A Note on the Strong Maximal Operator on \mathbb{R}^n *

Jiecheng CHEN and Xiangrong ZHU Dept of Mathematics (Xixi Campus), Zhejiang University

Abstract

In this paper, we shall prove that for $f \in L \ln^+ L(\mathbb{R}^n)$ with compact support, there is a $g \in L \ln^+ L(\mathbb{R}^n)$ such that (a) g and f are equidistributed, (b) $M_S(g) \in L^1(E)$ for any measurable set E of finite measure.

1 Introduction

For a function $f \in L_{loc}(\mathbb{R}^n)$, its Hardy-Littlewood maximal function is defined by

$$M(f)(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y)| \, dy$$

where Q is a cube with sides parallel to the coordinate axes, its strong maximal function is defined by

$$M_S(f)(x) = \sup_{P \ni x} \frac{1}{|P|} \int_P |f(y)| \, dy$$

where P is a rectangel with sides parallel to the coordinate axes. In addition, let $M^*(f)(x) = M_n \circ \cdots \circ M_1(f)(x)$ where M_j is the Hardy-Littlewood maximal operator on R^1 acting on the j - th coordinate x_j .

It is well-known that for f with compact support,

- $M(f) \in L^1(E)$ for any measurable set E of finite measure $\Leftrightarrow f \in L \ln^+ L(\mathbb{R}^n)$. See Stein [5].
- $M^*(f) \in L^1(E)$ for any measurable set E of finite measure $\Leftrightarrow f \in L(\ln^+L)^n(\mathbb{R}^n)$. See Jessen-Marcinkiewicz-Zygmund [4] and Fava-Gatto-Gutiérez [2].
- f ∈ L(ln⁺L)ⁿ(Rⁿ) ⇒M_S(f) ∈ L¹(E) for any measurable set E of finite measure, because M_S(f) ≤ M^{*}(f). It was conjectured that for f ∈ L(ln⁺L)ⁿ⁻¹(Rⁿ), M_S(f) ∈ L¹(E) for any measurable set E of finite measure⇒ f ∈ L(ln⁺L)ⁿ(Rⁿ). See [2]. In [1] and [3], Bagby and Gomez independently proved that there are many functions f∈ L ln⁺L(R²) such that M_S(f) ∈ L¹(E) for any measurable set E of finite measure.

^{*}Supported by 973 project and NSFZJ

In this paper, by a different way which can be easily applied to high dimensions' case, we shall prove that the conjecture is also not true for n > 2. An interesting thing is that we do not need $f \in L(\ln^+L)^{n-1}L(\mathbb{R}^n)$.

Theorem 1 For $f \in L \ln^+ L(\mathbb{R}^n)$ with compact support, there is a $g \in L \ln^+ L(\mathbb{R}^n)$ such that (a) g and f are equidistributed, (b) $M_S(g) \in L^1(E)$ for any measurable set E of finite measure.

2 Proof of the Theorem

Before proving the above theorem, we first introduce some notations and give some lemmas. Let

$$A_{t} = \{(x_{1}, \dots, x_{n}) : \sum_{i=1}^{n} x_{i} = t\}$$

$$D = \{(x_{1}, \dots, x_{n}) : \sum_{i=1}^{n} x_{i} \ge n - 1, x_{i} \le 1 (i = 1, \dots, n)\}$$

$$t(x) = \sum_{i=1}^{n} x_{i}$$

$$v(x) = \mu_{n}(\{y \in D : t(y) < t(x)\})$$

where μ_n denotes the Lebesgue measure on \mathbb{R}^n . Without loss of generality, we may assume that

$$\mu_n(\{x \in \mathbb{R}^n : |f(x)| > 0\}) \le \mu_n(D).$$

Take

$$g(x) = \begin{cases} f^*(v(x)) & \text{for } x \in D\\ 0 & \text{for } x \notin D \end{cases}$$

where f^* is the rearrangement function of f, i.e

$$f^*(r) = \lambda_f^{-1}(r) \stackrel{def}{=} \inf \{s : \lambda_f(s) \le r\}$$

$$\lambda_f(s) = \mu_n(\{x \in \mathbb{R}^n : |f(x)| > s\})$$

for r > 0. It is not difficult to show that f and g have the same distribution function, i.e.

$$\mu_n(\{x \in \mathbb{R}^n : |f(x)| > s\}) = \mu_n(\{x \in \mathbb{R}^n : |g(x)| > s\})$$

for all s > 0.

Let $\tilde{g}(s) = \sup \{g(x) : t(x) = s\}$. It is easy to check that $supp(\tilde{g}) \subseteq [n-1,n], g \in L \ln^+ L(\mathbb{R}^n) \Rightarrow \tilde{g} \in L \ln^+ L(\mathbb{R}^1)$, and $\tilde{g} \in L \ln^+ L(\mathbb{R}^1) \Rightarrow g \in L \ln^+ L(\mathbb{R}^n)$ if $\mu_n(\{x \in \mathbb{R}^n : |f(x)| > 0\}) > \mu_n(D)$.

We have

Lemma 2 $M_S(g)(x) \leq C_n M(\tilde{g})(t(x))$ where M_S is the strong maximal function operator on \mathbb{R}^n and M is the Hardy-Littlewood maximal function operator on \mathbb{R}^1 .

Proof. For $x \in \mathbb{R}^n$, $t \in \mathbb{R}^1$, and $P = \prod_{i=1}^n [a_i, b_i] \ni x$, let $d_t = \sup_{y \in P} d(y, A_t)$. It is easy to see that if $P \cap A_t \neq \emptyset$, we have

$$d_t \ge \frac{1}{2\sqrt{n}} \left(\sum_{i=1}^n b_i - \sum_{i=1}^n a_i \right)$$
 and $d_t \cdot \mu_{n-1}(A_t \cap P) \le \mu_n(P)$.

So, we have

$$\mu_{n-1}(A_t \cap P) \le 2\sqrt{n} \cdot \mu_n(P) / \left(\sum_{i=1}^n b_i - \sum_{i=1}^n a_i\right).$$

Now, let $e_0 = (\sqrt{n^{-1}}, \dots, \sqrt{n^{-1}}), L_0 = (R^1 e_0)^{\perp}$, and $R^n \ni x = re_0 + z$ where $z \in L_0$. Noting that $P \ni x$ implies that $t(x) \in [\sum_{i=1}^n a_i, \sum_{i=1}^n b_i]$, we have

$$\begin{aligned} \frac{1}{\mu_n(P)} \int_P g(y) dy &= \frac{1}{\mu_n(P)} \int_{R^1 e_0 \times L_0} \chi_P(x) g(x) dx \\ &= \frac{1}{\mu_n(P)} \int_{R^1 e_0} \int_{L_0} \chi_D(re_0 + z) g(re_0 + z) dr dz \\ &\leq \frac{1}{\mu_n(P)} \int_{\sum_{1}^{n} a_i}^{\sum_{1}^{n} b_i} \sqrt{n} \mu_{n-1}(\{z : re_0 + z \in P\}) \tilde{g}(r\sqrt{n}) dr \\ &\leq \frac{1}{\sqrt{n}\mu_n(P)} \int_{\sum_{1}^{n} a_i}^{\sum_{1}^{n} b_i} \mu_{n-1}(\{z : \frac{r}{\sqrt{n}}e_0 + z \in P\}) \tilde{g}(r) dr \\ &= \frac{1}{\sqrt{n}\mu_n(P)} \int_{\sum_{1}^{n} a_i}^{\sum_{1}^{n} b_i} \mu_{n-1}(A_r \cap P) \tilde{g}(r) dr \\ &\leq \frac{2}{\sum_{1}^{n} b_i - \sum_{1}^{n} a_i} \int_{\sum_{1}^{n} a_i}^{\sum_{1}^{n} b_i} \tilde{g}(t) dt \leq 2M(\tilde{g})(t(x)). \end{aligned}$$

Lemma 3 For |x| > 2n, $M_S(g)(x) \le C_n |x|^{-1} ||g||_1$.

Proof. Without loss of generality, we may assume that $x_1 > \frac{|x|}{n}$ for |x| > 2n, and furthermore, we may assume that $a_1 < 1$, $a_1 + \sum_{i=1}^{n} b_i > n-1$ for $P = \prod_{i=1}^{n} [a_i, b_i]$ containing x and satisfying that $P \cap D \neq \emptyset$. Let $z = (1, b_1, b_2, \dots, b_n)$, we have

$$\begin{aligned} \frac{1}{\mu_n(P)} \int_P g(y) dy &\leq \frac{1-a_1}{b_1-a_1} \frac{1}{\mu_n([a_1,1] \times \prod_2^n [a_i,b_i])} \int_{[a_1,1] \times \prod_2^n [a_i,b_i]} g(y) dy \\ &\leq \frac{1-a_1}{b_1-a_1} M_S(g)(z) \leq \frac{1-a_1}{b_1-a_1} C_n M(\tilde{g})(t(z)) \\ &\leq \frac{1-a_1}{|x_1|-1} C_n \frac{\sqrt{n}}{t(z)-(n-1)} \|\tilde{g}\|_1 \\ &\leq C'_n \frac{1}{|x|} \frac{1-(n-1-\sum_2^n b_i)}{1+\sum_2^n b_i-(n-1)} \|\tilde{g}\|_1 \leq C_n \frac{1}{|x|} \|g\|_1. \end{aligned}$$

From Lemmas 2-3, we can easily get the Theorem.

References

- R. Bagby, A note on the strong maxial function, Proc. Amer. Math. Soc. 88(4)(1983), 648-650.
- [2] N. A. Fava, E. A. Gatto and C. Gutierrez, On the strong maximal function and Zygmund's class L(log₊L)ⁿ, Studia Math. 69(1980), 155-158.
- [3] M. E. Gomez, A counterexample for the strong maximal operator, Studia Math. 78(2)(1984), 199-212.
- B. Jessen, J. Marcinkiewicz and A. Zugmund, Note on the differentiability of multiple integrals, Fund. Math. 25(1935), 217-234.
- [5] E. M. Stein, Note on the class L(logL), Studia Math. 32(1969), 305-310.