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Abstract. We describe the applications of localization methods, in particular
the functorial localization formula, in the proofs of several conjectures from
string theory. Functorial localization formula pushes the computations on
complicated moduli spaces to simple moduli spaces. It is a key technique in
the proof of the general mirror formula, the proof of the Hori-Vafa formula for
explicit expressions of basic hypergeometric series of homogeneous manifolds,
and the proof of the Mariño-Vafa formula for Hodge integrals. The proposal
of Strominger-Yau-Zaslow of mirror symmetry will also be discussed.

1. Introduction

The main purpose of this lecture is to explain the applications of a variation of
the localization formula of Atiyah-Bott in solving various conjectures from string
theory. This variation we call the Functorial Localization Formula. We will also
discuss the role of the SYZ proposal in mirror symmetry.

We start with a review of the Atiyah-Bott localization formula. Recall that the
definition of equivariant cohomology group for a manifold X with a torus T action:

H∗
T (X) = H∗(X ×T ET )

where ET is the universal bundle of T .

Example. We know ES1 = S∞. If S1 acts on Pn by

λ · [Z0, . . . , Zn] = [λw0Z0, . . . , λ
wnZn],

then
HS1(Pn;Q) ∼= Q[H, α]/〈(H − w0α) · · · (H − wnα)〉

where α is the generator of H∗(BS1,Q).

Atiyah-Bott Localization Formula. For ω ∈ H∗
T (X) an equivariant cohomology

class, we have

ω =
∑

E

iE∗

(
i∗Eω

eT (E/X)

)
.

where E runs over all connected components of T fixed points set.

This formula is very effective in the computations of integrals on manifolds with
torus T symmetry. The idea of localization is fundamental in many subjects of
geometry. In fact Atiyah and Witten proposed to formally apply this localization
formula to loop spaces and the natural S1-action, from which one gets the Atiyah-
Singer index formula. In fact the Chern characters can be interpreted as equivariant
forms on loop space, and the Â-class is the inverse of the equivariant Euler class of
the normal bundle of X in its loop space LX:

eT (X/LX)−1 ∼ Â(X),
1
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which follows from the normalized infinite product formula

∏

n6=0

(x + n)



−1

∼ x

sin x
.

K. Liu observed in [Liu] that the normalized product

∏
m,n

(x + m + nτ) = 2q
1
8 sin(πx) ·

∞∏

j=1

(1− qj)(1− e2πixqj)(1− e−2πixqj),

where q = e2πiτ , also has deep geometric meaning. This formula is the Eisenstein
formula. It can be viewed as a double loop space analogue of the Atiyah-Witten
observation. This formula gives the basic Jacobi θ-function. As observed by K.
Liu, formally this gives the Â-class of the loop space, and the Witten genus which
is defined to be the index of the Dirac operator on the loop space:

eT (X/LLX) ∼ Ŵ (X),

where LLX is the double loop space, the space of maps from S1×S1 into X. Ŵ (X)
is the Witten class. See [Liu] for more detail.

The variation of the localization formula we will use in various situations is the
following

Functorial Localization Formula. Let X and Y be two manifolds with torus
action. Let f : X → Y be an equivariant map. Given F ⊂ Y a fixed component,
let E ⊂ f−1(F ) be those fixed components inside f−1(F ). Let f0 = f |E, then for
ω ∈ H∗

T (X) an equivariant cohomology class, we have the following identity on F :

f0∗[
i∗Eω

eT (E/X)
] =

i∗F (f∗ω)
eT (F/Y )

.

This formula will be applied to various settings to prove the conjectures from
physics. It first appeared in [L-L-Y1, I]. It is used to push computations on compli-
cated moduli spaces to simpler moduli spaces. A K-theory version of the functorial
localization formula also holds [L-L-Y1, II], interesting applications are expected.

Remark. Consider the diagram:

H∗
T (X)

f∗−→ H∗
T (Y )

↓ iE
∗ ↓ iF

∗

H∗
T (E)

f0∗−→ H∗
T (F ) .

The functorial localization formula is like Riemann-Roch with the inverted equi-
variant Euler classes of the normal bundle as ”weights”, in a way similar to the
Todd class for the Riemann-Roch formula. In fact if we formally apply this formula
to the map between the loop spaces of X and Y , equivariant with respect to the
rotation of the circle, we do formally get the differentiable Riemann-Roch formula.
We believe this can be done rigorously by following Bismut’s proof of the index
formula which made rigorous of the above argument of Atiyah-Witten.

This formula will be used in the following setups:
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(1). The proof of the mirror formulas and its generalizations which we call the
mirror principle. The mirror principle implies all of the conjectural formulas for
toric manifolds and their Calabi-Yau submanifolds from string theory. In this case
we apply the functorial localization formula to the map from the nonlinear moduli
space to the linearized moduli space. This transfers the computations of integrals
on complicated moduli space of stable maps to computations on rather simple
spaces like projective spaces. From this the proof of the mirror formula and its
generalizations become conceptually clean and simple.

In fact the functorial localization formula was first found and used in Lian-Liu-
Yau’s proof of the mirror conjecture.
(2). The proof of the Hori-Vafa conjecture and its generalizations for Grassmannian
and flag manifolds. This conjecture predicts an explicit formula for the basic hyper-
geometric series of a homogeneous manifold in terms of the basic series of a simpler
manifold such as the product of projective spaces. In this case we use the functorial
localization formula twice to transfer the computations on the complicated moduli
spaces of stable curves to the computations on quot-schemes. The first is a map
from moduli space of stable maps to product of projective spaces, and another one
is a map from the quot-scheme into the same product of projective spaces. A key
observation we had is that these two maps have the same image.

This approach was first sketched in [L-L-Y1, III], the details for Grassmannians
were carried out in [L-L-L-Y] and [B-CF-K]. The most general case of flag manifolds
was carried out in [ChL-L-Y2].
(3). The proof of a remarkable conjecture of Mariño-Vafa on Hodge integrals by
C.-C. M. Liu, K. Liu and Z. Zhou [L-L-Z1]. This conjecture gives a closed formula
for the generating series of a class of triple Hodge integrals for all genera and
any number of marked points in terms of the Chern-Simons knot invariant of the
unknot. This formula was conjectured by M. Mariño and C. Vafa in [M-V] based on
the duality between large N Chern-Simons theory and string theory. Many Hodge
integral identities, including the ELSV formula for Hurwitz numbers [ELSV] and
the λg conjecture [Ge-P, Fa-P2], can be obtained by taking various limits of the
Mariño-Vafa formula [L-L-Z2]. The Mariño-Vafa formula was proved by applying
the functorial localization formula to the branch morphism from the moduli space
of relative stable maps to a projective space.

2. Mirror Principle

There have been many discussion of mirror principle in the literature. Here we
only give a brief account of the main ideas of the setup and proof of the mirror
principle. We will use two most interesting examples to illustrate the algorithm.

The goal of mirror principle is to compute the characteristic numbers on moduli
spaces of stable maps in terms of certain hypergeometric type series. This was
motivated by mirror symmetry in string theory. The most interesting case is the
counting of the numbers of curves which corresponds to the computations of Euler
numbers. More generally we would like to compute the characteristic numbers
and classes induced from the general Hirzebruch multiplicative classes such as the
total Chern classes. The computations of integrals on moduli spaces of those classes
pulled back through evaluation maps at the marked points and the general Gromov-
Witten invariants can also be considered as part of mirror principle. Our hope
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is to develop a ”black-box” method which makes easy the computations of the
characteristic numbers and the Gromov-Witten invariants.

The general set-up of mirror principle is as follows. Let X be a projective mani-
fold, Mg,k(d,X) be the moduli space of stable maps of genus g and degree d with k
marked points into X, modulo the obvious equivalence. The points in Mg,k(d,X)
are triples (f ;C; x1, · · · , xk) where f : C → X is a degree d holomorphic map and
x1, · · · , xk are k distinct smooth points on the genus g curve C. The homology
class f∗([C]) = d ∈ H2(X,Z) is identified as integral index d = (d1, · · · , dn) by
choosing a basis of H2(X,Z), dual to the Kähler classes.

In general the moduli space may be very singular, and may even have different
dimension for different components. To define integrals on such singular spaces,
we need the virtual fundamental cycle of Li-Tian [L-T], and also Behrend-Fantechi
[B-F] which we denote by [Mg,k(d,X)]v. This is a homology class of the expected
dimension

2 (c1(TX)[d] + (dimCX − 3)(1− g) + k)

on Mg,k(d,X).
Let us consider the case k = 0 first. Note that the expected dimension of

the virtual fundamental cycle is 0 if X is a Calabi-Yau 3-fold. This is the most
interesting case for string theory.

The starting data of mirror principle are as follows. Let V be a concavex bundle
on X which we defined as the direct sum of a positive and a negative bundle on
X. Then V induces a sequence of vector bundles V g

d on Mg,0(d, X) whose fiber at
(f ; C;x1, · · · , xk) is given by H0(C, f∗V )⊕H1(C, f∗V ). Let b be a multiplicative
characteristic class. So far for all applications in string theory, b is the Euler class.

The problem of mirror principle is to compute

Kg
d =

∫

[Mg,0(d,X)]v
b(V g

d ).

More precisely we want to compute the generating series

F (T, λ) =
∑

d, g

Kg
d λg ed·T

in terms of certain hypergeometric type series. Here λ, T = (T1, · · · , , Tn) are
formal variables.

The most famous formula in the subject is the Candelas formula as conjectured
by P. Candelas, X. de la Ossa, P. Green, and L. Parkes [CdGP]. This formula
changed the history of the subject. More precisely, Candelas formula considers the
genus 0 curves, that is, we want to compute the so-called A-model potential of a
Calabi-Yau 3-fold M given by

F0(T ) =
∑

d∈H2(M ;Z)
K0

d ed·T ,

where T = (T1, . . . , Tn) are considered as the coordinates of the Kahler moduli of
M , and K0

d is the genus zero, degree d invariant of M which gives the numbers
of rational curves of all degree through the multiple cover formula [L-L-Y1]. The
famous mirror conjecture asserts that there exists a mirror Calabi-Yau 3-fold M ′

with B-model potential G(T ), which can be computed by period integrals, such that

F(T ) = G(t),
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where t accounts for coordinates of complex moduli of M ′. The map t 7→ T is called
the mirror map. In the toric case, the period integrals are explicit solutions to
the GKZ-system, that is the Gelfand-Kapranov-Zelevinsky hypergeometric series.
While the A-series are usually very difficult to compute, the B-series are very easy
to get. This is the magic of the mirror formula. We will discuss the proof of the
mirror principle which includes the proof of the mirror formula.

The key ingredients for the proof of the mirror principle consists of

(1) Linear and non-linear moduli spaces;
(2) Euler data and hypergeometric (HG) Euler data.

More precisely, the non-linear moduli is the moduli space Mg
d (X) which is the

stable map moduli of degree (1, d) and genus g into P1 × X. A point in Mg
d (X)

consists of a pair (f, C) : f : C → P1×X} with C a genus g (nodal) curve, modulo
obvious equivalence. The linearized moduli Wd for toric X were first introduced by
Witten and used by Aspinwall-Morrison to do approximating computations.

Example. Consider the projective space Pn with homogeneous coordinate [z0, · · · , zn].
Then the linearized moduli Wd is defined as projective space with homogeneous
coordinates [f0(w0, w1), · · · , fn(w0, w1)] where fj(w0, w1)’s are homogeneous poly-
nomials of degree d.

This is the simplest compactification of the moduli spaces of degree d maps from
P1 into Pn. The following lemma is important. See [L-L-Y1, IV] for its proof. The
g = 0 case was given in [Gi] and in [L-L-Y1, I].

Lemma 1. There exists an explicit equivariant collapsing map

ϕ : Mg
d (Pn) −→ Wd.

For general projective manifold X, the nonlinear moduli Mg
d (X) can be embed-

ded into Mg
d (Pn). The nonlinear moduli Mg

d (X) is very ”singular” and compli-
cated, but the linear moduli Wd is smooth and simple. The embedding induces a
map of Mg

d (X) to Wd. Functorial localization formula pushed the computations
onto Wd. Usually mathematical computations should be done on the moduli of
stable maps, while physicists tried to use the linearized moduli to approximate
the computations. So functorial localization formula connects the computations
of mathematicians and physicists. In some sense the mirror symmetry formula is
more or less the comparison of computations on nonlinear and linearized moduli.

Mirror principle has been proved to hold for balloon manifolds. A projective
manifold X is called balloon manifold if it admits a torus action with isolated fixed
points, and if the following conditions hold. Let

H = (H1, · · · ,Hk)

be a basis of equivariant Kahler classes such that

(1) the restrictions H(p) 6= H(q) for any two fixed points p 6= q;
(2) the tangent bundle TpX has linearly independent weights for any fixed

point p.

This notion was introduced by Goresky-Kottwitz-MacPherson.

Theorem 2. Mirror principle holds for balloon manifolds and for any concavex
bundles.
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Remarks.
1. All toric manifolds are balloon manifolds. For g = 0 we can identify the

hypergeometric series explicitly. Higher genus cases need more work to
identify such series.

2. For toric manifolds and g = 0, mirror principle implies all of the mirror
conjectural formulas from string theory.

3. For Grassmannian manifolds, the explicit mirror formula is given by the
Hori-Vafa formula to be discussed in Section 3.

4. The case of direct sum of positive line bundles on Pn, including the Can-
delas formula, has two independent approaches by Givental, and by Lian-
Liu-Yau.

Now we briefly discuss the proof of the mirror principle. The main idea is to
apply the functorial localization formula to ϕ, the collapsing map and the pull-back
class ω = π∗b(V g

d ), where π : Mg
d(X) → Mg,0(d,X) is the natural projection.

Such classes satisfy certain induction property. To be precise we introduce the
notion of Euler Data, which naturally appears on the right hand side of the functo-
rial localization formula, Qd = ϕ!(π∗b(V

g
d )) which is a sequence of polynomials in

equivariant cohomology rings of the linearized moduli spaces with simple quadratic
relations. We also considered their restrictions to X.

From functorial localization formula we prove that, by knowing the Euler data
Qd we can determine the Kg

d . On the other hand, there is another much simpler
Euler data, the HG Euler data Pd, which coincides with Qd on the ”generic” part of
the nonlinear moduli. We prove that the quadratic relations and the coincidence on
generic part determine the Euler data uniquely up to certain degree. We also know
that Qd always have the right degree for g = 0. We then use mirror transformation
to reduce the degrees of the HG Euler data Pd. From these we deduced the mirror
principle.

Remarks.
1. Both the denominator and the numerator in the HG series, the generating

series of the HG Euler data, are equivariant Euler classes. Especially the
denominator is exactly from the localization formula. This is easily seen
from the functorial localization formula.

2. The quadratic relation of Euler data, which naturally comes from gluing
and functorial localization on the A-model side, is closely related to special
geometry, and is similar to the Bershadsky-Cecotti-Ooguri-Vafa’s holomor-
phic anomaly equation on the B-model side. Such relation can determine
the polynomial Euler data up to certain degree.
It is an interesting task to use special geometry to understand the mirror
principle computations, especially the mirror transformation as a coordi-
nate change.

3. The Mariño-Vafa formula to be discussed in Section 4 is needed to determine
the hypergeometric Euler data for higher genus computations in mirror
principle. The Mariño-Vafa formula comes from the duality between Chern-
Simons theory and Gromov-Witten theory. This duality and the matrix
model for Chern-Simons theory indicate that mirror principle may have
matrix model description.

Let us use two examples to illustrate the algorithm of mirror principle.
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Example. Consider the Calabi-Yau quintic in P4. In this case

Pd =
5d∏

m=0

(5κ−mα)

with α can be considered as the weight of the S1 action on P1, and κ denotes the
generator of the equivariant cohomology ring of Wd.

The starting data of the mirror principle in this case is V = O(5) on X = P4.
The hypergeometric series, after taking α = −1, is given by

HG[B](t) = eH t
∞∑

d=0

∏5d
m=0(5H + m)∏d
m=1(H + m)5

ed t,

where H is the hyperplane class on P4 and t is a formal parameter.
We introduce the series

F(T ) =
5
6
T 3 +

∑

d>0

K0
d ed T .

The algorithm is as follows. Take the expansion in H:

HG[B](t) = H{f0(t) + f1(t)H + f2(t)H2 + f3(t)H3},
from which we have the famous Candelas Formula: With T = f1/f0,

F(T ) =
5
2
(
f1

f0

f2

f0
− f3

f0
).

Example. Let X be a toric manifold and g = 0. Let D1, .., DN be the T -invariant
divisors in X. The starting data consist of V = ⊕iLi with c1(Li) ≥ 0 and c1(X) =
c1(V ). Let us take b(V ) = e(V ) the Euler class. We want to compute the A-series

A(T ) =
∑

K0
d ed·T .

The HG Euler series which is the generating series of the HG Euler data can be
easily written down as

B(t) = e−H·t ∑

d

∏

i

〈c1(Li),d〉∏

k=0

(c1(Li)− k)

∏
〈Da,d〉<0

∏−〈Da,d〉−1
k=0 (Da + k)

∏
〈Da,d〉≥0

∏〈Da,d〉
k=1 (Da − k)

ed·t.

Then mirror principle implies that there are explicitly computable functions
f(t), g(t), which define the mirror map, such that

∫

X

(
efB(t)− e−H·T e(V )

)
= 2A(T )−

∑
Ti

∂A(T )
∂Ti

where T = t + g(t). From this equation we can easily solve for A(T ).
In general we want to compute:

Kg
d,k =

∫

[Mg,k(d,X)]v

k∏

j=1

ev∗j ωj · b(V g
d )

where ωj ∈ H∗(X) and evj denotes the evaluation map at the j-th marked point.
We form a generating series with t, λ and ν formal variables,

F (t, λ, ν) =
∑

d,g,k

Kg
d,kedtλ2gνk.
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The ultimate mirror principle we want to prove is to compute this series in terms
of certain explicit HG series. It is easy to show that those classes in the integrand
can still be combined to induce Euler data. Actually the Euler data really encode
the geometric structure of the stable map moduli.

We only use one example to illustrate the higher genus mirror principle.

Example. Consider open toric Calabi-Yau manifold, say O(−3) → P2. Here V =
O(−3). Let

Qd =
∑

g≥0

ϕ!(π∗eT (V g
d )) λ2g.

Then it can be shown that the corresponding HG Euler data is given explicitly by

Pd J(κ, α, λ)J(κ− dα,−α, λ),

where Pd is exactly the genus 0 HG Euler data and J is generating series of Hodge
integrals with summation over all genera. J may be considered as the degree 0 Euler
data. In fact we may say that the computations of Euler data include computations
of all Gromov-Witten invariants, and even more. Some closed formulas can be
obtained. We have proved that the mirror principle holds in such general setting.
The remaining task is to determine the explicit HG Euler data.

Finally we mention some recent works. First we have constructed refined lin-
earized moduli space for higher genus, the A-twisted moduli stack AMg(X) of genus
g curves associated to a smooth toric variety X, induced from the gauged linear
sigma model studied by Witten.

This new moduli space is constructed as follows. A morphism from a curve of
genus g into X corresponds to an equivalence class of triples (Lρ, uρ, cm)ρ,m, where
each Lρ is a line bundle pulled back from X, uρ is a section of Lρ satisfying a non-
degeneracy condition, and the collection {cm}m gives conditions to compare the
sections uρ in different line bundles Lρ, (cf.[Cox]). AMg(X) is the moduli space of
such data. It is an Artin stack, fibered over the moduli space of quasi-stable curves
[ChL-L-Y1]. We hope to use this refined moduli to do computations for higher
genus mirror principle.

On the other hand, motivated by recent progresses in open string theory, we are
also trying to develop open mirror principle. Open string theory predicts formulas
for the counting of holomorphic discs with boundary inside a Lagrangian submani-
fold, more generally of the counting of the numbers of open Riemann surfaces with
boundary in Lagrangian submanifold. Linearized moduli space for such data is
being constructed which gives a new compactification of such moduli spaces.

3. Hori-Vafa Formula

In [H-V], Hori and Vafa generalize the world-sheet aspects of mirror symmetry
to being the equivalence of d = 2, N = (2, 2) supersymmetric field theories (i.e.
without imposing the conformal invariance on the theory). This leads them to a
much broader encompassing picture of mirror symmetry. See [HKKPTVVZ] for full
explanations. Putting this in the frame work of abelian gauged linear sigma models
(GLSM) [Wi1] enables them to link many d = 2 field theories together. General-
ization of this setting to nonabelian GLSM ([Wi1, Section 5.3]) leads them to the
following conjecture, when the physical path integrals are interpreted appropriately
mathematically:
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Conjecture 3 (Hori-Vafa [H-V, Appendix A]). The hypergeometric series for a
given homogeneous space (e.g. a Grassmannian manifold) can be reproduced from
the hypergeometric series of simpler homogeneous spaces (e.g. product of projec-
tive spaces). Similarly for the twisted hypergeometric series that are related to the
submanifolds in homogeneous spaces.

In other words, different homogeneous spaces (or some simple quotients of them)
can give rise to generalized mirror pairs.

Some progress towards this conjecture has been made for general flag manifolds
by using hyper-quot schemes in [ChL-L-Y2]. The derivation of the formula for
flag manifolds is rather complicated, involving many technical new ingredients like
restrictive flag manifolds. A main object to be understood in the above conjecture
is the fundamental hypergeometric series HG [1]X(t) associated to the flag manifold
X. Recall that in the computations of mirror principle, the existence of linearized
moduli made easy the computations for toric manifolds.

An outline of how this series may be computed was given in [L-L-Y1, III] via an
extended mirror principle diagram. To make clear the main ideas we will only focus
on the case of Grassmannian manifolds in this article. The main problem for the
computation is that there is no known good linearized moduli for Grassmannian
or general flag manifolds. To overcome the difficulty we use the Grothendieck quot
scheme to play the role of the linearized moduli. The method gives a complete
proof of the Hori-Vafa formula in the Grassmannian case.

Let ev : M0,1(d, X) → X be the evaluation map on the moduli space of stable
maps with one marked point, and c the first Chern class of the tangent line at the
marked point. The fundamental hypergeometric series for mirror formula is given
by the push-forward:

ev∗[
1

α(α− c)
] ∈ H∗(X)

or more precisely the generating series

HG[1]X(t) = e−tH/α
∞∑

d=0

ev∗[
1

α(α− c)
] edt.

Assume the linearized moduli exists. Then functorial localization formula applied
to the collapsing map: ϕ : Md → Nd, immediately gives the expression as the
denominator of the hypergeometric series.

Example. X = Pn, then we have ϕ∗(1) = 1, functorial localization immediately
gives us

ev∗[
1

α(α− c)
] =

1∏d
m=1(x−mα)n+1

where the denominators of both sides are equivariant Euler classes of normal bun-
dles of the fixed points. Here x denotes the hyperplane class.

For X = Gr(k, n) or general flag manifolds, no explicit linearized moduli is
known. Hori-Vafa conjectured a formula for HG[1]X(t) by which we can compute
this series in terms of those of projective spaces:
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Hori-Vafa Formula for Grassmannians. We have

HG[1]Gr(k,n)(t) =
e(k−1)π

√−1σ/α

∏
i<j(xi − xj)

·
∏

i<j

(α
∂

∂xi
− α

∂

∂xj
)
∣∣∣∣
ti=t+(k−1)π

√−1

HG[1]P(t1, · · · , tk)

where P = Pn−1 × · · · × Pn−1 is product of k copies of the projective spaces, σ is
the generator of the divisor classes on Gr(k, n) and xi the hyperplane class of the
i-th copy Pn−1:

HG[1]P(t1, · · · , tk) =
k∏

i=1

HG[1]P
n−1

(ti).

Now we describe the ideas of the proof of the above formula. As mentioned
above we use another smooth moduli space, the Grothendieck quot-scheme Qd to
play the role of the linearized moduli, and apply the functorial localization formula.
Here is the general set-up:

To start, note that the Plücker embedding τ : Gr(k, n) → PN induces an
embedding of the nonlinear moduli Md of Gr(k, n) into that of PN . Composite of
this map with the collapsing map gives us a map ϕ : Md → Wd into the linearized
moduli space Wd of PN . On the other hand the Plücker embedding also induces
a map ψ : Qd → Wd. We have the following three crucial lemmas proved in
[L-L-L-Y].

Lemma 4. The above two maps have the same image in Wd: Im ψ = Im ϕ. And
all the maps are equivariant with respect to the induced circle action from P1.

Just as in the mirror principle computations, our next step is to analyze the
fixed points of the circle action induced from P1. In particular we need the dis-
tinguished fixed point set to get the equivariant Euler class of its normal bundle.
The distinguished fixed point set in Md is M0,1(d, Gr(k, n)) with equivariant Euler
class of its normal bundle given by α(α − c), and we know that ϕ is restricted to
ev.

Lemma 5. The distinguished fixed point set in Qd is a union: ∪sE0s, where each
E0s is a fiber bundle over Gr(k, n) with fiber given by flag manifold.

It is a complicated work to determine the fixed point sets E0s and the weights
of the circle action on their normal bundles. The situation for flag manifold cases
are much more involved. See [L-L-L-Y] and [ChL-L-Y2] for details.

Now let p denote the projection from E0s onto Gr(k, n). Functorial localization
formula, applied to ϕ and ψ, gives us the following

Lemma 6. We have the equality on Gr(k,N):

ev∗[
1

α(α− c)
] =

∑
s

p∗[
1

eT (E0s/Qd)
]

where eT (E0s/Qd) is the equivariant Euler class of the normal bundle of E0s in Qd.

Finally we compute p∗[ 1
eT (E0s/Qd) ]. There are two different approaches, the first

one is by direct computations in [L-L-L-Y], and another one is by using the well-
known Euler sequences for universal sheaves [B-CF-K]. The second method has the
advantage of being more explicit. Note that

eT (TQ|E0s − TE0s) = eT (TQ|E0s)/eT (TE0s).
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Both eT (TQ|E0s) and eT (TE0s) can be written down explicitly in terms of the
universal bundles on the flag bundle E0s = Fl(m1, · · · ,mk, S) over Gr(r, n). Here
S is the universal bundle on the Grassmannian.

The push-forward by p from Fl(m1, · · · ,mk, S) to Gr(r, n) is done by an analogue
of family localization formula of Atiyah-Bott, which is given by a sum over the Weyl
groups along the fiber which labels the fixed point sets.

In any case the final formula of degree d is given by

p∗[
1

eT (E0s/Qd)
] = (−1)(r−1)d

∑

(d1,...,dr)
d1+...+dr=d

∏
1≤i<j≤r(xi − xj + (di − dj)α)

∏
1≤i<j≤r(xi − xj)

∏r
i=1

∏di

l=1(xi + lα)n
.

Here x1, ...xr are the Chern roots of S∗. As a corollary of our approach, we have
the following:

Corollary 7. The Hori-Vafa conjecture holds for Grassmannian manifolds.

This corollary was derived in [B-CF-K] by using the idea and method and also
the key results in [L-L-L-Y]. The explicit form of Hori-Vafa conjecture for general
flag manifolds and its justifications require further study in the future.

4. Mariño-Vafa formula

To compute mirror formula for higher genus, we need to compute Hodge inte-
grals, which are defined as follows. Let Mg,h be the moduli space of stable curves
of genus g with h marked points. The Hodge bundle E is a rank g vector bundle
over Mg,h whose fiber over [(C, x1, . . . , xh)] ∈ Mg,h is H0(C,ωC). The λ classes
are defined by

λj = cj(E) ∈ H2i(Mg,h;Q).

The cotangent line T ∗xi
C of C at the i-th marked point xi gives a line bundle Li

over Mg,h. The ψ classes are defined by

ψi = c1(Li) ∈ H2(Mg,h;Q).

Hodge integrals are intersection numbers of λ classes and ψ classes.

We next introduce a particular form of Hodge integrals. Given a partition

µ = (µ1 ≥ · · · ≥ µh > 0),

define `(µ) = h, and |µ| = µ1 + · · · + µh. Given a triple (g, µ, τ), where g is a
nonnegative integer, µ is a partition, and τ ∈ Z, we define an one-partition Hodge
integral as follows:

Gg,µ(τ) =
−√−1

|µ|+`(µ)

|Aut(µ)| (τ(τ + 1))`(µ)−1

`(µ)∏

i=1

∏µi−1
a=1 (µiτ + a)
(µi − 1)!

·
∫

Mg,`(µ)

Λ∨g (1)Λ∨g (−τ − 1)Λ∨g (τ)
∏`(µ)

i=1 (1− µiψi)
,

where
Λ∨g (u) = ug − λ1u

g−1 + . . . + (−1)gλg.

The one-partition Hodge integral can be simplified in special cases:
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• g = 0: Λ∨0 (u) = 1.
∫

M0,h

1∏h
i=1(1− µiψi)

=
∑

k1+···+kh=h−3

µk1
1 · · ·µkh

h

∫

M0,h

ψk1
1 · · ·ψkh

h

=
∑

k1+···+kh=h−3

µk1
1 · · ·µkh

h

h!
k1! · · · kh!

= |µ|h−3

• τ = 0: Gg,µ(0) = 0 if `(µ) > 1, and

Gg,(d)(0) =
√−1

d+1
∫

Mg,1

λg

1− dψ
=
√−1

d+1
d2g−2bg,

where

bg =
{

1, g = 0,∫
Mg,1

λgψ
2g−2, g > 0.

To state Mariño-Vafa’s conjecture on one-partition Hodge integrals, we introduce
some generation functions.

We first define generating functions of one-partition Hodge integrals. Introduce
variables λ and p = (p1, p2, ...). Given a partition µ, let

pµ = pµ1 · · · pµ`(µ) .

Define generating functions

Gµ(λ; τ) =
∞∑

g=0

λ2g−2+`(µ)Gg,µ(τ),

G(λ; τ ; p) =
∑

µ

Gµ(λ; τ)pµ,

G•(λ; τ ; p) = exp (G(λ; τ ; p)) =
∑

µ

G•µ(λ; τ)pµ.

We next define generating functions of symmetric group representations. Let
χµ denote the character of the irreducible representation of symmetric group S|µ|
indexed by µ with |µ| =

∑
j µj , and let Cµ denote the conjugacy class of S|µ|

indexed by µ. Introduce

Vµ(λ) =
∏

1≤a<b≤`(µ)

sin [(µa − µb + b− a)λ/2]
sin [(b− a)λ/2]

· 1∏`(ν)
i=1

∏µi

v=1 2 sin [(v − i + `(µ))λ/2]
,

which has an interpretation in terms of quantum dimension in Chern-Simons knot
theory. Define

(1) R•µ(λ; τ) =
∑

|ν|=|µ|

χν(Cµ)
zµ

e
√−1(τ+ 1

2 )κνλ/2Vν(λ),

R•(λ; τ ; p) =
∑

µ

R•µ(λ; τ)pµ,
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where
zµ = |Aut(µ)|µ1 · · ·µ`(µ), κµ = |µ|+

∑

i

(µ2
i − 2iµi).

Define
R(λ; τ ; p) = log (R•(λ; τ ; p)) .

Conjecture 8 (Mariño-Vafa [M-V]).

(2) G(λ; τ ; p) = R(λ; τ ; p).

Mariño-Vafa formula (2) provides a highly nontrivial link between geometry
(Hodge integrals) and combinatorics (representations of symmetric groups). Note
that for each fixed partition µ, the Mariño-Vafa formula gives a closed and finite
formula of Gµ(λ; τ), a generating function of all genera.

We now outline the proof of Mariño-Vafa formula due to C.-C. M Liu, K. Liu,
and J. Zhou [L-L-Z1]. There is another approach due to A. Okounkov and R.
Pandharipande [O-P].

At τ = 0, both hand sides of the Mariño-Vafa formula can be greatly simplified:

(3) G(λ; 0; p) = −
∞∑

d=1

√−1
d+1

pd

λd2

∞∑
g=0

bg(λd)2g

(4) R(λ; 0; p) = −
∞∑

d=1

−√−1
d+1

pd

2d sin(λd/2)

They are equal by a previous result [Fa-P1]:

(5)
∞∑

g=0

bgt
2g =

t/2
sin(t/2)

.

Note that both hand sides of the Mariño-Vafa formula (2) are valid for τ ∈ C.
It follows from the expression (1) that

(6) R•µ(λ; τ) =
∑

|ν|=|µ|
R•ν(λ; 0)zνΦ•νµ(

√−1λτ)

where

Φ•νµ(λ) =
∑

χ

λ−χ+`(ν)+`(µ)
H•

χ,ν,µ

(−χ + `(ν) + `(µ))!
=

∑
η

χη(Cν)
zν

χη(Cµ)
zµ

eκηλ/2

is a generating function of disconnected double Hurwitz numbers H•
ν,µ,χ. The

convolution equation (6) is equivalent to the following cut-and-join equation:

(7)
∂R

∂τ
=
√−1λ

2

∞∑

i,j=1

(
(i + j)pipj

∂R

∂pi+j
+ ijpi+j

(
∂R

∂pi

∂R

∂pj
+

∂2R

∂pi∂pj

))

In a symmetric group Sd, a transposition can cut an (i + j)-cycle into an i-cycle
and an j-cycle:

(s, t)(s, s2, · · · , si, t, t2, · · · tj) = (s, s2, · · · , si)(t, t2, · · · tj).
This corresponds to the cut operator

(i + j)pipj
∂

∂pi+j
.
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A transposition can also join an i-cycle and a j-cycle to form an (i + j)-cycle:

(s, t)(s, s2, · · · , si)(t, t2, · · · tj) = (s, s2, · · · , si, t, t2, · · · tj).
This corresponds to the join operator

ijpi+j
∂

∂pi

∂

∂pj
.

The Mariño-Vafa formula will follow from the initial values (3), (4), (5), the
cut-and-join equation (7) of R(λ; τ ; p), and the following cut-and-join equation of
G(λ; τ ; p):

Theorem 9 (Liu-Liu-Zhou [L-L-Z1]).

(8)
∂G

∂τ
=
√−1λ

2

∞∑

i,j=1

(
(i + j)pipj

∂G

∂pi+j
+ ijpi+j

(
∂G

∂pi

∂G

∂pj
+

∂2G

∂pi∂pj

))

The cut-and-join equation (8) is equivalent to the following convolution equation

(9) G•µ(λ; τ) =
∑

|ν|=|µ|
G•ν(λ; 0)zνΦ•ν,µ(

√−1λτ).

Theorem 9 is proved by applying functorial localization to the branch morphism

Br : Mg(P1, µ) → SymrP1 ∼= Pr,

where Mg(P1, µ) is the moduli space of relative stable maps from a genus g curve
to P1 with fixed ramification type µ = (µ1, . . . , µh) at ∞, and

r = 2g − 2 + |µ|+ `(µ)

is the virtual dimension ofMg(P1, µ). Note the C∗-action on P1 induces C∗-actions
on the domain and the target of Br, and Br is C∗-equivariant. This is similar to
the set-up of mirror principle, with a different linearized moduli.

We end this section with some applications of the Mariño-Vafa formula, following
[L-L-Z2]. We have

Gg,µ(τ) =
2g−2+|µ|+`(µ)∑

k=`(µ)−1

Gk
g,µτk,

where

G2g−2+|µ|+`(µ)
g,µ =

−√−1
|µ|+`(µ)

|Aut(µ)|
µµi

i

µi!

∫

Mg,`(µ)

Λ∨g (1)
∏`(µ)

i=1 (1− µiψi)
,

G`(µ)−1
g,µ =

−√−1
|µ|+`(µ)

|Aut(µ)|
λg∏`(µ)

i=1 (1− µiψi)
.

The part corresponding to G
2g−2+|µ|+`(µ)
g,µ in R(λ; τ ; p) reduces to the Burnside

formula of Hurwitz numbers Hg,µ. We obtain the ELSV formula [ELSV]:

(10)
1

|Aut(µ)|
µµi

i

µi!

∫

Mg,`(µ)

Λ∨g (1)
∏`(µ)

i=1 (1− µiψi)
=

Hg,µ

(2g − 2 + |µ|+ `(µ))!
.
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Extracting the part corresponding to G
`(µ)−1
g,µ (τ) from R(λ; τ ; p), we obtain

(11)
∞∑

g=0

λ2g

∫

Mg,n

λg∏n
i=1(1− µiψi)

= |µ|n−3 |µ|λ/2
sin(|µ|λ/2)

.

The identity (11) is true for any partition of length n, so we may view it as an
identity of polynomials in λ, µ1, . . . , µn. This gives us the values of all λg-integrals:

(12)
∫

Mg,n

ψk1
1 · · ·ψkn

n λg =
(

2g + n− 3
k1, · · · , kn

)
22g−1 − 1

22g−1

|B2g|
(2g)!

.

The identity (12) was first proved in [Fa-P2].
The following identities proved in [Fa-P1] are also consequences the Mariño-Vafa

formula:∫

Mg

λg−2λg−1λg =
1

2(2g − 2)!
|B2g−2|
2g − 2

|B2g|
2g

.

∫

Mg,1

λg−1

1− ψ1
= bg

2g−1∑

i=1

1
i
− 1

2

∑
g1+g2=g
g1,g2>0

(2g1 − 1)!(2g2 − 1)!
(2g − 1)!

bg1bg2

5. Mirror symmetry

In the previous sections we discussed the localization method to understand
the counting function of Gromov–Witten invariants. These formulas are rather
difficult to predict. They were motivated by important concepts of duality. A very
important duality is called mirror symmetry. The counting function of Gromov–
Witten invariants appears as instanton contribution to IIA theory of one Calabi–Yau
manifold M . The ability of computing it came from the symmetry that the IIA
theory of M is isomorphic to IIB theory of another Calabi–Yau manifold M̂ which
is “mirror” to M . The IIB theory can be computed by deformation of complex
structure, which can in turn be computed by studying the periods of holomorphic
differential.

However the construction of M̂ has not been explained in a fundamental way,
except for some special cases. About eight years ago, Strominger, Zaslow and Yau,
based on the newly developed brane theory, proposed a geometric construction of
M̂ . The program is still being pursued vigorously and it is closely related to the
(more algebraic) homological mirror conjecture of Kontsevich and Fukaya.

We now explain the construction of SYZ and some of the important questions
to be answered.

Motivated by understanding supersymmetric cycles in Calabi–Yau manifold,
Becker–Becker–Strominger [B-B-S] considered the concept of Lagrangian subva-
rieties V of a CY manifold M so that the holomorphic three form, when restricted
to the subvariety, is a (complex) constant (with norm one) multiple of the volume
form of the subvariety. They consider a pair (V,L) where L is a U(1) flat line
bundle over V . These branes play an important role in understanding questions
of duality as supersymmetric cycles are protected when coupling constants of the
theory change.

Soon it was found that such subvarieties V were studied by Harvey–Lawson
earlier based on their interest on understanding examples of area minimizing sub-
varieties in Euclidean space. It was called special Lagrangian cycles by them. Later
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Mclean [Mc] proved that the local moduli of a special Lagrangian submanifold V
in a Calabi–Yau manifold is parametrized by harmonic one form on V . The space
of harmonic one form also parametrize flat U(1) bundles over V . Hence one can
put an almost complex structure on the moduli space of the pair (V, L). This was
observed by Strominger–Yau–Zaslow [S-Y-Z] and was proposed there to study this
moduli space as an interesting complex manifold. In particular, when the first Betti
number of V is equal to three, this complex manifold is three dimensional.

Based on the theory of branes, it was proposed by SYZ that if V is a three
dimensional torus, we can replace V by its dual V ∗, the moduli space of flat U(1)
line bundle over V , and obtain a new complex manifold M̂ . In general, we shall
need to make instanton correction to the complex structure on M̂ . We proposed
M̂ to be the mirror manifold of M .

The foliation defined by the special Lagrangian torus can be singular leaf. We
expect that in the large radius limit, there is a map f : M −→ S3 so that outside
a trivalent graph G ⊂ S3, the fibers are nonsingular special Langrangian torus. If
these torus are linear we call the picture semi-classical. Leung–Yau–Zaslow [Le-Y-Z]
has studied this mirror construction quite extensively. Many interesting predictions
for mirror symmetry hold for this semi-classical setting.

The first explicit construction of Ricci flat metric for the semi-classical setting
was due to Greene–Shapere–Vafa–Yau [G-S-V-Y]. It is an interesting question to
find instanton correction to their metric to obtain the Ricci flat metric on the
K-3 surface. M. Gross and P. Wilson [G-W] did study this problem based on
perturbation of the semi-flat Ricci flat metric. Unfortunately we still have little
information about the instantons which are holomorphic disks whose boundaries
give non-trivial homology classes on the Lagrangian torus.

If we consider the domain which parametrizes the special Lagrangian torus in
M , assuming we are in the semiflat situation, there is a Weil–Peterson metric
on S3 \ G. The form of such metrics was worked out by N. Hitchin [Hi], that
it is a Hessian metric defined on affine flat manifold. (This kind of metric was
introduced by Cheng–Yau [C-Y] in 1980 as an analogue of Kähler metric for flat
affine structure. Under some assumptions, Cheng–Yau also proved existence and
uniqueness theorems for such metric.) Hence there is a flat affine structure on S3\G
and in order for the torus to be defined, the monodromic group is a subgroup of
SL(3,Z). It is believed that there is a well-defined volume form on S3 \ G so
that in a suitable flat coordinate, the metric has the form

∑
∂2u

∂xi∂xj
dxidxj and

det
(

∂2u
∂xi∂xj

)
= 1. The existence of such metric on a tube domain is related to

existence of Ricci flat Kähler flat metric if we look at the complexified coordinate
xj +

√−1yj . (This ansatz was first proposed by E. Calabi.) However, its existence
and the behavior near the triple singular point of G is non-trivial. This was worked
out recently by Lofton–Yau-Zaslow [Lo-Y-Z].

Potentially construction of SYZ geometry can be reduced to following data:

1. Construction of flat affine structure in S3 \ G whose holonomy group is a
subgroup of SL(3,Z).

2. Construction of Cheng–Yau type hessian metric with a given flat volume
form.

3. Construction of a map from S3 \ G to the moduli space of flat torus that
is compatible with the holonomy group mentioned above.
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Once this construction is carried out, one can construct the mirror manifold M̂
in the large radius limit. A very important verification of the SYZ construction
of mirror conjecture is to understand the deformation of complex structure of M̂
and relate it to periods of holomorphic three form. It should reflect the counting
of holomorphic curves of M .

Under reasonable topological assumption, M. Gross studied the SYZ construc-
tion for the quintic in P4 and compute the Hodge diagram of the mirror manifold.
He concludes that the picture is consistent. W. Ruan [Ru] studied the Lagrangian
fibration for Calabi-Yau manifolds that are constructed from toric manifolds.

The mirror correspondence is supposed to map even cohomology of M to odd co-
homology of M̂ . We propose to construct this map in terms of the SYZ construction
in the following manner.

For the map f : M −→ S3 and its mirror f̂ : M̂ −→ S3, we can form a nine
dimensional variety by forming their fiber product M ×

S3
M̂ −→ S3. The general

fiber of this map is given by T 3 × (T 3)∗ where it admits the standard Poincare
(complex) line bundle L so that L restricted to T 3 × {l} is given by l. We assume
that L can be extended to be a line bundle (or a sheaf) over M ×

S3
M̂ .

Let Π1 : M ×
S3

M̂ −→ M and Π2 : M ×
S3

M̂ −→ M . Then we can define the mirror

map on cohomology level by taking any even degree cohomology class ω in M , and
map it to (Π2)∗[(Π∗1ω) exp(c1(L))] which gives odd cohomology in M̂ .

This assertion should be easier to verify in the semi-classical picture when we
have flat affine constructions. When one counts instantons corrections, one should
be able to map quantum cohomology of M to H1(TcM ), the deformation space of
complex structures of M̂ .

In [Le-Y-Z], we discuss how to map special Lagrangian cycles in M̂ to stable
holomorphic sheaves over M . It would be important to prove this picture rigorously
(which in turn depends on a rigorous construction of M̂). Potential construction of
special Lagrangian cycles in M̂ can give ways to construct holomorphic cycles in M .
Therefore it becomes an important question to understand which odd dimensional
cohomology classes in M̂ admit special Lagrangian cycles. The Hodge conjecture
on M may suggest that an integral multiple of each odd dimensional cohomology
class in M̂ should be representable by special Lagrangian cycles.

There are several directions that we may want to generalize the above pictures.

1. When M is Calabi–Yau, we can look for fiber space which are holomorphic.
Hence f : M −→ N is holomorphic, general fiber T is polarized Calabi–
Yau and the space N is a Fano variety or a variety with negative Kodaira
dimension. We can replace each fiber T by its mirror manifold T̂ . Hopefully
one can complete the process to form a new compact Kähler manifold M̂
which is still Calabi–Yau. Obviously there are conditions one likes to impose
in order for such assertion to hold.
The new manifold M̂ should reflect a great deal about the geometry of M .
One can still define the transfer map from M to M̂ . Since everything is
complex now, it maps even cohomology of M to even cohomology of M̂ .
At least when T is complex torus, it may give isomorphism of derived
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category of M to derived category of M̂ , chow rings of M to chow rings of
M̂ .

2. When M is a more general Kähler–Einstein manifold, special Lagrangian
does not make sense. However, we can replace it by Lagrangian cycles which
is area minimizing among all Lagrangian cycles. Hence we are looking for
Lagrangian cycles whose mean curvature one form is harmonic.

Many interesting questions in geometry can be motivated by such pictures.
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