fibre is less than 3.

2. If X is a Calabi-Yau threefold then

f∗Ω1
X/P1(log ∆) = OP1(1)⊕OP1(1).

There is so called Arakelov-Yau inequality (cf. [4],[27]).

deg f∗Ω1
X/P1(log ∆) ≤

rkf∗Ω1
X/P1(log ∆)

2
deg(Ω1

P1(log S)) = 2g(P1)− 2 + #S.

Thus #S ≥ 4, and if #S = 4 then there is an étale covering π : Y ′ → P1 such that
f ′ : X ′ = X ×P1 Y ′ → Y ′ is isogenous over Y ′ to a product E ×Y ′ · · · ×Y ′ E, where
h : E → Y ′ is a family of semistable elliptic curves reaching the Arakelov bound.

3. If X is a K3 surface then

f∗Ω1
X/P1(log ∆) = f∗ωX/P1 = OP1(2).

We deduce #S ≥ 6 from the Arakelov-Yau inequality for weight one VHS:

deg f∗Ω1
X/P1(log ∆) ≤

rkf∗Ω1
X/P1(log ∆)

2
deg(Ω1

P1(log S)) =
#S

2
− 1.

4. The modularity is due to recent results by Viehweg-Zuo (cf. [26]).

¤
Corollary 4.2. Any hyperkähler manifold can not be fibered by Abelian varieties as a
semistable family over P1.
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Consider a rationally connected manifold Z. Let D∞ be a reduced normal crossing
divisor in Z. It is not difficult that one can choose a very freely rational curve (may not
be smooth) C intersecting each component of D∞ transversely, then

π1(C ∩ (Z −D∞)) ³ π1(Z −D∞) → 0 is surjective.

Actually, Kollár’s results on fundamental groups show the following fact:

Proposition 4.3 (cf. [15]). Let X be a smooth projective variety and U ⊂ Z be an open
dense subset such that Z \ U is a normal crossing divisor. Assume that Z is rationally
connected. Then, there exists a very free rational curve C ⊂ Z such that it intersects
each irreducible component of Z \U transversally and the map of topological fundamental
groups π1(C ∩ U) ³ π1(U) → 0 is surjective, and

a) If dim Z ≥ 3, C is a smooth rational curve in Z.
b) If dim Z = 2, one has h : P1 → C ⊂ Z such that h is an immersion.

Warning. Here C is sufficiently general does not mean it is complete intersection of
hyperplanes.

Theorem 4.4. Let f : X → Y be a semistable family of Abelian varieties between two
non-singular projective varieties with f : X0 = f−1(Y0) → Y0 smooth, a reduced normal
crossing divisor S = Y \ Y0 and a relative reduced normal crossing divisor ∆ = f ∗(S) in
X. Assume that

a) the period map of the VHS R1f∗(QX0) is injective at one point in Y0;
b) the canonical bundle ωX is trivial and H0(X, Ω1

X) = 0.

Then, the dimension of a general fibre is bounded above by a constant dependent on Y.

Proof. The proof follows from the next steps.

1. By 2.3, f∗Ω1
X/Y (log ∆) has no flat quotient. Moreover, f∗Ω1

X/Y (log ∆) is ample on any
sufficiently general curve in Y. We always have:

∧nf∗Ω1
X/Y (log ∆) = det f∗Ω1

X/Y (log ∆),

where n is the dimension of a general fibre and also is the rank of the locally free sheaf
f∗Ω1

X/Y (log ∆). On the other hand, the non-zero map

∧nf∗Ω1
X/Y (log ∆)

6=0−−→ f∗(∧nΩ1
X/Y (log ∆)) = f∗ωX/Y ,

induces that the line bundle ω−1
Y = f∗ω1

X/Y is big and nef. Thus Y is a rationally
connected projective manifold and so U = 0 by 3.8.

2. By 4.3, we have a very free morphism g : P1 → M which is sufficiently general, i.e.,
the image curve C := g(P1) satisfies:
a) C intersects S transversely;
b) π1(C0) ³ π1(Y0) → 0 is surjective where C0 = C ∩ Y0.
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3. If dim Y ≥ 3, g is an embedding and we have a very free smooth rational curve C ⊂ Y.
Since f∗Ω1

X/Y (log ∆) is ample over C,

f∗Ω1
X/Y (log ∆)|C ∼=

n⊕
i=1

OP1(di) with ∀di > 0.

Denote l = −ωY · C. The commutative diagram of morphisms

∧nf∗Ω1
X/Y (log ∆)|C 6=0−−−→ f∗(∧nΩ1

X/Y (log ∆))|Cy=

y=

OP1(
∑n

i=1 di)
6=0−−−→ f∗ωX/Y |C .

induces that

n ≤
n∑

i=1

di ≤ degC f∗ωX/Y = − degC(ωY ) = l.

4. If dim Y = 1, Y is then P1 and l = 2. If dim Y = 2, then Y is a smooth Del Pezzo
surface and g is an immersion by the theorem 4.3.
a) Let Γ be the graph of the morphism g, i.e.,

Γ = {(x, y) ∈ P1 ×X | y = g(x)} ⊂ P1 ×X.

Γ is a smooth curve, actually it is isomorphic to P1. We have

P1 ×X

­
­À

pr1 J
Ĵ

pr2

P1 X

and the projections pr1, pr2 both are proper morphisms. Hence pr1 : Γ → g(P1) is
a finite morphism. Denote C = g(P1). We then have a finite set B ⊂ C such that
i. g−1(B) is a finite set in P1;
ii. g : P1 \ g−1(B) −→ C \B is an étale covering.

b) Because the real-codimension of B in Y is four, the natural map of topological

fundamental groups π1(Y0 \ B)
∼=−−→ π1(Y0) is isomorphic. Altogether, we have as

a surjective homomorphism π1(C0 \ B) ³ π1(Y0) → 0 since C0 \ B is smooth
quasi-projective and π1(C0 \B) ³ π1(C0) is surjective.

c) Denote T0 = P1 − g−1(B ∪ (C − C0)) and φ = g|T0 . We have an étale covering
φ : T0 → C0 \B, then there is an injective

0 −−→ OC0\B −−→ φ∗OT0 .

We moreover assume that φ is a Galois covering, then the above short sequence has
a split and so

φ∗OT0 = OC0\B ⊕ Galois conjugates.
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d) Let F = f∗Ω1
X/Y (log ∆). The locally free sheaf L := g∗(F|C) on P1 splits into

L =
n⊕

i=1

OP1(di) with di ≥ 0 ∀i.

Suppose that one di = 0, then L has a direct summand OP1 and φ∗(L|T0) has a
nonzero flat quotient φ∗(L|T0) ³ OC0\B → 0. On the other hand,

0 −−→ F|C0\B −−→ φ∗φ∗(F|C0\B) = φ∗(L|T0),

thus F|C0\B has a nonzero flat quotient by the projection formula

φ∗φ∗(F|C0\B) = F|C0\B ⊗ φ∗(OT0).

The subjectivity of π1(C0 \B) ³ π1(M) → 0 implies that F|M has a flat quotient.
Moreover, f∗Ω1

X/Y (log ∆) itself has a unitary quotient, it is a contradiction. Hence,
all integers di are positive and

n ≤ − degP1 g∗ωY = −g∗[P1] · ωY = l.

¤
Remark. Since g is a very free morphism, l ≥ dim Y + 1. However, it seems that we can
not find a very free rational curve with l = dim Y + 1 in the theorem.

Calabi-Yau manifolds fibred by hyperkähler varieties. Similarly, we have:

Theorem 4.5. Let f : X → P1 be a semistable family fibred by hyperkähler varieties with
f : X0 = f−1(C0) → C0 smooth, S = P1 \C0, and ∆ = f−1(S). Assume X is a projective
manifold with trivial canonical line bundle and H2(X,OX) = 0 (e.g. X is Calabi-Yau).
Then, f is nonisotrivial with #S ≥ 3 and the dimension of a general fibre is four.

Proof. Consider the Higgs bundle (E, θ) corresponding to R2f∗QX0 . The semi-stability of
f shows that there is the Deligne canonical extension:

E = f∗Ω2
X/P1(log ∆)

⊕
R1f∗Ω1

X/P1(log ∆)
⊕

R2f∗(OX),

such that f∗Ω2
X/P1(log ∆), R2f∗(OX) are line bundles. By 3.10, f∗Ω2

X/P1(log ∆) = OP1(d)

and d is a positive integer.
Denote F to be be a general fibre and let dim F = 2n. The commutative diagram

Symnf∗Ω2
X/P1(log ∆)

6=0−−−→ f∗(∧nΩ1
X/P1(log ∆))y=

y=

OP1(nd)
6=0−−−→ f∗ωX/P1 ,

induces n ≤ deg f∗ωX/P1 = 2. Thus dim F = 4 by the definition, and so

f∗Ω2
X/P1(log ∆) = OP1(1).

#S ≥ 3 is a well-known result since f is nonisotrivial. ¤
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Theorem 4.6. Let f : X → Y be a semistable family of hyperkähler varieties between
two non-singular projective varieties with f : X0 = f−1(Y0) → Y0 smooth, S = Y \ Y0 a
reduced normal crossing divisor and ∆ = f ∗(S) a relative reduced normal crossing divisor
in X. Assume that the period map for the VHS R2f∗(QX0) is injective at one point in Y0

and X has a trivial canonical line bundle with H0(X, Ω2
X) = 0. Then, the dimension of a

general fibre is bounded above by a constant depending on Y.

Remark. If X is a projective irreducible sympletic manifold of dimension 2n, then by
the result of [16] we have dim Y = n. A very recent result of Todorov-Yau shows that if X
is hyperkähler then a general fibre is Lagrangian, and so is an Abelian variety (cf. [22]).

We just obtain some necessary conditions for a question asked by N.-C. Leung: Does
there exist a Calabi-Yau manifold fibred by Abelian varieties (resp. hyperkähler varieties)?
Furthermore, we guess that the dimension of a general fibre should be bounded above by
a constant depending only on dim Y.

5. Surjective Morphisms from A Calabi-Yau Manifold to A Curve.

Let f : X → C be a surjective morphism from a projective manifold to a smooth
algebraic curve. By the Stein factorization, we have:

X
g−−−→ B

Z
ZZ~

f

yτ

C

where τ is a finite morphism and g has connected fibres. As one can choose a Galois
covering C

′
of C such that B ×C C

′
is the disjoint union of copies of C

′
, the Hurwitz

formula says that τ∗ων
B/C is nef for all ν ≥ 0. On the other hand, it is shown in [24] that

g∗ωX/B is also a locally free sheaf and the Fujita theorem says that f∗ωX/C and g∗ωX/B

both are nef.
Suppose that X has trivial canonical line bundle. The semi-positivity of g∗ωX/B is

equivalent to g(B) ≤ 1. Thus, we reduce the problem to study the surjective morphism
f : X → C with only connected fibres.

Let n be the dimension of a general fibre and ∆ = f ∗S. The infinitesimal Torelli holds
for the VHS Rnf∗(QX0) where X0 = f−1(C0). If f : X → C is weakly semi-stable,
the Deligne quasi-canonical extension of f∗ωX0/C0 is f∗Ωn

X/C(log ∆) and the sheaf of the

relative n-forms Ωn
X/C(log ∆) might be strictly smaller than the relative dualizing sheaf

ωX/C . In fact, comparing the first Chern classes of the entries in the tautological sequence

0 −−→ f ∗Ω1
C(log S) −−→ Ω1

X(log ∆) −−→ Ω1
X/C(log ∆) −−→ 0,

one finds

Ωn
X/C(log ∆) = ωX/C(∆red −∆).
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The effective divisor D = ∆−∆red is zero if and only if the family f is semistable. Denote
L = f∗Ωn

X/C(log ∆). Since OX(∆) = f ∗(OC(S)), as a sheave morphism we have:

L = f∗(OX(∆red))⊗ (ωC(S))−1 ⊂−−→ f∗ωX/C = ω−1
C .

If f is not semistable, we still have f∗ωX0/C0 = L|C0 = ω−1
C |C0 . Since f∗ωX0/C0 = A|C0⊕U|C0

such that U|C0 is unitary and par.deg(A|C0) > 0, and also f is isotrivial if and only if
f∗ωX0/C0 = U . Altogether, we have:

Proposition 5.1. Let f : X → C be a surjective morphism with connected fibres from a
projective manifold X to a smooth algebraic curve C. If f is nonisotrivial and X has a
trivial canonical line bundle, then C = P1.
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