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1. Introduction

According to string theorists, String Theory, as the most promising candidate
for the grand unification of all fundamental forces in the nature, should be the final
theory of the world, and should be unique. But now there are five different looking
string theories. As argued by the physicists, these theories should be equivalent, in a
way dual to each other. On the other hand all previous theories like the Yang-Mills
and the Chern-Simons theory should be parts of string theory. In particular their
partition functions should be equal or equivalent to each other in the sense that they
are equal after certain transformation. To compute partition functions, physicists
use localization technique, a modern version of residue theorem, on infinite dimen-
sional spaces. More precisely they apply localization formally to path integrals
which is not well-defined yet in mathematics. In many cases such computations
reduce the path integrals to certain integrals of various Chern classes on various
finite dimensional moduli spaces, such as the moduli spaces of stable maps and the
moduli spaces of vector bundles. The identifications of these partition functions
among different theories have produced many surprisingly beautiful mathematical
formulas like the famous mirror formula [22], as well as the Mariño-Vafa formula
[25].

The mathematical proofs of these formulas from the string duality also depend
on localization techniques on these various finite dimensional moduli spaces. The
purpose of this note is to discuss our recent work on the subject. I will briefly discuss
the proof of the Marinõ-Vafa formula, its generalizations and the related topological
vertex theory [1]. More precisely we will use localization formulas in various form
to compute the integrals of Chern classes on moduli spaces, and to prove those
conjectures from string duality. For the proof of the Mariño-Vafa formula and
the theory of topological vertex, we note that many aspects of mathematics are
involved, such as the Chern-Simons knot invariants, combinatorics of symmetric
groups, representations of Kac-Moody algebras, Calabi-Yau manifolds, geometry
and topology of moduli space of stable maps, etc.

We remark that localization technique has been very successful in proving many
conjectures from physics, see my ICM 2002 lecture [21] for more examples. One
of our major tools in the proofs of these conjectures is the functorial localization
formula which is a variation of the classical localization formula, it transfers com-
putations on complicated spaces to simple spaces, and connects computations of
mathematicians and physicists.

Starting from the proof of the Mariño-Vafa formula [18], we have proved a series
of results about Hodge integrals on the moduli spaces of stable curves, Gromov-
Witten invariants for open toric Calabi-Yau manifolds, and their relationship with
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equivariant indices of elliptic operators on the moduli spaces of framed stable bun-
dles on the projective plane. Here we can only give a brief overview of the results
and the main ideas of their proofs. For the details see [17], [15], [18], [19], [20], [13].
While the Marinõ-Vafa formula gives a close formula for the generating series of
triple Hodge integrals on the moduli spaces of all genera and any number marked
points, the mathematical theory of topological vertex [13] gives the most effective
ways to compute the Gromov-Witten invariants of any open toric Calabi-Yau man-
ifolds. Recently Pan Peng was able to use our results on topological vertex to give
a complete proof of the Gopakumar-Vafa integrality conjecture for any open toric
Calabi-Yau manifolds [27]. Kim also used our technique to derive new effective
recursion formulas for Hodge integrals on the moduli spaces of stable curves [7].

The spirit of our results is the duality between gauge theory, Chern-Simons the-
ory and the Calabi-Yau geometry in string theory. One of our observations about
the geometric structure of the moduli spaces is the convolution formula which is
encoded in the moduli spaces of relative stable maps [9], [10], and also in the com-
binatorics of symmetric groups, [18], [13]. This convolution structure implies the
differential equation which we called the cut-and-join equation. The cut-and-join
equation arises from both representation theory and geometry. The verification of
the cut-and-join equation in combinatorics is a direct computation through charac-
ter formulas, while its proof in geometry is quite subtle and involves careful analysis
of the fixed points on the moduli spaces of relative stable maps, see [17]-[20] and
[13] for more details. The coincidence of such kind of equation in both geometry
and combinatorics is quite remarkable.

The mathematical theory of topological vertex was motivated by the physical
theory as first developed by the Vafa group [1], who has been working on string
duality for the past several years. Topological vertex theory is a high point of their
work starting from their geometric engineering theory and Witten’s conjecture that
Chern-Simons theory is a string theory [29].

The Gopakumar-Vafa integrality conjecture is possibly the most interesting and
challenging remaining conjecture in the subject of Gromov-Witten invariants. It
is rather surprising that for some cases such invariants can be interpreted as the
indices elliptic operators in gauge theory in [17]. A direct proof of the conjecture
for open toric Calabi-Yau manifolds was given recently by Pan [27] by using the
combinatorial formulas for the generating series of all genera and all degree Gromov-
Witten invariants of open toric Calabi-Yau. These closed formulas are derived from
the theory of topological vertex through the gluing property.

I will start with brief discussions about the Marinõ-Vafa conjecture, then about
the other results mentioned above. This note is based on my lecture at the In-
ternational Conference of Complex Geometry held at the Eastern China Normal
University in the summer of 2004. I would like to thank the organizers for the hos-
pitality during my visit. I would also like to thank my collaborators Melissa C.-C.
Liu, Jian Zhou and Jun Li for the wonderful experience to solve these conjectures
and to develop the theory together.

The great geometer Professor Shiing-Shen Chern passed away on December 3,
2004. I would like to dedicate this article to the memory of Professor Shiing-Shen
Chern, from whom I learned not only mathematics, but also the philosophy of life.
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2. The Mariño-Vafa Conjecture

Our original motivation to study Hodge integrals was to find a general mirror
formula for counting higher genus curves in Calabi-Yau manifolds. To generalize
mirror principle to count the number of higher genus curves, we need to first com-
pute Hodge integrals, i.e. the intersection numbers of the λ classes and ψ classes
on the Deligne-Mumford moduli space of stable curves Mg,h. This moduli space is
possibly the most famous and most interesting orbifold. It has been studied since
Riemann, and by many Fields medalists for the past 50 years, from many different
point of views. Still many interesting and challenging problems about the geometry
and topology of these moduli spaces remain unsolved. String theory has motivated
many fantastic conjectures about these moduli spaces including the famous Witten
conjecture which is about the generating series of the integrals of the ψ-classes. We
start with the introduction of some notations.

Recall that a point in Mg,h consists of (C, x1, . . . , xh), a (nodal) curve C of
genus g, and n distinguished smooth points on C. The Hodge bundle E is a rank
g vector bundle over Mg,h whose fiber over [(C, x1, . . . , xh)] is H0(C,ωC), the
complex vector space of holomorphic one forms on C. The λ classes are the Chern
Classes of E,

λi = ci(E) ∈ H2i(Mg,h; Q).

On the other hand, the cotangent line T ∗xi
C of C at the i-th marked point xi

induces a line bundle Li over Mg,h. The ψ classes are the Chern classes:

ψi = c1(Li) ∈ H2(Mg,h; Q).

Introduce the total Chern class

Λ∨g (u) = ug − λ1u
g−1 + · · ·+ (−1)gλg.

The Mariño-Vafa formula is about the generating series of the triple Hodge
integrals ∫

Mg,h

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)∏h
i=1(1− µiψi)

,

where τ is considered as a parameter here. Later we will see that it actually comes
from the weight of the group action, and also from the framing of the knot. Taking
Taylor expansions in τ or in µi one can obtain information on the integrals of
the Hodge classes and the ψ-classes. The Marinõ-Vafa conjecture asserts that the
generating series of such triple Hodge integrals for all genera and any numbers of
marked points can be expressed by a close formula which is a finite expression in
terms of representations of symmetric groups, or Chern-Simons knot invariants.

We remark that the moduli spaces of stable curves have been the sources of many
interests from mathematics to physics. Mumford has computed some low genus
numbers. The Witten conjecture, proved by Kontsevich, is about the integrals of
the ψ-classes.

Let us briefly recall the background of the conjecture. Mariño and Vafa [25]
made this conjecture based on the large N duality between Chern-Simons and
string theory. It starts from the conifold transition. We consider the resolution of
singularity of the conifold X defined by{(

x y
z w

)
∈ C4 : xw − yz = 0

}
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in two different ways:
(1). Deformed conifold T ∗S3{(

x y
z w

)
∈ C4 : xw − yz = ε

}
where ε a real positive number. This is a symplectic resolution of the singularity.

(2). Resolved conifold by blowing up the singularity, which gives the total space

X̃ = O(−1)⊕O(−1) → P1

which is explicitly given by{
([Z0, Z1],

(
x y
z w

)
) ∈ P1 ×C4 :

(x, y) ∈ [Z0, Z1]
(z, w) ∈ [Z0, Z1]

}
X̃ ⊂ P1 ×C4

↓ ↓
X ⊂ C4

The brief history of the development of the conjecture is as follows. In 1992
Witten first conjectured that the open topological string theory on the deformed
conifold T ∗S3 is equivalent to the Chern-Simons gauge theory on S3. Such idea
was pursued further by Gopakumar and Vafa in 1998, and then by Ooguri and Vafa
in 2000. Based on the above conifold transition, they conjectured that the open
topological string theory on the deformed conifold T ∗S3 is equivalent to the closed
topological string theory on the resolved conifold X̃. Ooguri-Vafa only considered
the zero framing case. Later Marinõ-Vafa generalized the idea to the non-zero fram-
ing case and discovered the beautiful formula for the generating series of the triple
Hodge integrals. Recently Vafa and his collaborators systematically developed the
theory, and for the past several years, they developed these duality ideas into the
most effective tool to compute Gromov-Witten invariants on toric Calabi-Yau man-
ifolds. The high point of their work is the theory of topological vertex. We refer to
[25] and [1] for the details of the physical theory and the history of the development.

Starting with the proof of the Marinõ-Vafa conjecture [18], [19], we have de-
veloped a rather complete mathematical theory of topological vertex [13]. Many
interesting consequences have been derived for the past year. Now let us see how
the string theorists derived mathematical consequence from the above naive idea
of string duality. First the Chern-Simons partition function has the form

〈Z(U, V )〉 = exp(−F (λ, t, V ))
where U is the holonomy of the U(N) Chern-Simons gauge field around the knot
K ⊂ S3, and V is an extra U(M) matrix. The partition function 〈Z(U, V )〉 gives
the Chern-Simons knot invariants of K.

String duality asserts that the function F (λ, t, V ) should give the generating se-
ries of the open Gromov-Witten invariants of (X̃, LK), where LK is a Lagrangian
submanifold of the resolved conifold X̃ canonically associated to the knot K. More
precisely by applying the t’Hooft large N expansion, and the ”canonical” identifi-
cations of parameters similar to mirror formula, which at level k are given by

λ =
2π

k +N
, t =

2πiN
k +N

,
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we get the partition function of the topological string theory on conifold X̃, and
then on P1. which is just the generating series of the Gromov-Witten invariants.
This change of variables is very striking from the point of view of mathematics.

The special case when K is the unknot is already very interesting. In non-zero
framing it gives the Mariño-Vafa conjectural formula. In this case 〈Z(U, V )〉 was
first computed in the zero framing by Ooguri-Vafa and in any framing τ ∈ Z by
Mariño-Vafa [25]. Comparing with Katz-Liu’s computations of F (λ, t, V ), Mariño-
Vafa conjectured the striking formula about the generating series of the triple Hodge
integrals for all genera and any number of marked points in terms of the Chern-
Simons invariants, or equivalently in terms of the representations and combinatorics
of symmetric groups. It is interesting to note that the framing in the Mariño-
Vafa’s computations corresponds to the choice of lifting of the circle action on
the pair (X̃, Lunknot) in Katz-Liu’s localization computations. Both choices are
parametrized by an integer τ which will be considered as a parameter in the triple
Hodge integrals. Later we will take derivatives with respect to this parameter to
get the cut-and-join equation.

It is natural to ask what mathematical consequence we can have for general
duality, that is for general knots in general three manifolds, a first naive question
is what kind of general Calabi-Yau manifolds will appear in the duality, in place of
the conifold. Some special cases corresponding to the Seifert manifolds are known
by gluing several copies of conifolds.

Now we give the precise statement of the Mariño-Vafa conjecture, which is an
identity between the geometry of the moduli spaces of stable curves and Chern-
Simons knot invariants, or the combinatorics of the representation theory of sym-
metric groups.

Let us first introduce the geometric side. For every partition µ = (µ1 ≥
· · ·µl(µ) ≥ 0), we define the triple Hodge integral to be,

Gg,µ(τ) = A(τ) ·
∫
Mg,l(µ)

Λ∨g (1)Λ∨g (−τ − 1)Λ∨g (τ)∏l(µ)
i=1 (1− µiψi)

,

where the coefficient

A(τ) = −
√
−1

|µ|+l(µ)

|Aut(µ)|
[τ(τ + 1)]l(µ)−1

l(µ)∏
i=1

∏µi−1
a=1 (µiτ + a)
(µi − 1)!

.

The expressions, although very complicated, arise naturally from localization com-
putations on the moduli spaces of relative stable maps into P1 with ramification
type µ at ∞.

We now introduce the generating series

Gµ(λ; τ) =
∑
g≥0

λ2g−2+l(µ)Gg,µ(τ).

The special case when g = 0 is given by∫
M0,l(µ)

Λ∨0 (1)Λ∨0 (−τ − 1)Λ∨0 (τ)∏l(µ)
i=1 (1− µiψi)

=
∫
M0,l(µ)

1∏l(µ)
i=1 (1− µiψi)

which is known to be equal to |µ|l(µ)−3 for l(µ) ≥ 3, and we use this expression to
extend the definition to the case l(µ) < 3.
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Introduce formal variables p = (p1, p2, . . . , pn, . . .), and define

pµ = pµ1 · · · pµl(µ)

for any partition µ. These pµj
correspond to TrV µj in the notations of string

theorists. The generating series for all genera and all possible marked points are
defined to be

G(λ; τ ; p) =
∑
|µ|≥1

Gµ(λ; τ)pµ,

which encode complete information of the triple Hodge integrals we are interested
in.

Next we introduce the representation theoretical side. Let χµ denote the charac-
ter of the irreducible representation of the symmetric group S|µ|, indexed by µ with
|µ| =

∑
j µj . Let C(µ) denote the conjugacy class of S|µ| indexed by µ. Introduce

Wµ(λ) =
∏

1≤a<b≤l(µ)

sin [(µa − µb + b− a)λ/2]
sin [(b− a)λ/2]

· 1∏l(ν)
i=1

∏µi

v=1 2 sin [(v − i+ l(µ))λ/2]
.

This has an interpretation in terms of quantum dimension in Chern-Simons knot
theory.

We define the following generating series

R(λ; τ ; p) =
∑
n≥1

(−1)n−1

n

∑
µ

[
∑

∪n
i=1µi=µ

n∏
i=1

∑
|νi|=|µi|

χνi(C(µi))
zµi

e
√
−1(τ+ 1

2 )κνiλ/2Wνi(λ)]pµ

where µi are sub-partitions of µ, zµ =
∏

j µj !jµj and

κµ = |µ|+
∑

i

(µ2
i − 2iµi)

for a partition µ which is also standard for representation theory of symmetric
groups. There is the relation zµ = |Aut(µ)|µ1 · · ·µl(µ).

Finally we can give the precise statement of the Mariño-Vafa formula:

Conjecture: We have the identity

G(λ; τ ; p) = R(λ; τ ; p).

Before discussing the proof of this conjecture, we first give several remarks.
This conjecture is a formula: G : Geometry = R : Representations, and the repre-
sentations of symmetric groups are essentially combinatorics. We note that each
Gµ(λ, τ) is given by a finite and closed expression in terms of the representations
of symmetric groups:

Gµ(λ, τ) =
∑
n≥1

(−1)n−1

n

∑
∪n

i=1µi=µ

n∏
i=1

∑
|νi|=|µi|

χνi(C(µi))
zµi

e
√
−1(τ+ 1

2 )κνiλ/2Wνi(λ).

The generating series Gµ(λ, τ) gives the values of the triple Hodge integrals for mod-
uli spaces of curves of all genera with l(µ) marked points. Finally we remark that
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an equivalent expression of this formula is the following non-connected generating
series. In this situation we have a relatively simpler combinatorial expression:

G(λ; τ ; p)• = exp [G(λ; τ ; p)] =
∑
|µ|≥0

[
∑
|ν|=|µ|

χν(C(µ))
zµ

e
√
−1(τ+ 1

2 )κνλ/2Wν(λ)]pµ.

According to Mariño and Vafa, this formula gives values for all Hodge integrals up
to three Hodge classes. This is almost right if we combine with some previously
simple known formulas about Hodge integrals as proved by Lu.

By taking Taylor expansion in τ on both sides of the Mariño-Vafa formula, we
have derived various Hodge integral identities in [20].

For example, as easy consequences of the Mariño-Vafa formula and the cut-and-
join equation as satisfied by the above generating series, we have unified simple
proofs of the λg conjecture by comparing the coefficients in τ in the Taylor expan-
sions of the two expressions,

∫
Mg,n

ψk1
1 · · ·ψkn

n λg =
(

2g + n− 3
k1, . . . , kn

)
22g−1 − 1

22g−1

|B2g|
(2g)!

,

for k1 + · · ·+ kn = 2g − 3 + n, and the following identities for Hodge integrals:∫
Mg

λ3
g−1 =

∫
Mg

λg−2λg−1λg =
1

2(2g − 2)!
|B2g−2|
2g − 2

|B2g|
2g

,

where B2g are Bernoulli numbers. And

∫
Mg,1

λg−1

1− ψ1
= bg

2g−1∑
i=1

1
i
− 1

2

∑
g1+g2=g
g1,g2>0

(2g1 − 1)!(2g2 − 1)!
(2g − 1)!

bg1bg2 ,

where

bg =

{
1, g = 0,
22g−1−1
22g−1

|B2g|
(2g)! , g > 0.

Now let us look at how we proved this conjecture. This is joint work with
Chiu-Chu Liu, Jian Zhou.

The first proof of this formula is based on the Cut-and-Join equation which is a
beautiful match of combinatorics and geometry. The details of the proof is given
in [17] and [18]. First we look at the combinatorial side. Denote by [s1, · · · , sk] a
k-cycle in the permutation group. We have the following two obvious operations:

Cut: a k-cycle is cut into an i-cycle and a j-cycle:

[s, t] · [s, s2, · · · , si, t, t2, · · · tj ] = [s, s2, · · · , si][t, t2, · · · tj ].
Join: an i-cycle and a j-cycle are joined to an (i+ j)-cycle:

[s, t] · [s, s2, · · · , si][t, t2, · · · tj ] = [s, s2, · · · , si, t, t2, · · · tj ].
Such operations can be organized into differential equations which we call the cut-
and-join equation.

Now we look at the geometry side. In the moduli spaces of stable maps, cut
and join have the following geometric meaning: Cut: one curve split into two lower
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degree or lower genus curves. Join: two curves joined together to give a higher
genus or higher degree curve.

The combinatorics and geometry of cut-and-join are reflected in the following
two differential equations, which look like heat equation. It is equivalent to a series
of systems of linear ordinary differential equations. These equations are proved ei-
ther by easy and direct computations in combinatorics or by localizations on moduli
spaces of relative stable maps in geometry. In combinatorics, the proof is given by
direct computations and was explored in the combinatorics in the mid 80s and by
Zhou [17] for this case. The differential operator on the right hand side corresponds
to the cut-and-join operations which we also simply denote by (CJ).

Proposition:

∂R

∂τ
=

1
2
√
−1λ

∞∑
i,j=1

((i+ j)pipj
∂R

∂pi+j
+ ijpi+j(

∂R

∂pi

∂R

∂pj
+

∂2R

∂pi∂pj
)).

On the geometry side the proof of such equation is given by localization on the
moduli spaces of relative stable maps into the the projective line P1 with fixed
ramifications at ∞:

Proposition:

∂G

∂τ
=

1
2
√
−1λ

∞∑
i,j=1

((i+ j)pipj
∂G

∂pi+j
+ ijpi+j(

∂G

∂pi

∂G

∂pj
+

∂2G

∂pi∂pj
)).

The proof of the above equation is given in [17]

Initial Value: τ = 0,

G(λ, 0, p) =
∞∑

d=1

pd

2d sin
(

λd
2

) = R(λ, 0, p).

which is precisely the Ooguri-Vafa formula and which has been proved previously
[30]. Since the solution is unique, we therefore obtain the equality which is the
Mariño-Vafa conjecture:

Theorem: We have the identity

G(λ; τ ; p) = R(λ; τ ; p).
During the proof we note that the cut-and-join equation is encoded in the geome-

try of the moduli spaces of stable maps. In fact we later find the convolution formula
of the following form, which is a relation for the disconnected version G• = expG,

G•µ(λ, τ) =
∑
|ν|=|µ|

Φ•µ,ν(−
√
−1τλ)zνK

•
ν (λ)

where Φ•µ,ν is the generating series of double Hurwitz numbers, and zν is the com-
binatorial constant appeared in the previous formulas. Equivalently this gives the
explicit solution of the cut-and-join differential equation with initial value K•(λ),
which is the generating series of the integrals of certain Euler classes on the moduli
spaces of relative stable maps to P1. See [14] for the derivation of this formula, and
see [19] for the two partition analogue.
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The Witten conjecture as proved by Kontsevich states that the generating se-
ries of the ψ-class integrals satisfy infinite number of differential equations. The
remarkable point of Mariño-Vafa formula is that it gives a finite close formula. In
fact by taking limits in τ and µi’s one can obtain the Witten conjecture as argued
by Okounkov-Pandhrapande. But the combinatorics involved is non-trivial.

The same argument as our proof of the conjecture gives a simple and geometric
proof of the ELSV formula for Hurwitz numbers. It reduces to the fact that the
push-forward of 1 is equal to 1 in equivariant cohomology for a generically one-to-
one map. See [18] for more details.

We would like to briefly explain the technical details of the proof. The proof
of the combinatorial cut-and-join formula is based on the Burnside formula and
various simple results in symmetric functions. See [30], [15] and [18].

The proof of the geometric cut-and-join formula used the functorial localization
formula in [22] and [23]. Here we only state its simple form for manifolds as used
in [22], the virtual version of this formula is proved and used in [23].

Given X and Y two compact manifolds with torus action. Let f : X → Y be
an equivariant map. Let F ⊂ Y be a fixed component, and let E ⊂ f−1(F ) denote
the fixed components lying inside f−1(F ). Let f0 = f |E , then we have

Functorial Localization Formula: For ω ∈ H∗
T (X) an equivariant cohomol-

ogy class, we have the identity on F :

f0∗[
i∗Eω

eT (E/X)
] =

i∗F (f∗ω)
eT (F/Y )

.

This formula, which is a generalization of the Atiyah-Bott localization formula
to relative setting, has been applied to various settings to prove many interesting
conjectures from physics. It was discovered and effectively used in [22]. A virtual
version which was first applied to the virtual fundamental cycles in the computa-
tions of Gromov-Witten invariants was first proved and used in [23].

This formula is very effective and useful because we can use it to push compu-
tations on complicated moduli space to simpler moduli space. The moduli spaces
used by mathematicians are usually the correct but complicated moduli spaces like
the moduli spaces of stable maps, while the moduli spaces used by physicists are
usually the simple but the wrong ones like the projective spaces. This functorial
localization formula has been used successfully in the proof of the mirror formula
[22], [23], the proof of the Hori-Vafa formula [16], and the easy proof of the ELSV
formula [18]. Our first proof of the Mariño-Vafa formula also used this formula in
a crucial way.

More precisely, let Mg(P1, µ) denote the moduli space of relative stable maps
from a genus g curve to P1 with fixed ramification type µ at ∞, where µ is a fixed
partition. We apply the functorial localization formula to the divisor morphism
from the relative stable map moduli space to the projective space,

Br : Mg(P1, µ) → Pr,

where r denotes the dimension of Mg(P1, µ). This is similar to the set-up of mirror
principle, only with a different linearized moduli space, but in both cases the target
spaces are projective spaces.

We found that the fixed points of the target Pr precisely labels the cut-and-
join operations of the triple Hodge integrals. Functorial localization reduces the



10 KEFENG LIU

problem to the study of polynomials in the equivariant cohomology group of Pr.
We were able to squeeze out a system of linear equations which implies the cut-
and-join equation. Actually we derived a stronger relation than the cut-and-join
equation, while the cut-and-join equation we need for the Mariño-Vafa formula is
only the very first of such kind of relations. See [18] for higher order cut-and-join
equations.

As was known in infinite Lie algebra theory, the cut-and-join operator is closely
related to and more fundamental than the Virasoro algebras in some sense.

Recently there have appeared two different approaches to the Mariño-Vafa for-
mula. The first one is a direct derivation of the convolution formula which was
discovered during our proof of the two partition analogue of the formula [19]. See
[14] for the details of the derivation in this case. The second is by Okounkov-
Pandhrapande [26], they gave a different approach by using the ELSV formula as
initial value, and as well as the λg conjecture and other recursion relations from
localization on the moduli spaces of stable maps to P1.

3. Two Partition Formula

The two partition analogue of the Mariño-Vafa formula naturally arises from
the localization computations of the Gromov-Witten invariants of the open toric
Calabi-Yau manifolds, as explained in [31].

To state the formula we let µ+, µ− be any two partitions. Introduce the Hodge
integrals involving these two partitions:

Gµ+,µ−(λ; τ) = B(τ ;µ+, µ−) ·
∑
g≥0

λ2g−2Ag(τ ;µ+, µ−)

where

Ag(τ ;µ+, µ−) =
∫
Mg,l(µ+)+l(µ−)

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)∏l(µ+)
i=1

(
1− µ+

i ψi

) ∏l(µ−)
j=1 τ

(
τ − µ−i ψj+l(µ+)

)
and

B(τ ;µ+, µ−) = − (
√
−1λ)l(µ+)+l(µ−)

|Aut(µ+)||Aut(µ−)|
[τ(τ + 1)]l(µ

+)+l(µ−)−1 ·

l(µ+)∏
i=1

∏µ+
i −1

a=1

(
µ+

i τ + a
)

(µ+
i − 1)!

·
l(µ−)∏
i=1

∏µ−i −1
a=1

(
µ−i

1
τ + a

)
(µ−i − 1)!

.

These complicated expressions naturally arise in open string theory, as well as
in the localization computations of the Gromov-Witten invariants on open toric
Calabi-Yau manifolds.

We introduce two generating series, first on the geometry side,

G•(λ; p+, p−; τ) = exp

 ∑
(µ+,µ−)∈P2

Gµ+,µ−(λ, τ)p+
µ+p

−
µ−

 ,

where p±µ± are two sets of formal variables associated to the two partitions.
On the representation side, we introduce
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R•(λ; p+, p−; τ) =
∑

|ν±|=|µ±|≥0

χν+(C(µ+))
zµ+

χν−(C(µ−))
zµ−

·e
√
−1(κν+τ+κν−τ−1)λ/2Wν+,ν−p

+
µ+p

−
µ− .

Here

Wµ,ν = ql(ν)/2Wµ · sν(Eµ(t))

= (−1)|µ|+|ν|q
κµ+κν+|µ|+|ν|

2

∑
ρ

q−|ρ|sµ/ρ(1, q, . . . )sν/ρ(1, q, . . . )

in terms of the skew Schur functions sµ [24]. They appear naturally in the Chern-
Simons invariant of the Hopf link.

Theorem: We have the identity:

G•(λ; p+, p−; τ) = R•(λ; p+, p−; τ).

The idea of the proof is similar to that of the proof of the Mariño-Vafa for-
mula. We prove that both sides of the above identity satisfy the same cut-and-join
equation of the following type:

∂

∂τ
H• =

1
2
(CJ)+H• − 1

2τ2
(CJ)−H•,

where (CJ)± cut-and-join operator, the differential operator with respect to the
two set of variables p±. We then prove that they have the same initial value at
τ = −1:

G•(λ; p+, p−;−1) = R•(λ; p+, p−;−1),

which is again given by the Ooguri-Vafa formula [19], [31].
The cut-and-join equation can be written in a linear matrix form, and such

equation follows from the convolution formula of the form

K•
µ+,µ−(λ) =

∑
|ν±|=µ±

G•µ+,µ−(λ; τ)zν+Φ•ν+,µ+(−
√
−1λτ)zν−Φ•ν−,µ−(

−
√
−1
τ

λ)

where Φ• denotes the generating series of double Hurwitz numbers, and Kµ+,µ−

is the generating series of certain integrals on the moduli spaces of relative stable
maps. For more details see [19].

This convolution formula arises naturally from localization computations on the
moduli spaces of relative stable maps to P1×P1 with the point (∞,∞) blown up.
So it reflects the geometric structure of the moduli spaces. Such convolution type
formula was actually discovered during our search for a proof of this formula, both
on the geometric and the combinatorial side, see [19] for the detailed derivations of
the convolution formulas in both geometry and combinatorics.

The proof of the combinatorial side of the convolution formula is again a direct
computation. The proof of the geometric side for the convolution equation is to
reorganize the generating series from localization contributions on the moduli spaces
of relative stable maps into P1 ×P1 with the point (∞,∞) blown up, in terms of
the double Hurwitz numbers. It involves careful analysis and computations.
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4. Three Partition Formula

When we worked on the Mariño-Vafa formula and its generalizations, we were
simply trying to generalize the method and the formula to involve more partitions,
but it turned out that in the three partition case, we naturally met the theory
of topological vertex. Topological vertex was first introduced in string theory by
Vafa et al in [1], it can be deduced from a three partition analogue of the Mariño-
Vafa formula in a highly nontrivial way. From this we were able to give a rigorous
mathematical foundation for the physical theory. Topological vertex is a high point
of the theory of string duality as developed by Vafa and his group for the past
several years, starting from Witten’s conjectural duality between Chern-Simons
and open string theory. It gives the most powerful and effective way to compute
the Gromov-Witten invariants for all open toric Calabi-Yau manifolds. In physics
it is rare to have two theories agree up to all orders. In mathematics the theory of
topological vertex already has many interesting applications. Here we only briefly
sketch the rough idea for the three partition analogue of the Mariño-Vafa formula.
For its relation to the theory of topological vertex, we refer the reader to [13] for
the details.

Given any three partitions −→µ = {µ1, µ2, µ3}, the cut-and-join equation in this
case, for both the geometry and representation sides, has the form:

∂

∂τ
F •(λ; τ ;p) = (CJ)1F •(λ; τ ;p)+

1
τ2

(CJ)2F •(λ; τ ;p)+
1

(τ + 1)2
(CJ)3F •(λ; τ ;p).

The cut-and-join operators (CJ)1, (CJ)2 and (CJ)3 are with respect to the three
partitions. More precisely they correspond to the differential operators with respect
to the three groups of infinite numbers of variables p = {p1, p2, p3}.

The initial value for this differential equation is taken at τ = 1, which is then
reduced to the formulas of two partition case. The combinatorial, or the Chern-
Simons invariant side is given by W−→µ = Wµ1,µ2,µ3 which is a combination of the
Wµ,ν as in the two partition case. See [13] for its explicit expression.

On the geometry side,

G•(λ; τ ;p) = exp(G(λ; τ ;p))

is the non-connected version of the generating series of the triple Hodge integral.
More precisely,

G(λ; τ ;p) =
∑
−→µ

[
∞∑

g=0

λ2g−2+l(−→µ )Gg,−→µ (τ)]p1
µ1p2

µ2p3
µ3

where l(−→µ ) = l(µ1) + l(µ2) + l(µ3) and Gg,−→µ (τ) denotes the Hodge integrals of the
following form,

A(τ)
∫
Mg,l1+l2+l3

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)∏l1
j=1(1− µ1

jψj)
∏l2

j=1 τ(τ − µ2
jψl1+j)

· (τ(τ + 1))l1+l2+l3−1∏l3
j=1(τ + 1)(τ + 1 + µ3

jψl1+l2+j)
,

where

A(τ) =
−(
√
−1λ)l1+l2+l3

|Aut(µ1)||Aut(µ2)||Aut(µ3)|

l1∏
j=1

∏µ1
j−1

a=1 (τµ1
j + a)

(µ1
j − 1)!

·
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l2∏
j=1

∏µ1
j−1

a=1 ((−1− 1/τ)µ2
j + a)

(µ2
j − 1)!

l3∏
j=1

∏µ1
j−1

a=1 (−µ3
j/(τ + 1) + a)

(µ3
j − 1)!

In the above expression, li = l(µi), i = 1, 2, 3. Although its complicated coeffi-
cients, these triple integrals naturally arise from localizations on the moduli spaces
of relative stable maps into the blow-up of P1 ×P1 ×P1 along certain divisors. It
also naturally appears in open string theory computations [1]. See [13] for more
details.

One of our results in [13] states that G•(λ; τ ;p) has a combinatorial expression
R•(λ; τ ;p) in terms of the Chern-Simons knot invariants W−→µ , which is a closed
combinatorial expression. More precisely it is given by

R•(λ; τ ;p) =
∑
−→µ

[
∑

|νi|=|µi|

3∏
i=1

χνi(µi)
zµi

q
1
2 (

∑3
i=1 κνi

wi+1
wi

)
W−→ν (q)]p1

µ1p2
µ2p3

µ3 .

Here w4 = w1 and w3 = −w1 − w2 and τ = w2
w1

. Due to the complicated com-
binatorics in the initial values, the combinatorial expression W−→µ we obtained is
different from the expression W−→µ obtained by Vafa et al. Actually our expression
is even simpler than theirs in some sense. The expression we obtained is more
convenient for mathematical applications such as the proof of the Gopakumar-Vafa
conjecture for open toric Calabi-Yau manifolds. It should be possible to identify the
two combinatorial expressions by using the classical theory of symmetric functions,
as pointed out to us by R. Stanley.

Theorem: We have the equality:

G•(λ; τ ;p) = R•(λ; τ ;p)

The key point to prove the above theorem is still the proof of convolution for-
mulas for both sides which imply the cut-and-join equation. The proof of the
convolution formula for G•(λ; τ ;p) is much more complicated than the one and
two partition cases. See [13] for details.

The most useful property of topological vertex is its gluing property induced by
the orthogonal relations of the characters of the symmetric group. This is very close
to the situation of two dimensional gauge theory. In fact string theorists consider
topological vertex as a kind of lattice theory on Calabi-Yau manifolds. By using
the gluing formula we can easily obtain closed formulas for generating series of
Gromov-Witten invariants of all genera and all degrees, open or closed, for all open
toric Calabi-Yau manifolds, in terms of the Chern-Simons knot invariants. Such
formulas are always given by finite sum of products of those Chern-Simons type
invariants Wµ,ν ’s. The magic of topological vertex is that, by simply looking at
the moment map graph of the toric surfaces in the open toric Calabi-Yau, we can
immediately write down the closed formula for the generating series for all genera
and all degree Gromov-Witten invariants, or more precisely the Euler numbers of
certain bundles on the moduli space of stable maps.

Here we only give one example to describe the topological vertex formula for
the generating series of the all degree and all genera Gromov-Witten invariants



14 KEFENG LIU

for the open toric Calabi-Yau 3-fold O(−3) −→ P2 in terms of the Chern-Simons
invariants. In this case the formula is given by

exp (
∞∑

g=0

λ2g−2Fg(t)) =
∑

ν1,ν2,ν3

Wν1,ν2Wν2,ν3Wν3,ν1(−1)
∑3

j=1 |νj |q
1
2

∑3
i=1 κνi et(

∑3
j=1 |νj |)

where q = e
√
−1λ. The precise definition of Fg(t) will be given in the next section.

For general open toric Calabi-Yau manifolds, the expressions are just similar.
They are all given by finite and closed formulas, which are easily read out from the
moment map graphs associated to the toric surfaces, with the topological vertex
associated to each vertex of the graph.

In [1] Vafa and his group first developed the theory of topological vertex by
using string duality between Chern-Simons and Calabi-Yau, which is a physical
theory. In [13] we established the mathematical theory of the topological vertex,
and derived various mathematical corollaries, including the relation of the Gromov-
Witten invariants to the equivariant index theory as motivated by the Nekrasov
conjecture in string duality [17].

5. Gopakumar-Vafa Conjecture and Equivariant Indices of Elliptic
Operators

Let Ng,d denote the so-called Gromov-Witten invariant of genus g and degree
d of an open toric Calabi-Yau 3-fold. Ng,d is defined to be the Euler number of
the obstruction bundle on the moduli space of stable maps of degree d ∈ H2(S,Z)
from genus g curve into the surface base S. The open toric Calabi-Yau manifold
associated to the toric surface S is the total space of the canonical line bundle KS

on S. More precisely

Ng,d =
∫

[Mg(S,d)]v
e(Vg,d)

with Vg,d = R1π∗u
∗KS a vector bundle on the moduli induced by the canonical

bundle KS . Here π : U → Mg(S, d) denotes the universal curve and u can be
considered as the evaluation or universal map. Let us write

Fg(t) =
∑
d≥0

Ng,d e
−d·t.

The Gopakumar-Vafa conjecture is stated as follows:

Gopakumar-Vafa Conjecture: There exists an expression:
∞∑

g=0

λ2g−2Fg(t) =
∞∑

k=1

∑
g,d≥0

ng
d

1
d

(2sin
dλ

2
)2g−2e−kd·t,

such that ng
d are integers, called instanton numbers.

Motivated by the Nekrasov duality conjecture between the four dimensional
gauge theory and string theory, we are able to interpret the above integers ng

d
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as equivariant indices of certain elliptic operators on the moduli spaces of anti-self-
dual connections [17]:

Theorem: For certain interesting cases, these ng
d’s can be written as equivariant

indices on the moduli spaces of anti-self-dual connections on C2.

For more precise statement, we refer the reader to [17]. The interesting cases
include open toric Calabi-Yau manifolds when S is Hirzebruch surface. The proof of
this theorem is to compare fixed point formula expressions for equivariant indices of
certain elliptic operators on the moduli spaces of anti-self-dual connections with the
combinatorial expressions of the generating series of the Gromov-Witten invariants
on the moduli spaces of stable maps. They both can be expressed in terms of
Young diagrams of partitions. We find that they agree up to certain highly non-
trivial ”mirror transformation”, a complicated variable change. This result is not
only interesting for the index formula interpretation of the instanton numbers, but
also for the fact that it gives the first complete examples that the Gopakumar-Vafa
conjecture holds for all genera and all degrees.

Recently P. Pan [27] has given a proof of the Gopakumar-Vafa conjecture for
all open toric Calabi-Yau 3-folds by using the Chern-Simons expressions from the
topological vertex. His method is to explore the property of the Chern-Simons
expression in great detail with some clever observation about the form of the com-
binatorial expressions. On the other hand, Kim in [7] has derived some remarkable
recursion formulas for Hodge integrals of all genera and any number of marked
points, involving one λ-classes. His method is to add marked points in the moduli
spaces and then follow the localization argument we used to prove the Mariño-Vafa
formula.

We strongly believe that there is a more interesting and grand duality picture
between Chern-Simons invariants for three dimensional manifolds and the Gromov-
Witten invariants for open toric Calabi-Yau manifolds. Our proofs of the Mariño-
Vafa formula, and the setup of the mathematical foundation for topological vertex
theory and the results of Pan and Kim all together have just opened a window for
a more splendid picture.
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