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Abstract Let n be a positive integer and let 0 < α < n. In
this paper, we study more general integral equation

u(x) =
∫

Rn

1

|x− y|n−α
K(y)u(y)pdy. (0.1)

We establish regularity, radial symmetry, and monotonicity
of the solutions. We also consider subcritical cases, super critical
cases, and singular solutions in all cases; and obtain qualitative
properties for these solutions.
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1 Introduction

Let Rn be the n−dimensional Euclidean space, and let α be a real number
satisfying 0 < α < n. Consider the integral equation

u(x) =
∫

Rn

1

|x− y|n−α
u(y)pdy. (1.1)
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When p = α∗ :=
n + α

n− α
, it is the so-called critical case. It arises as

an Euler-Lagrange equation for a functional under a constraint in the con-
text of the Hardy-Littlewood-Sobolev inequalities. In his elegant paper [L],
Lieb classified the maximizers of the functional, and thus obtained the best
constant in the Hardy-Littlewood-Sobolev inequalities. He then posed the
classification of all the critical points of the functional – the solutions of the
integral equation (1.1) as an open problem.

In our previous paper [CLO], we solved Lieb’s open problem by using the
method of moving planes. We proved, for p = α∗, that

Proposition 1 Every positive regular solution u(x) of (1.1) is radially sym-
metric and decreasing about some point xo and therefore assumes the form

c(
t

t2 + |x− x0|2 )(n−α)/2, (1.2)

with some positive constants c and t.

Here we call a solution “regular” if it is locally L
2n

n−α .
For p = α∗, this integral equation is closely related to the following well-

known family of semi-linear partial differential equations

(−∆)α/2u = u(n+α)/(n−α) x ∈ Rn. (1.3)

In the special case α = 2, there have been a series of results concerning the
classification of the solutions (cf. [GNN], [CGS], [CL], and [Li]). Recently,
Wei and Xu [WX] generalized these results to the cases that α being any
even number between 0 and n. Apparently, for any real values of α between
0 and n, equation (1.3) is also of practical interests and importance.

In [CLO], we showed the equivalence between the integral equation and
differential equation (1.3), and therefore classified all the solutions of semi-
linear differential equations (1.3):

Proposition 2 The same conclusion of Proposition 1 holds for the solutions
of differential equation (1.3).

This proposition unifies and extends all the previous results on the family of
differential equations.
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In this paper, we continue to study the integral equation in more general
form. We prove regularity, radial symmetry, and monotonicity of the solu-
tions. We also consider subcritical cases p < α∗, super critical cases p > α∗,
and singular solutions in all cases; and obtain qualitative properties of these
solutions.

In Section 2 and 3, we consider the following more general integral equa-
tion

u(x) =
∫

Rn

K(y)|u(y)|p−1u(y)

|x− y|n−α
dy (1.4)

In Section 2, we prove a regularity theorem. In section 3, we obtain symmetry
and monotonicity of the solutions by using the method of moving planes.
These results are not only generalizations of the corresponding results in the
critical case (cf. Theorem 1 and Lemma 2.1 in [CLO]), but also apply to
subcritical and super critical cases and singular solutions in all cases as we
will see in sections 4, 5, and 6.

Theorem 1 Let u be a solution of (1.4). Assume that

u ∈ Lqo(Rn) for some qo > min{ n

n− α
,
n

α
} (1.5)

and ∫

Rn
|K(y)up−1(y)|n

α dy < ∞. (1.6)

Then u is bounded in Rn.

Remark 1 i) Here we do not require p to be positive.
ii) If

p >
n

n− α
, |K(x)| ≤ M, and u ∈ L

n(p−1)
α (Rn), (1.7)

then conditions (1.5) and (1.6) are satisfied.
iii) Condition (1.7) is somewhat sharp in the sense that when it is vio-

lated, then equation (1.1) possesses singular solutions such as

u(x) =
c

|x| α
p−1

. (1.8)

To obtain symmetry of the solutions, we require p > 0.
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Theorem 2 let u be a positive solution of (1.4). Assume that

K(x) is symmetric in x1 and is monotone decreasing for x1 ≥ 0 (1.9)

u ∈ Lqo(Rn) for some qo > min{ n

n− α
,
n

α
} (1.10)

and

|K(x)up−1(x)|n
α is integrable on any domain

that is a positive distance away from the plane x1 = 0.
(1.11)

Then u is symmetric about some plane x1 = λo.

Remark 2 i) As a consequence, if K is radially symmetric and monotone,
then u is radially symmetric and monotone.

ii) For p > n
n−α

and K(x) = 1
|x|β with some β ≥ 0, if u satisfies either

one of the following

u(x) ≤ C

(1 + |x|)γ/(p−1)
, α < β + γ (1.12)

or
u ∈ L

n(p−1)
α (Rn). (1.13)

Then the conditions of the Theorem are satisfied. As an immediate applica-
tion, in the subcritical case, after Kelvin type transform, we will arrive an
equation with K(y) = 1

|y|β . This will enable us to carry on the moving planes
scheme on solutions without assuming their asymptotic growth at infinity,
because their Kelvin type transforms satisfy the desired growth.

Based on the results in Theorem 1 and 2, one can see that if a solution u
of (1.1) satisfies ∫

Ω
u

n(p−1)
α (y) dy < ∞ (1.14)

in any bounded domain Ω, then it is bounded. Consequently, by a standard
argument, it is continuous and hence possesses higher regularity. Therefore,
we say that a solution of (1.1) is regular, if it satisfies (1.14) for every bounded
domain Ω. Naturally, we call a point xo a singularity of u, if (1.14) is violated
in every neighborhood of xo. For example, the solution given in (1.8) has one
and only one singularity at origin.

In Section 4, we consider subcritical cases. We first prove a non-existence
theorem.
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Theorem 3 For 1 < p < α∗, there does not exist regular positive solutions
of (1.1).

Then we consider solutions with one singularity, and use the method
of moving planes to obtain the radial symmetry and monotonicity of the
solutions. The result also applies to singular solutions in the critical case.
Here we do not count singularity at infinity.

Theorem 4 For 1 < p ≤ α∗, if a solution u of (1.1) has only one singularity
at a point xo, then it must be radially symmetric about the same point.

In Section 5, we study singular solutions in the critical case and obtain
an upper bound for the solutions.

Theorem 5 Assume that u(x) is a positive solution of (1.1) with only one
singularity at xo, then there is a constant C, such that

u(x) ≤ C

|x− xo|n−α
2

.

In Section 6, we consider super critical cases. Theorem 2 provides some
radially symmetric “regular” solutions and (1.8) lists a family of symmetric
singular solutions. Then, are there any non-symmetric solutions? We will
answer this question affirmatively by constructing examples of non-radially
symmetric solutions.

2 Regularity of Solutions

In this section, we prove Theorem 1, which is a generalization of the corre-
sponding result in the critical case (cf. Lemma 2.1 in [CLO]). For simplicity,
we write Lp(Rn) as Lp.

Proof of Theorem 1. Define the linear operator

Tvw =
∫

Rn

K(y)|v(y)|p−1w

|x− y|n−α
dy.
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For any real number a > 0, define

ua(x) = |u(x)|, if |u(x)| > a; ua(x) = 0, if |u(x)| ≤ a.

Then through an elementary calculation, one can verify that ua satisfies the
equation

ua = Tuaua + g(x) (2.15)

with a function g(x) ∈ L∞ ∩ Lqo .
In the case p > n

n−α
, we first apply Hardy-Littlewood-Sobolev inequality

and then Holder inequality. By (1.6), we deduce, for sufficiently large a,

‖Tuaw‖Lq ≤ C(α, n, q)‖Kup−1
a w‖

L
nq

n+αq

≤ C(α, n, q)(
∫ |K(y)up−1

a (y)|n
α dy)

α
n‖w‖Lq ≤ 1

2
‖w‖Lq .

(2.16)

One can verify that (2.16) is also true for q > n
α
, if one applies Holder

inequality first and then H-L-S inequality.
Applying (2.16) to both the case q = qo and the case q = po > qo, by the

Contracting Mapping theorem that the equation

w = Tuaw + g(x) (2.17)

has a unique solution in both Lqo and Lpo ∩Lqo . From (2.15), ua is a solution
of (2.17) in Lqo . Let w be the solution of (2.17) in Lpo ∩ Lqo , then w is also
a solution in Lqo . By the uniqueness, we must have ua = w ∈ Lpo ∩ Lqo for
any po > n

n−α
. Now an elementary argument will imply that ua is bounded,

and so does u. This completes the proof of the Theorem.

3 Symmetry of Solutions

In this section, we use the method of moving planes to establish general
symmetry and monotonicity of the solutions to (1.4).

Proof of Theorem 2. The proof consists two steps. Let λ be a real
number and let the moving plane be x1 = λ. We denote Σλ the region to the
right of the moving plane; that is,

Σλ = {x = (x1, . . . , xn) | x1 ≥ λ}.
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Define
xλ = (2λ− x1, x2, . . . , xn), uλ(x) = u(xλ).

We compare u(x) and uλ(x) on Σλ. In step 1, we show that there exists
an N > 0 such that for λ ≤ −N, we have

u(x) ≥ uλ(x), ∀x ∈ Σλ. (3.18)

Thus we can start moving the plane continuously from λ ≤ −N to the right
as long as (3.18) holds. If the plane stops at x1 = λo for some λo < 0, then
u(x) must be symmetric and monotone about the plane x1 = λo. Otherwise,
we can move the plane all the way to x1 = 0, which is shown in step 2. Since
the direction of x1 can be chosen arbitrarily, we deduce that u(x) must be
radially symmetric and decreasing about some plane x1 = λ.

Step 1. Define

Σ−
λ = {x| x ∈ Σλ, u(x) < uλ(x)}. (3.19)

Let ΣC
λ be the compliment of Σλ. We show that for sufficiently negative

values of λ, Σ−
λ must be empty. In fact, it is easy to verify that

uλ(x)− u(x) ≤ C
∫

Σ−
λ

|K(yλ)|
|x− y|n−α

[up−1
λ (uλ − u)](y)dy.

In the case p > n
n−α

, it follows first from the Hardy-Littlewood-Sobolev
inequality and then Holder inequality that

‖uλ − u‖Lqo (Σ−
λ )

≤ C{∫Σ−
λ
[|K(yλ)| up−1

λ (y)]
n
α dy}α

n ‖uλ − u‖Lqo (Σ−
λ

)

≤ C{∫ΣC
λ
[|K(y)| up−1(y)]

n
α dy}α

n‖uλ − u‖Lqo(Σ−
λ

)

(3.20)

One can verify that (3.20) is also true for q > n
α
, if one applies Holder

inequality first and then H-L-S inequality.
By condition (1.11), we can choose N sufficiently large, such that for

λ ≤ −N, we have

{
∫

ΣC
λ

[|K(y)| up−1(y)]
n
α dy}α

n ≤ 1

2
.
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Now (3.20) implies that ‖uλ − u‖Lqo (Σ−
λ

) = 0, and therefore Σ−
λ must be

measure zero, and hence empty.

Step 2. We now move the plane x1 = λ to the right as long as (3.18)
holds. Suppose that at a λo < 0, we have u(x) ≥ uλo(x), but u(x) 6≡ uλo(x),
we show that the plane can be moved further to the right. More precisely,
there exists an ε depending on n, α, and the solution u(x) itself such that
u(x) ≥ uλ(x) on Σλ for all λ in [λo, λo + ε).

By Lemma 2.2 in our previous paper [CLO], we have in fact u(x) > uλo(x)

in the interior of Σλo . Let Σ−
λo

= {x ∈ Σλo |u(x) ≤ uλo(x)}. Then obviously,

Σ−
λo

has measure zero, and limλ→λo Σ−
λ ⊂ Σ−

λo
. Let (Σ−

λ )∗ be the reflection of
Σ−

λ about the plane x1 = λ. From the first inequality of (3.20), we deduce

‖uλ − u‖Lqo(Σ−
λ

) ≤ C{
∫

(Σ−
λ

)∗
[|K(y)| up−1(y)]

n
α dy}α

n ‖uλ − u‖Lqo (Σ−
λ

) (3.21)

Condition (1.11) ensures that one can choose ε sufficiently small, so that
for all λ in [λo, λo + ε),

{
∫

(Σ−
λ

)∗
[|K(y)| up−1(y)]

n
α dy}α

n ≤ 1

2
.

Now by (3.21), we have ‖uλ−u‖Lqo(Σ−
λ

) = 0, and therefore Σ−
λ must be empty.

This completes the proof of the Theorem.

4 Subcritical Cases

In this section, we prove Theorem 3 and 4.
The main ingredient of the proofs are the Kelvin type transform and the

method of moving planes.
Assume that u is a solution of integral equation (1.1). Let

v(x) =
1

|x|n−α
u(

x

|x|2 ) (4.22)

be the Kelvin type transform of u(x). Then it is a straight forward calculation
to verify that v(x) satisfies the equation

v(x) =
∫

Rn

1

|x− y|n−α
|y|−(n−α)(α∗−p)vp(y)d y. (4.23)
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The Proof of Theorem 3.

Assume that u(x) is a positive regular solution of the integral equation
(1.1). Let x1 and x2 be any two points in Rn. Since the integral equation is

invariant under translations, we may assume that the midpoint
x1 + x2

2
is at

the origin. Let v(x) be the Kelvin type transform as defined in (4.22). Then,
v(x) satisfies equation (4.23), a special case of (1.4). Apply Theorem 2 to
v(x) with K(y) = |y|−(n−α)(α∗−p), we deduce that v(x) is radially symmetric
about the origin. Let

xi
∗ =

xi

|xi|2 i = 1, 2

be the inversions of xi. Then v(x1
∗) = v(x2

∗); and therefore u(x1) = u(x2).
Since x1 and x2 are any two points in Rn, we conclude that u must be a
constant. This is impossible. Therefore, (1.1) does not have any positive
regular solution.

The Proof of Theorem 4.

By a translation, we may assume that u(x) has only one singularity at the
origin. Let x1 and x2 be any two points which are equidistant to the origin.
Let Π be the plane that perpendicularly bisects the line segment x1x2. Let
v(x) be the Kelvin type transform defined by (4.22); and let x1

∗, x2
∗, and Π∗

be the images of x1, x2, and Π under the inversion. Applying Theorem 2
to v(x), we conclude that v(x) must be symmetric and monotone decreasing
about the plane Π∗. In particular, v(x1

∗) = v(x2
∗), and hence u(x1) = u(x2).

It follows that u(x) is radially symmetric and monotone decreasing about
the origin. This completes the proof of the theorem.

5 Critical Case - Singular Solutions

In this section, we consider singular solutions of the integral equation (1.1)
in the critical case when p = α∗. As one has seen in the previous section,

u(x) =
c

|x|n−α
2

with a suitable constant c is a singular solution. We will show in fact that
any singular solution can not grow faster than this power of x.
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Theorem 5.1 Assume that u(x) is a positive solution of (1.1) with only one
singularity at xo, then there is a constant C, such that

u(x) ≤ C

|x− xo|n−α
2

. (5.24)

Proof.

Without loss of generality, we may assume that the solution u(x) has only
one singularity at the origin. Then as we have shown in section 2, u(x) is
radially symmetric and monotone decreasing about the origin. Let e be any
point such that |e| = 1. Then by the integral equation (1.1), we have, for
any r > 0,

u(re) ≥ ∫
Br(0)

1
|re−sω|n−α [u(s)]

n+α
n−α sn−1dsdω

≥ [u(r)]
n+α
n−α

∫ r
0

∫
∂B1(0)

1
|re−rω|n−α dωsn−1ds

= [u(r)]
n+α
n−α rα

∫ 1
0

∫
∂B1(0)

1
|e−tω|n−α dωtn−1dt

= Crα[u(r)]
n+α
n−α ,

with some constant C. Here, by the radial symmetry of u, u(re) = u(r) for
any e. It follows that

u(r) ≤ C

r
n−α

2

.

This completes the proof of the theorem.

6 Super Critical Cases

In the super critical case when p > α∗, equation (1.1) possesses both sym-
metric solutions and non-symmetric solutions.

As we mentioned in the previous section,

u(x) =
c

|x| α
p−1

with some appropriate constant c is a singular symmetric solution.
There are examples of regular symmetric solutions as provided by Theo-

rem 2. For instance, Theorem 2 implies that
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Corollary 6.1 All the solutions that are in L
n(p−1)

α (Rn) are radially symmet-
ric and monotone about some point.

Now we construct a non-radially symmetric solution. Let x′ = (x1, · · · , xn−1),
let u(x) be a standard solution in Rn−1, i.e.

u(x′) = c(
1

1 + |x′|2 )
n−1−α

2 .

Then it satisfies

u(x′) =
∫

Rn−1

1

|x′ − y′|n−1−α
[u(y′)]

n−1+α
n−1−α dy′. (6.25)

Let x = (x′, xn), and define

ũ(x) = u(x′).

Then one can verify that, for some constant c,

ũ(x) = c
∫

Rn

1

|x− y|n−α
[ũ(y)]

n−1+α
n−1−α dy. (6.26)

It follows that a constant multiple of ũ is an n-dimensional solution of the

integral equation in super critical case, since
n + α

n− α
<

n− 1 + α

n− 1− α
. To see

(6.26), one simply need to notice from elementary calculus that

∫ ∞

−∞
1

|x− y|n−α
dyn =

a

|x′ − y′|n−1−α
,

with some constant a.

References

[BN] H.Berestycki and L.Nirenberg, On the method of moving planes and
the sliding method, Bol. Soc. Brazil. Mat. (N.S.) 22 (1) (1991), 1-37.

[BK] H.Brezis and T.Kato, Remarks on the Schrodinger operator with
singular complex potentials, J. Math. Pure Appl. 58 (2) (1979), 137-
151.

11



[BL] H.Brezis and E.H. Lieb, Minimum action of some vector-field equa-
tions, Commun. Math. Phys. 96 (1) (1984), 97-113.

[BW] W.Bechner, Sharp Sobolev inequalities on the sphere and the Moser-
Trudinger inequality, Ann. of Math. 138(1993) 213-242.

[CGS] L.Caffarelli, B.Gidas, and J.Spruck, Asymptotic symmetry and local
behavior of semilinear elliptic equations with critical Sobolev growth,
Comm. Pure Appl. Math. XLII, (1989), 271-297

[CL] W.Chen and C.Li, Classification of solutions of some nonlinear elliptic
equations, Duke Math. J., 63 (1991), 615-622.

[CL1] W.Chen and C.Li, A priori estimates for prescribing scalar curvature
equations, Annals of Math., 145(1997) 547-564.

[CLO] W.Chen, C.Li, and Biao Ou, Classification of solutions for an inte-
gral equation, submitted to Inventiones Mathematicae, 2003.

[CY] A.Chang, P.Yang, On uniqueness of an n-th order differential equation
in conformal geometry, Math. Res. Letters, 4(1997), 1-12.

[F] L.Fraenkel, An Introduction to Maximum Principles and Symmetry
in Elliptic Problems, Cambridge Unversity Press, New York, 2000.

[GNN] B.Gidas, W.M.Ni, and L.Nirenberg, Symmetry of positive solutions
of nonlinear elliptic equations in Rn, (collected in the book Mathemat-
ical Analysis and Applications, which is vol. 7a of the book series Ad-
vances in Mathematics. Supplementary Studies, Academic Press, New
York, 1981.)

[Li] C.Li, Local asymptotic symmetry of singular solutions to nonlinear
elliptic equations, Invent. Math. 123(1996) 221-231.

[L] E.Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related
inequalities, Ann. of Math. 118(1983), 349-374.

[LL] E.Lieb and M.Loss, Analysis, 2nd edition, American Mathematical
Society, Rhode Island, 2001.

12



[O] B.Ou, A Remark on a singular integral equation, Houston J. of
Math. 25 (1) (1999), 181 - 184.

[Se] J.Serrin, A symmetry problem in potential theory, Arch. Rational
Mech. Anal. 43, 304-318 (1971).

[S] E.Stein, Singular Integrals and Differentiability Properties of Func-
tions Princeton University Press, Princeton, 1970,

[WX] J.Wei and X.Xu, Classification of solutions of higher order confor-
mally invariant equations, Math. Ann. 207-228(1999).

Addresses and E-mails

Wenxiong Chen
Department of Mathematics
Yeshiva University
500 W. 185th St.
New York NY 10033
wchen@ymail.yu.edu

Congming Li
Department of Applied Mathematics
Campus Box 526
University of Colorado at Boulder
Boulder CO 80309
cli@colorado.edu

Biao Ou
Department of Mathematics
University of Toledo
Toledo OH 43606
bou@math.utoledo.edu

13


