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Abstract

In this paper, we study positive solutions of the following system
of integral equations in Rn:

{
u(x) =

∫
Rn |x− y|α−nv(y)qdy

v(x) =
∫
Rn |x− y|α−nu(y)pdy

(0.1)

with 1
q+1 + 1

p+1 = n−α
n . Under the natural integrability conditions

u ∈ Lp+1(Rn) and v ∈ Lq+1(Rn), we prove that all the solutions
are radially symmetric and monotone decreasing about some point.
To prove this result, we introduce an integral form of the method of
moving planes which is quite different from the traditional method of
moving planes for PDEs. And we expect to see applications of this
new method to many other problems.
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1 Introduction

Let 0 < α < n and let s, r > 1 such that 1
r

+ 1
s

= n+α
n

. The well-known
Hardy-Littlewood-Sobolev inequalitie states that:

∫

Rn

∫

Rn
f(x)|x− y|α−ng(y)dxdy ≤ C(n, s, α)||f ||r||g||s (1.2)
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for any f ∈ Lr(Rn) and g ∈ Ls(Rn).
To find the best constant C = C(n, s, α) in the inequality, one can maxi-

mize the functional

J(f, g) =
∫

Rn

∫

Rn
f(x)|x− y|α−ng(y)dxdy (1.3)

under the constraints
||f ||r = ||g||s = 1. (1.4)

Let (f, g) be a maximizer, or more generally, a critical point of (1.3) under
the constraints (1.4). Letting u = λ1f

r−1, v = λ2g
s−1, p = 1

r−1
, q = 1

s−1
, and

by a proper choice of constants λ1 and λ2, one can see that (u, v) satisfies
the following system of integral equations in Rn:

{
u(x) =

∫
Rn |x− y|α−nvq(y)dy

v(x) =
∫
Rn |x− y|α−nup(y)dy

(1.5)

with 1
q+1

+ 1
p+1

= n−α
n

.
The integral system is closely related to the system of partial differential

equations

{
(−∆)α/2u = vq, u > 0, in Rn,
(−∆)α/2v = up, v > 0, in Rn.

(1.6)

In the special case where p = q = n+α
n−α

, and u(x) = v(x), the system
becomes:

u(x) =
∫

Rn
|x− y|α−nu(y)

n+α
n−α dy, u > 0 in Rn. (1.7)

And the corresponding PDE is the well-known family of semi-linear equa-
tions

(−∆)α/2u = u(n+α)/(n−α), u > 0, in Rn (1.8)

In particular, when n ≥ 3, and α = 2, (1.8) becomes

−∆u = u(n+2)/(n−2), u > 0, in Rn. (1.9)

The classification of the solutions of (1.9) provided an important ingre-
dient in the study of the well-known Yamabe problem and the prescribing
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scalar curvature problem. It is also essential in deriving a priori estimates in
many related nonlinear elliptic equations.

Solutions to (1.9) were studied by Gidas, Ni, and Nirenberg [GNN]. They
proved that all the positive solutions of (1.9) with reasonable behavior at
infinity

u(x) = O(
1

|x|n−2
) (1.10)

are radially symmetric and therefore assume the form of

c(
t

t2 + |x− xo|2 )(n−2)/2 (1.11)

with some positive constants c and t.
Later, in their fundamental paper [CGS], Caffarelli, Gidas, and Spruck

removed the growth condition (1.10) and obtained the same result. Then
Chen and Li [CL1], and Li [Li] simplified their proof. Recently, Wei and Xu
[WX] generalized this result to the solutions of more general equation (1.8)
with α being any even numbers between 0 and n.

Apparently, for other real values of α between 0 and n, equation (1.8)
is also of practical interest and importance. For instance, it arises as the
Euler-Lagrange equation of the functional

I(u) =
∫

Rn
|(−∆)

α
4 u|2dx/(

∫

Rn
|u| 2n

n−α dx)
n−α

n .

The classification of the solutions would provide the best constant in the

inequality of the critical Sobolev imbedding from H
α
2 (Rn) to L

2n
n−α (Rn):

(
∫

Rn
|u| 2n

n−α dx)
n−α

n ≤ C
∫

Rn
|(−∆)

α
4 u|2dx.

In his elegant paper [L], Lieb classified all the maximizers of the functional
(1.3) under the constraint (1.4)in the special case where p = q = n+α

n−α
, and

thus obtained the best constant in the H-L-S inequalities in that case. He
then posed the classification of all the critical points of the functional – the
solutions of the integral equation (1.7) as an open problem.

We solved this open problem in our previous paper [CLO] and proved

Proposition 1 All solutions of partial differential equation (1.8) satisfy the

integral equation (1.7), and vise versa. Every positive solution u(x) ∈ L
2n

n−α

loc (Rn)
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of (1.7) or (1.8) is radially symmetric and decreasing about some point xo

and therefore assumes the form of (1.11).

In this paper, we consider more general system (1.5) and show that

Theorem 1 Let the pair (u, v) be a solution of (1.5) and p, q ≥ 1 . Assume
that u ∈ Lp+1(Rn) and v ∈ Lq+1(Rn). Then u and v are radially symmetric
and decreasing about some point xo.

To prove the radial symmetry and monotonicity of the solutions, we use
an integral form of the method of moving planes. This was a new idea
we introduced in [CLO], now we modify this idea so it can be applied to
systems of integral equations. It is entirely different from the traditional
methods of moving planes used for partial differential equations. For PDEs,
the local properties of the differential operators are exploited extensively.
This lack of knowledge of the local properties prevents us from using many
known results, such as maximum principles. However, by exploring various
special features possessed by the integral equation in its global form, and by
estimating certain integral norms, we are still able to establish the symmetry
results.

The authors would like to thank professor Nirenberg for his encourage-
ment.

2 The Proof of Radial Symmetry and Mono-

tonicity

In this section, we use the method of moving planes to prove Theorem 1.
For a given real number λ, define

Σλ = {x = (x1, . . . , xn) | x1 ≥ λ}.

Let xλ = (2λ− x1, x2, . . . , xn), uλ(x) = u(xλ) and vλ(x) = v(xλ).

Lemma 2.1 For any solution (u(x), v(x)) of (1.5), we have

uλ(x)− u(x) =
∫

Σλ

(|x− y|α−n − |xλ − y|α−n)(vq
λ(y)− vq(y))dy, (2.12)
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and

vλ(x)− v(x) =
∫

Σλ

(|x− y|α−n − |xλ − y|α−n)(up
λ(y)− up(y))dy. (2.13)

The proof of this lemma is elementary, and is similar to the one for Lemma
2.1 in our previous paper [CLO].

To prove Theorem 1, we compare u(x) with uλ(x) and v(x) with vλ(x)
on Σλ. The proof consists of two steps. In step 1, we show that there exists
an N > 0 such that for λ ≤ −N, we have

u(x) ≥ uλ(x) and v(x) ≥ vλ(x) ∀x ∈ Σλ. (2.14)

Thus we can start moving the plane continuously from λ ≤ −N to the right
as long as (2.14) holds. In step 2, we show that if the plane stops at x1 = λo

for some λo < 0, then u(x) and v(x) must be symmetric and monotone about
the plane x1 = λo; otherwise, we can move the plane all the way to x1 = 0.
Since the direction of x1 can be chosen arbitrarily, we deduce that u(x) and
v(x) must be radially symmetric and decreasing about some point.

Step 1. Define
Σu

λ = { x ∈ Σλ | u(x) < uλ(x)},
and

Σv
λ = { x ∈ Σλ | v(x) < vλ(x)},

Let ΣC
λ be the compliment of Σλ. We show that for sufficiently negative

values of λ, Σu
λ and Σv

λ must both be empty. By Lemma 2.1, it is easy to
verify that

uλ(x)− u(x) ≤ C
∫

Σv
λ

|x− y|α−n[vq−1
λ (vλ − v)](y)dy.

It follows from the Hardy-Littlewood-Sobolev inequality that

‖uλ − u‖Lp+1(Σu
λ
) ≤ C‖vq−1

λ (vλ − v)‖L(q+1)/q(Σv
λ
). (2.15)

Then by the Hölder inequality,

‖uλ − u‖Lp+1(Σu
λ
) ≤ C‖vλ‖q−1

Lq+1(Σv
λ
)‖vλ − v‖Lq+1(Σv

λ
) (2.16)
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Similarly, one can show that

‖vλ − v‖Lq+1(Σv
λ
) ≤ C‖uλ‖p−1

Lp+1(Σu
λ)‖uλ − u‖Lp+1(Σu

λ
). (2.17)

Combining (2.16) and (2.17), we arrive

‖uλ − u‖Lp+1(Σu
λ
) ≤ C‖v‖q−1

Lq+1(ΣC
λ

)
‖u‖p−1

Lp+1(ΣC
λ

)
‖uλ − u‖Lp+1(Σu

λ
). (2.18)

By the integrability condition u ∈ Lp+1(Rn) and v ∈ Lq+1(Rn), we can
choose N sufficiently large, such that for λ ≤ −N, we have

C‖v‖q−1

Lq+1(ΣC
λ

)
‖u‖p−1

Lp+1(ΣC
λ

)
≤ 1

2
.

Now (2.18) implies that ‖uλ − u‖Lp+1(Σu
λ
) = 0, and therefore Σu

λ must be
measure zero, and hence empty. Similarly, one can show that Σv

λ is empty.
Therefore (2.14) holds. This completes Step 1.

Step 2. We now move the plane x1 = λ to the right as long as (2.14)
holds. Suppose that at a λo < 0, we have, on Σλo ,

u(x) ≥ uλo(x) and v(x) ≥ vλo(x), but u(x) 6≡ uλo(x) or v(x) 6≡ vλo(x);

we show that the plane can be moved further to the right. More precisely,
there exists an ε depending on n, α, and the solution (u(x), v(x)) itself such
that

u(x) ≥ uλ(x) and v(x) ≥ vλ(x) on Σλ for all λ in [λo, λo + ε). (2.19)

In the case
v(x) 6≡ vλo(x) on Σλo ,

by (2.12), we have in fact u(x) > uλo(x) in the interior of Σλo . Let

Σ̃u
λo

= {x ∈ Σλo |u(x) ≤ uλo(x)}, and Σ̃v
λo

= {x ∈ Σλo | v(x) ≤ vλo(x)}.

Then obviously, Σ̃u
λo

has measure zero, and limλ→λo Σu
λ ⊂ Σ̃u

λo
. The same

is true for that of v. Let D∗ be the reflection of the set D about the plane
x1 = λ. From (2.16) and (2.17), we deduce,

‖uλ − u‖Lp+1(Σu
λ
) ≤ C‖v‖q−1

Lq+1((Σv
λ)∗)‖u‖p−1

Lp+1((Σu
λ)∗)‖uλ − u‖Lp+1(Σu

λ
). (2.20)
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Again the integrability conditions u ∈ Lp+1(Rn) and v ∈ Lq+1(Rn) ensure
that one can choose ε sufficiently small, so that for all λ in [λo, λo + ε),

C‖v‖q−1
Lq+1((Σv

λ
)∗)‖u‖p−1

Lp+1((Σu
λ
)∗) ≤

1

2
.

Now by (2.20), we have ‖uλ − u‖Lp+1(Σu
λ
) = 0, and therefore Σu

λ must be
empty. Similarly, Σv

λ must also be empty. This verifies (2.19), and therefore
completes the proof of Theorem.
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