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Abstract Let n be a positive integer and let 0 < α < n. Consider the
integral equation

u(x) =
∫

Rn

1

|x− y|n−α
u(y)(n+α)/(n−α)dy. (0.1)

We prove that every positive regular solution u(x) is radially symmetric and
monotone about some point, and therefore assumes the form

c(
t

t2 + |x− xo|2 )(n−α)/2 (0.2)

with some constant c = c(n, α), and for some t > 0 and xo ∈ Rn. This solves
an open problem posed by Lieb [L]. The technique we used is the method of
moving planes in an integral form, which is quite different from those for differ-
ential equations. From the point of view of general methodology, this is another
interesting part of the paper.

Moreover, we show that the family of well-known semi-linear partial differen-
tial equations

(−∆)α/2u = u(n+α)/(n−α),

is equivalent to our integral equation (0.1), and we thus classify all the solutions
of the PDEs.
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1 Introduction

Let Rn be the n−dimensional Euclidean space, and let α be a real number satisfying 0 <
α < n. Consider the integral equation

u(x) =
∫

Rn

1

|x− y|n−α
u(y)(n+α)/(n−α)dy. (1.1)
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It arises as an Euler-Lagrange equation for a functional under a constraint in the context
of the Hardy-Littlewood-Sobolev inequalities. In [L], Lieb classified the maximizers of the
functional, and thus obtained the best constant in the H-L-S inequalities. He then posed
the classification of all the critical points of the functional – the solutions of the integral
equation (1.1) as an open problem.

This integral equation is also closely related to the following family of semi-linear partial
differential equations

(−∆)α/2u = u(n+α)/(n−α). (1.2)

In the special case n ≥ 3 and α = 2, it becomes

−∆u = u(n+2)/(n−2). (1.3)

Solutions to this equation were studied by Gidas, Ni, and Nirenberg [GNN]. They proved
that all the positive solutions of (1.3) with reasonable behavior at infinity

u(x) = O(
1

|x|n−2
) (1.4)

are radially symmetric and therefore assume the form of (0.2). Later, Caffarelli, Gidas, and
Spruck [CGS] removed the growth condition (1.4) and obtained the same result. Then Chen
and Li [CL], and Li [Li] simplified their proof. Recently, Wei and Xu [WX] generalized this
result to the solutions of (1.2) with α being any even numbers between 0 and n.

Apparently, for other real values of α between 0 and n, equation (1.2) is also of practi-
cal interest and importance. For instance, it arises as the Euler-Lagrange equation of the
functional

I(u) =
∫

Rn
|(−∆)

α
4 u|2dx/(

∫

Rn
|u| 2n

n−α dx)
n−α

n .

The classification of the solutions would provide the best constant in the inequality of the

critical Sobolev imbedding from H
α
2 (Rn) to L

2n
n−α (Rn):

(
∫

Rn
|u| 2n

n−α dx)
n−α

n ≤ C
∫

Rn
|(−∆)

α
4 u|2dx.

We will precisely define (−∆)α/2 in §6, and we will show that, all the solutions of partial
differential equation (1.2) satisfy our integral equation (1.1), and vise versa. Therefore, to
classify the solutions of this family of partial differential equations, we only need to work on
the integral equations (1.1).

In order either the Hardy-Littlewood-Sobolev inequality or the above mentioned critical

Sobolev imbedding to make sense, u must be in L
2n

n−α (Rn). Under this assumption, we can
show that (see theorem 2.1) a positive solution u is in fact bounded, and therefore possesses
higher regularity. Furthermore, by using the method of moving planes, we can show that if

a solution is locally L
2n

n−α , then it is in L
2n

n−α (Rn). Hence, in the following, we call a solution

u regular if it is locally L
2n

n−α . It is interesting to notice that if this condition is violated,
then a solution may not be bounded. A simple example is u = 1

|x|(n−α)/2 , which is a singular

solution. We will study such solutions in our next paper.
We will use the method of moving planes to prove
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Theorem 1 Every positive regular solution u(x) of (1.1) is radially symmetric and decreas-
ing about some point xo and therefore assumes the form

c(
t

t2 + |x− x0|2 )(n−α)/2, (1.5)

with some positive constants c and t.

Consequently, we have also classify the solutions of semi-linear differential equations (1.2):

Theorem 2 The same conclusion of Theorem 1 holds for the solutions of (1.2).

Remark. In our earlier version of the paper, we assumed that the solutions u be locally
bounded. We would like to thank professor Yanyan Li for pointing out that a more natural

condition is locally L
2n

n−2 . Then he [LiY] obtained a regularity result based on this condition,
and used the method of moving spheres to prove the same classification result.

The method of the moving planes was invented by the Soviet mathematician Alexanderoff
in the early 1950’s. Decades later, it was further developed by Serrin [Se], Gidas, Ni, and
L.Nirenberg [GNN], Caffarelli, Gidas, and Spruck [CGS], Li [Li], Chen and Li [CL] [CL1],
Chang and Yang [CY], and many others. The method has been applied to free boundary
problems, semi-linear differential equations, and other problems. Particularly for semi-linear
differential equations, there have seen many significant contributions. We refer to [F] for
more descriptions on the method.

As is known to people with experiences in the method of moving planes, each problem has
its unique difficulty. For partial differential equations, the local properties of the differential
operators are used extensively. This lack of knowledge of the local properties prevents us
from using many known results, such as maximum principles. However, by exploring various
special features possessed by the integral equation in its global form, and through introducing
several new ideas which are quite different from those for differential equations, we are still
able to establish the symmetry results.

In §2, we use the method of moving planes to obtain the symmetry of the solutions. In §3,
we show that all the solutions must assume the form of (1.5). In §4, we define precisely the
differential equations (1.2) for any real number α, and prove that the differential equation is
equivalent to our integral equation.

For the convenience of presentation we will use c for a general positive constant that
depends on n, α, and the solution u(x) itself. Such a c is usually different in different
context.

2 Moving Planes-Symmetry of Solutions

For a given real number λ, define

Σλ = {x = (x1, . . . , xn) | x1 ≥ λ},

and let xλ = (2λ− x1, x2, . . . , xn) and uλ(x) = u(xλ).
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Lemma 2.1 For any solution u(x) of (1.1), we have

u(x)− uλ(x) =
∫

Σλ

(
1

|x− y|n−α
− 1

|xλ − y|n−α
)(u(y)

n+α
n−α − uλ(y)

n+α
n−α )dy, (2.1)

It is also true for the Kelvin type transform v(x) =
1

|x|n−α
u(

x

|x|2 ) for any x 6= 0.

Proof: Since |x− yλ| = |xλ − y|, we have

u(x) =
∫

Σλ

1

|x− y|n−α
u(y)

n+α
n−α dy +

∫

Σλ

1

|xλ − y|n−α
uλ(y)

n+α
n−α dy

u(xλ) =
∫

Σλ

1

|xλ − y|n−α
u(y)

n+α
n−α dy +

∫

Σλ

1

|x− y|n−α
uλ(y)

n+α
n−α .

This implies (2.1). The conclusion for v(x) follows similarly since it satisfies the same integral
equation (1.1) for x 6= 0.

Set τ = n+α
n−α

, we use the method of moving planes to prove

Theorem 2.1 Let u(x) ∈ Lτ+1
local be a positive solution of (1.1). Then it must be radially

symmetric and monotone decreasing about some point. Furthermore, u is continuous and

lim
|x|→∞

|x|n−αu(x) = u∞, (2.2)

for a positive number u∞.
Since we do not assume any asymptotic behavior of u(x) at infinity, we are not able

to carry on the method of moving planes directly on u(x). To overcome this difficulty, we
consider v(x), the Kelvin type transform of u(x). It is easy to verify that v(x) satisfies the
same equation (1.1), but has a possible singularity at origin, where we need to pay special
attention. Since u is locally Lτ+1, it is easy to see that v(x) has no singularity at infinity,
i.e. for any domain Ω that is a positive distance away from the origin,

∫

Ω
vτ+1(y) dy < ∞. (2.3)

Let λ be a real number and let the moving plane be x1 = λ. We compare v(x) and vλ(x)
on Σλ \ {0}. The proof consists of three steps. In step 1, we show that there exists an N > 0
such that for λ ≤ −N, we have

v(x) ≥ vλ(x), ∀x ∈ Σλ \ {0}. (2.4)

Thus we can start moving the plane continuously from λ ≤ −N to the right as long as (2.4)
holds. If the plane stops at x1 = λo for some λo < 0, then v(x) must be symmetric and
monotone about the plane x1 = λo. This implies that v(x) has no singularity at the origin
and u(x) has no singularity at infinity. In this case, we can carry on the moving planes on
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u(x) directly to obtain the radial symmetry and monotonicity. Otherwise, we can move the
plane all the way to x1 = 0, which is shown in step 2. Since the direction of x1 can be chosen
arbitrarily, we deduce that v(x) must be radially symmetric and decreasing about the origin.
We will show in step 3 that, in any case, u(x) can not have a singularity at infinity, and
hence both u and v are in Lτ+1(Rn). Then by theorem 2.1, v is continuous, and therefore,
u satisfies (2.2).

Step 1. Define
Σ−

λ = {x| x ∈ Σλ \ {0}, v(x) < vλ(x)}. (2.5)

Let ΣC
λ be the compliment of Σλ. We show that for sufficiently negative values of λ, Σ−

λ

must be empty. By Lemma 2.1, it is easy to verify that

vλ(x)− v(x) ≤ C
∫

Σ−
λ

1

|x− y|n−α
[vτ−1

λ (vλ − v)](y)dy.

It follows first from the Hardy-Littlewood-Sobolev inequality and then Holder inequality
that, for any q > n

n−α
,

‖vλ − v‖Lq(Σ−
λ

)

≤ C{∫Σ−
λ

vτ+1
λ (y) dy}α

n ‖vλ − v‖Lq(Σ−
λ

)

≤ C{∫ΣC
λ

vτ+1(y) dy}α
n ‖vλ − v‖Lq(Σ−

λ
)

(2.6)

By condition (2.3), we can choose N sufficiently large, such that for λ ≤ −N, we have

C{
∫

ΣC
λ

vτ+1(y) dy}α
n ≤ 1

2
.

Now (2.6) implies that ‖vλ − v‖Lq(Σ−
λ

) = 0, and therefore Σ−
λ must be measure zero, and

hence empty.

Step 2. We now move the plane x1 = λ to the right as long as (2.4) holds. Suppose that
at a λo < 0, we have v(x) ≥ vλo(x), but v(x) 6≡ vλo(x) on Σλo \ {0}; we show that the plane
can be moved further to the right. More precisely, there exists an ε depending on n, α, and
the solution v(x) itself such that v(x) ≥ vλ(x) on Σλ \ {0} for all λ in [λo, λo + ε).

By Lemma 2.2, we have in fact u(x) > uλo(x) in the interior of Σλo . Let Σ−
λo

= {x ∈
Σλo |u(x) ≤ uλo(x)}. Then obviously, Σ−

λo
has measure zero, and limλ→λo Σ−

λ ⊂ Σ−
λo

. Let
(Σ−

λ )∗ be the reflection of Σ−
λ about the plane x1 = λ. From the first inequality of (2.6), we

deduce,

‖vλ − v‖Lq(Σ−λ ) ≤ C{
∫

(Σ−λ )∗
vτ+1(y) dy}α

n ‖vλ − v‖Lq(Σ−λ ) (2.7)

Condition (2.3) ensures that one can choose ε sufficiently small, so that for all λ in
[λo, λo + ε),

C{
∫

(Σ−
λ

)∗
vτ+1(y) dy}α

n ≤ 1

2
.

Now by (2.7), we have ‖vλ − v‖Lq(Σ−λ ) = 0, and therefore Σ−
λ must be empty.
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Step 3. Finally, we showed that u has the desired asymptotic behavior at infinity, i.e., it
satisfies (2.2). Suppose in the contrary, let x1 and x2 be any two points in Rn and let xo be
the midpoint of the line segment x1x2. Consider the Kelvin type transform centered at xo:

v(x) =
1

|x− xo|n−α
u(

x− xo

|x− xo|2 ).

Then v(x) has a singularity at xo. Carry on the arguments as in Steps 1 and 2, we conclude
that v(x) must be radially symmetric about xo, and in particular, u(x1) = u(x2). Since
x1 and x2 are any two points in Rn, u must be constant. This is impossible. Similarly,
The continuity and higher regularity of u follows from standard theory on singular integral
operators. This completes the proof of the Theorem.

3 The Uniqueness of Solutions

In the previous section, we proved that all the positive regular solutions of the integral
equation (1.1) are radially symmetric and monotone decreasing about some point. Based on
this result, we will show, in this section, that all solutions must assume the form of (1.5),
and therefore complete the proof of Theorem 1.

The radial symmetry and monotonicity of u(x) and the invariance of solutions under
Kelvin type transforms and scaling restrict u(x) to assume the form of (1.5). Lieb made this
observation in [L] (also cf. [LL]) on the optimizers in Hardy-Littlewood-Sobolev inequalities
and gave a geometric proof. His proof also applies to the solutions of our integral equation
(1.1) based on our following Lemma 3.1. Nevertheless, we present an analytic proof here,
which is quite different from Lieb’s. In the case n ≥ 2, the proof is simpler and it is relevant
to a work of Ou [O].

We need the following lemmas.

Lemma 3.1 Let w be a solution of (1.1). Let a ∈ Rn and sn−α = w∞
w(a)

. Then

w(sx + a) =
1

|x|n−α
w(

sx

|x|2 + a). (3.8)

Lemma 3.2 Let ūo(x) = co(
1

1+|x|2 )
(n−α)/2 be the standard solution centered at origin. As-

sume that w is a solution centered at m, then

w(m)w∞ = c2
o. (3.9)

Proof of Lemma 3.1. First we consider a = 0. Let u be a solution of (1.1) and
sn−α = u∞

u(0)
. Let e be any unit vector in Rn. Defined

v(x) =
1

|x|n−α
us(

x

|x|2 − e).
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Then v(0) = v(e) and v(x) must be symmetric about
1

2
e. It follows that, for any h,

s(n−α)/2

|1/2− h|n−α
u(s

1/2 + h

1/2− h
e) =

s(n−α)/2

|1/2 + h|n−α
u(s

1/2− h

1/2 + h
e). (3.10)

Let t = 1/2−h
1/2+h

, we arrive at

u(ste) =
1

tn−α
u(

s

t
e). (3.11)

Now (3.8) follows from a translation. This completes the proof of Lemma 3.1.

Proof of Lemma 3.2. Let v be a solution of (1.1). By a translation and rescaling, we
may assume that v is centered at origin and v∞ = (ūo)∞. We show that

v(0) = ūo(0).

Let u(x) = v(xe) and uo(x) = ūo(xe) for any given unit vector e in Rn and any real number
x. Suppose u(0) > uo(0). Then there exits an a > 0, such that

u(x) > uo(x), for − a < x < a; and u(a) = uo(a). (3.12)

Let s = (
(uo)∞
uo(a)

)1/(n−α) =
√

1 + a2. Then Lemma 3.1 and (3.12)imply that

u(y) > uo(y) ∀ −∞ < y < −1− a2

2a
. (3.13)

By the symmetry and the assumption u(a) = uo(a), we have

u(y) > uo(y) ∀ 1− a2

2a
< y < ∞ and u(

1− a2

2a
) = uo(

1− a2

2a
). (3.14)

If a > 1, this already contradicts with (3.12).

Therefore, we must have a < 1 and
1− a2

2a
> a. Let b =

1− a2

2a
and s =

√
1 + b2. Then

both uo and u satisfy

u(sx + b) =
1

|x|n−α
u(

s

x
+ b). (3.15)

If b ≤ 1, then(3.13) and (3.15) imply that

u(x) > uo(x) ∀ − 1− b2

2b
< x < b. (3.16)

(3.16), (3.14), and the symmetry of u and uo lead to

u(x) > uo(x) almost everywhere. (3.17)

This is impossible.
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If b > 1, let bo = b and bn =
b2
n−1 − 1

2bn−1

. Then obviously bn <
bn−1

2
and bn→0, as n→∞.

Then repeat the above argument, we arrive at

u(x) > uo(x) almost everywhere.

Again a contradiction. A similar argument would exclude the possibility that u(0) <
uo(0). Therefore, we must have u(0) = uo(0), and hence v(0) = ūo(0).

This completes the proof of Lemma 3.2.

Completing the Proof of Theorem 1. Let w be a solution of (1.1). By a translation
and rescaling, we may assume that w is centered at origin and w∞ = w(0). We show that

w(x) ≡ ūo(x). (3.18)

First by Lemma 3.2, we have w(0) = ūo(0) = co. Let

u(x) = w(xe), and uo(x) = ūo(xe)

for any unit vector e ∈ Rn and for any real number x. Suppose that there exists a > 0, such
that u(a) > uo(a). Let

vo(x) =
1

|x|n−α
uo(

1

x
+ a), v(x) =

1

|x|n−α
u(

1

x
+ a).

Since u∞ = u(0) and (uo)∞ = uo(0), by Lemma 3.1, we have

u(x) =
1

|x|n−α
u(

1

x
) and uo(x) =

1

|x|n−α
uo(

1

x
). (3.19)

It follows that

v(
−a

1 + a2
) = (1 + a2)n−αu(a) and vo(

−a

1 + a2
) = (1 + a2)n−αuo(a). (3.20)

It is easy to verify that −a
1+a2 is the center of vo(x). Let m be the center of v. If u(a) >

uo(a), then from (3.20),

v(m) ≥ v(
−a

1 + a2
) > vo(

−a

1 + a2
) (3.21)

On the other hand, it follows from v∞ = u(a), (vo)∞ = uo(a) that

v∞ > (vo)∞. (3.22)

By (3.21) and (3.22), we have

v(m)v∞ > vo(
−a

1 + a2
)(vo)∞ = c2

o.

This is a contradiction with Lemma 3.2. Therefore, we must have

u(x) ≤ uo(x), ∀x,
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and consequently,
w(x) ≤ ūo(x). (3.23)

Taking into account that w and ūo are solutions of (1.1) and the fact that w(0) = ūo(0), we
arrive at w(x) ≡ ūo(x).

If u(a) < uo(a), a similar argument will lead to a contradiction. This completes the proof
of the Theorem.

4 The Family of Differential Equations

In this section, we study the relations between the family of integral equations and the
well-known semi-linear partial differential equations

(−∆)α/2u = u(n+α)/(n−α). (4.24)

In [WX], Wei and Xu classified the solutions of (4.24) when α is an even number between
0 and n. More precisely, they proved

Proposition 4.1 (Wei and Xu) Suppose α is an even number between 0 and n, and u is a
smooth positive solution of (4.24). Then u is radially symmetric about some point xo ∈ Rn

and assumes the following form

u(x) = (
2t

t2 + |x− xo|2 )(n−α)/2.

They applied the method of moving planes directly on the differential equation. One of
their key ingredient is the following lemma.

Lemma 4.1 (Wei and Xu) Suppose α is an even number between 0 and n and u is a smooth
positive solution of (4.24). Then we have

(−∆)iu > 0, i = 1, · · · , α

2
− 1. (4.25)

We will show that in this case (when α is even), all the solutions of (4.24) satisfy our
integral equation (1.1), and therefore, our theorem includes Wei and Xu’s result as a special
case. For any real number α between 0 and n, we will define precisely the operator (−∆)α/2,
and show the equivalences between the two equations.

Theorem 4.1 Every smooth positive solution of PDE (4.24) multiplied by a constant satis-
fies integral equation (1.1).

To prove the Theorem, we first establish the following lemma.
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Lemma 4.2 Let u be a solution of (4.24), τ = n+α
n−α

, and vk = (−∆)ku for k = 1, 2, · · · , p−1.
Then ∫

Rn

1

|x|n−α
uτ (x)dx < ∞, (4.26)

∫

Rn

vk

|x|n−2k
dx < ∞ for k = 1, · · · , p− 1; (4.27)

and, as a consequence of (4.26), there exists a sequence rm→∞, such that

1

rn−1
m

∫

∂Brm (0)
u(x)dσ→0 . (4.28)

Proof of Lemma 4.2

Let δ(x) be the Dirac Delta function. Let φ be the solution of the following boundary
value problem {

(−4)pφ = δ(x) x ∈ Br(0)
φ = 4φ = · · · = (−4)p−1φ = 0 on ∂Br(0).

(4.29)

By the maximum principle, one can easily verify that

∂

∂ν
[(−4)kφ] ≤ 0, k = 0, 1, · · · , p− 1, on ∂Br(0). (4.30)

Multiply both side of the equation (4.24) by φ and integrate on Br(0). After integrating by
parts several times and applying Lemma 4.1 and (4.30), we arrive at

∫
Br(0) uτ (x)φ(x)dx = u(0) +

∫
∂Br(0)

∑p−1
k=0 vk

∂
∂ν

[(−4)p−1−kφ]}dσ

≤ u(0).
(4.31)

Now letting r→∞, one can see that (4.26) is just a direct consequence of the following
fact

φ(x)→ C

|x|n−α
(4.32)

with some constant C.
To verify (4.32), we notice that (4.29) is equivalent to the following system of equations





−4φ = ψ1 φ |∂Br= 0
−4ψ1 = ψ2 ψ1 |∂Br= 0
· · ·
−4ψp−1 = δ(x) ψp−1 |∂Br= 0.

(4.33)

Applying maximum principle consecutively to φk for k = 1, · · · , p− 1, one derives that:

ψk(x) ↗ C
1

|x|n−α+2k
for k = 0, 1, · · · , p− 1, as r→∞.
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This implies (4.32).

Now, to derive (4.27), we simply apply the above argument to the equation:

(−4)ku = vk,

for each k = 1, · · · , p− 1.

Finally, we verify (4.28). Estimate (4.26) implies that there exists a sequence rm→∞,
such that the average of uτ on ∂Brm(0) tends to 0 as rm→∞. Then a standard convexity
argument shows that the average of u on ∂Brm(0) approaches to 0 as rm→∞.

This completes the proof of the lemma.

Proof of Theorem 4.1.
For each r > 0, let φr(x) be the solution of (4.29). Then as in the previous lemma, one

verifies that

φr(x) =
1

rn−α
φ1(

x

r
) (4.34)

and

|φ1(x)| ≤ C

|x|n−α
. (4.35)

It follows that,

φr(x) ≤ C

|x|n−α
. (4.36)

Also one can verify that, on ∂Br(0),

| ∂

∂ν
[(−4)kφr]| ≤ C

rn−α+1+2k
. (4.37)

By virtue of (4.27) and (4.28), through an elementary argument in calculus, one can see
that there exist a sequence rm→∞, such that each of the boundary integral on ∂Brm(x)
in (4.31) approaches 0 as rm→∞. Applying (4.36), (4.26), and the Lesbegue Convergence
Theorem to the left hand side of (4.31), and taking limit along the sequence {rm}, we
conclude that

c
∫

Rn

1

|y|n−α
uτ (y)dy = u(0).

By a translation, we see that a constant multiple of u(x) is a solution of (1.1). This completes
the proof of the theorem.

So far, we have proved that if α is a even number, then every solution of the PDE (4.24)
is a solution of our integral equation. Now for other real values of α, we define the positive
solution of (4.24) in the distribution sense, i.e. u ∈ H

α
2 (Rn), satisfies

∫

Rn
(−4)

α
4 u(−4)

α
4 φ dx =

∫

Rn
uτ (x)φ(x) dx, (4.38)

for any φ ∈ C∞
0 and φ(x) ≥ 0. Here, as usual,

∫

Rn
(−4)

α
4 u(−4)

α
4 φ dx
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is defined by Fourier transform ∫

Rn
|ξ|αû(ξ)φ̂(ξ) dξ,

where û and φ̂ are the Fourier transform of u and φ respectively.
By taking limits, one can see that (4.38) is also true for any φ ∈ H

α
2 .

Theorem 4.2 Partial differential equation (4.24) as defined above is equivalent to integral
equation (1.1).

Proof. (i) For any φ ∈ C∞
0 (Rn), let

ψ(x) =
∫

Rn

φ(y)

|x− y|n−α
dy.

Then (−4)α/2ψ = φ, consequently ψ ∈ Hα ⊂ H
α
2 , and hence (4.38) holds for ψ:

∫

Rn
(−4)

α
4 u (−4)

α
4 ψ dx =

∫

Rn
uτ (x)ψ(x) dx.

Integration by parts of the left hand side and exchange the order of integration of the right
hand side yield ∫

Rn
u(x)φ(x) dx =

∫

Rn
{
∫

Rn

uτ (y)

|x− y|n−α
dy}φ(x) dx.

Since φ is any nonnegative C∞
0 function, we conclude that u satisfies the integral equation.

(ii) Now assume that u ∈ L
2n

n−α (Rn) is a solution of the integral equation (1.1). Make a
Fourier transform on both sides (cf. [LL], Corollary 5.10), we have

û(ξ) = c|ξ|−αûτ (ξ).

It follows that
∫

Rn
(−4)

α
4 u(−4)

α
4 φ dx = c

∫

Rn
ûτ (ξ)φ̂(ξ) = c

∫

Rn
uτ (x)φ(x)dx.

This completes the proof of the theorem.

References

[BN] H.Berestycki and L.Nirenberg, On the method of moving planes and the sliding
method, Bol. Soc. Brazil. Mat. (N.S.) 22 (1) (1991), 1-37.

[BK] H.Brezis and T.Kato, Remarks on the Schrodinger operator with singular complex
potentials, J. Math. Pure Appl. 58 (2) (1979), 137-151.

[BL] H.Brezis and E.H. Lieb, Minimum action of some vector-field equations, Commun.
Math. Phys. 96 (1) (1984), 97-113.



13

[BW] W.Bechner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger in-
equality, Ann. of Math. 138(1993) 213-242.

[CGS] L.Caffarelli, B.Gidas, and J.Spruck, Asymptotic symmetry and local behavior of
semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.
XLII, (1989), 271-297

[CL] W.Chen and C.Li, Classification of solutions of some nonlinear elliptic equations,
Duke Math. J., 63 (1991), 615-622.

[CL1] W.Chen and C.Li, A priori estimates for prescribing scalar curvature equations,
Annals of Math., 145(1997) 547-564.

[CY] A.Chang, P.Yang, On uniqueness of an n-th order differential equation in conformal
geometry, Math. Res. Letters, 4(1997), 1-12.

[F] L.Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Prob-
lems, Cambridge Unversity Press, New York, 2000.

[GNN] B.Gidas, W.M.Ni, and L.Nirenberg, Symmetry of positive solutions of nonlinear el-
liptic equations in Rn, (collected in the book Mathematical Analysis and Applications,
which is vol. 7a of the book series Advances in Mathematics. Supplementary Studies,
Academic Press, New York, 1981.)

[L] E.Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,
Ann. of Math. 118(1983), 349-374.

[LL] E.Lieb and M.Loss, Analysis, 2nd edition, American Mathematical Society, Rhode
Island, 2001.

[Li] C.Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,
Invent. Math. 123(1996) 221-231.

[LiY] Y.Y.Li, Remarks on some conformally invariant integral equations: the method of
moving spheres, preprint.

[O] B.Ou, A Remark on a singular integral equation, Houston J. of Math. 25 (1) (1999),
181 - 184.

[Se] J.Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43,
304-318 (1971).

[S] E.Stein, Singular Integrals and Differentiability Properties of Functions Princeton
University Press, Princeton, 1970,

[WX] J.Wei and X.Xu, Classification of solutions of higher order conformally invariant
equations, Math. Ann. 207-228(1999).



14

Addresses and E-mails

Wenxiong Chen
Department of Mathematics
Yeshiva University
500 W. 185th St.
New York NY 10033
wchen@yu.edu

Congming Li
Department of Applied Mathematics
Campus Box 526
University of Colorado at Boulder
Boulder CO 80309
cli@colorado.edu

Biao Ou
Department of Mathematics
University of Toledo
Toledo OH 43606
bou@math.utoledo.edu


