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Abstract. We use a new method to construct a class of asymp-
totically locally flat, scalar flat metrics. These metrics were con-
structed via algebraic geometry method by LeBrun before and pro-
vide counterexamples to the generalized positive action conjecture
of Hawking and Pope.
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1. Introduction

The scalar flat metrics play an important role in general relativity.
In Ref. [1], LeBrun constructed scalar flat metrics on the total spaces
of complex line-bundles over CP1 for which the first Chern class satis-
fies c1 < −2. Those metrics are asymptotically locally Euclidean and
have negative total mass. Therefore they provide counter-examples
to the Generalized Positive Action Conjecture of Hawking and Pope
[2]. (This conjecture asserts that the total mass is nonnegative for
all locally asymptotically flat Riemannian 4-manifolds with zero scalar
curvature, and that the total mass vanishes iff the manifolds is Ricci
flat with self-dual Weyl curvature.) The metrics constructed by Le-
Brun are indeed Eguchi-Hanson type. Those with vanishing total mass
were obtained by Eguchi and Hanson before and serve as a class of
gravitational instantons in Euclidean gravity [3, 4].

In this note we will use a different method to construct those metrics
in [1]. We define a class of Eguchi-Hanson type metrics which are pa-
rameterized by a real function f . By solving the zero scalar curvature
equation directly, we determine the f and obtain the metrics. These
metrics are parameterized by real numbers A, B (see Section III for
details), and A is proportional to the total mass. We determine all
possible A, B which the metrics can be regularized. We find an inter-
esting positive mass phenomena that when B < 0, the metrics must
have strictly positive mass if they can be regularized. Finally, we com-
pute certain topological invariants of these metrics. Unlike the case of
Eguchi-Hanson metrics with vanishing A, the first Pontrjagin class and
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the signature in the current case relate to the total mass which may
not be integer.

2. Eguchi-Hanson metric

Let (x0, x1, x2, x3) be the four Euclidean coordinates so that the flat
metric of R4 is given by

ds2
0 = dx2

0 + dx2
1 + dx2

2 + dx2
3.

Let θ, φ, ψ be the Euler angles on the 3-sphere S3 with ranges

0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 4π,

and are related to the Cartesian coordinates by

x1 = r cos
θ

2
cos

ψ + φ

2
,

x2 = r cos
θ

2
sin

ψ + φ

2
,

x3 = r sin
θ

2
cos

ψ − φ

2
,

x0 = r sin
θ

2
sin

ψ − φ

2
.

Let σ1, σ2 and σ3 are the Cartan-Maurer forms for SU(2) ≈ S3 which
are defined by

σ1 =
1

r2

(
x1dx0 − x0dx1 + x2dx3 − x3dx2

)

=
1

2

(
sin ψdθ − sin θ cos ψdφ

)
,

σ2 =
1

r2

(
x2dx0 − x0dx2 + x3dx1 − x1dx3

)

=
1

2

(− cos ψdθ − sin θ sin ψdφ
)
,

σ3 =
1

r2

(
x3dx0 − x0dx3 + x1dx2 − x2dx1

)

=
1

2

(
dψ + cos θdφ

)
.

It is obvious that

dσ1 = 2σ2 ∧ σ3, cyclic.

The flat metric can be written in polar coordinates as

ds2
0 = dr2 + r2

(
σ2

1 + σ2
2 + σ2

3

)
. (2.1)
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In Refs. [3, 4], Eguchi and Hanson found the following self-dual
solutions to the Euclidean gravity

ds2 =
(
1− B

r4

)−1

dr2 + r2
(
σ2

1 + σ2
2 +

(
1− B

r4

)
σ2

3

)
(2.2)

with B ≥ 0. The metric is geodesically complete when r ≥ 4
√

B,
0 ≤ ψ ≤ 2π. This range of ψ causes the constant-r hypersurfaces as
r →∞ are not 3-sphere, but group manifold of SO(3) = P3(R). This is
an explicit example of a metric whose topology is asymptotically locally
Euclidean, but not globally Euclidean. The curvature components of
this metric are

R1
0 = R2

3 = −2B

r6

(
e1 ∧ e0 + e2 ∧ e3

)
,

R2
0 = R3

1 = −2B

r6

(
e2 ∧ e0 + e3 ∧ e1

)
,

R3
0 = R1

2 =
4B

r6

(
e3 ∧ e0 + e1 ∧ e2

)
.

where

e0 = f−
1
2 dr, e1 = rσ1, e2 = rσ2, e3 = rf

1
2 σ3

and

f =

√
1− B

r4
.

The metric is Ricci flat and has zero action, and serves as a class of
gravitational instantons.

3. Zero scalar curvature

We shall find a function f such that the following Eguchi-Hanson
type metric has zero scalar curvature

ds2 = f−2dr2 + r2
(
σ2

1 + σ2
2 + f 2σ2

3

)
(3.3)

where f is a function of r. Let the coframe {ei} be

e0 = f−1dr, e1 = rσ1, e2 = rσ2, e3 = rfσ3.

Define the connection 1-form {ωi
j} by dei = −ωi

j ∧ ej. We find that

ω1
0 =

f

r
e1, ω2

0 =
f

r
e2, ω3

0 =
(f

r
+ f

′)
e3,

ω2
3 =

f

r
e1, ω3

1 =
f

r
e2, ω1

2 =
( 2

rf
− f

r

)
e3.
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The curvature tensor is defined as Ri
j = dωi

j + ωi
k ∧ ωk

j,

R1
0 = R2

3 = −ff
′

r

(
e1 ∧ e0 + e2 ∧ e3

)
,

R2
0 = R3

1 = −ff
′

r

(
e2 ∧ e0 + e3 ∧ e1

)
,

R3
0 = −(

ff
′′

+ (f
′
)2 +

3

r
ff

′)
e3 ∧ e0 +

2ff
′

r
e1 ∧ e2,

R1
2 =

2ff
′

r
e3 ∧ e0 − 4(f 2 − 1)

r
e1 ∧ e2.

So the scalar curvature

R = −2
(
ff

′′
+

(
f
′)2

+
7

r
ff

′
+

4

r2

(
f 2 − 1

))
.

The zero scalar curvature is given by the following equation

ff
′′

+
(
f
′)2

+
7

r
ff

′
+

4

r2

(
f 2 − 1

)
= 0.

Let f =
√

1− h, the above equation deduces to

h
′′

+
7

r
h
′
+

8

r2
h = 0. (3.4)

It is easy to find the general solutions h = 2A
r2 + B

r4 of equation (3.4).
Therefore we can take

f =

√
1− 2A

r2
− B

r4
(3.5)

in (3.3) to obtain the scalar flat metric.

4. Regularization of metric

The metric (3.3) may have singularity at r = 0 and at the zero set
of f . The curvature tensors of (3.3) with f given by (3.5) are

R1
0 = R2

3 = −2
(A

r4
+

B

r6

)(
e1 ∧ e0 + e2 ∧ e3

)
,

R2
0 = R3

1 = −2
(A

r4
+

B

r6

)(
e2 ∧ e0 + e3 ∧ e1

)
,

R3
0 =

4B

r6
e3 ∧ e0 + 4

(A

r4
+

B

r6

)
e1 ∧ e2,

R1
2 = 4

(A

r4
+

B

r6

)
e3 ∧ e0 + 4

(2A

r4
+

B

r6

)
e1 ∧ e2.

The case A = B = 0 gives rise to the flat metric (2.1). So we assume
at least one of A, B is nonzero from now on, and, in this case it is easy
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to see that r = 0 is the essential (curvature) singularity which can not
be removed by changing coordinates.

Now the metric (3.3) with f given by (3.5) is regular for r > r0,
where

(i) B > 0, −∞ < A < ∞; or B < 0, A >
√−B, we choose

r0 =

√
A +

√
A2 + B. (4.6)

(ii) B = 0, A > 0, we choose r0 =
√

2A.

(iii) B < 0, A =
√−B, we choose r0 =

√
A.

(iv) Otherwise, we choose r0 = 0.

A metric in case (ii) has coordinate singularity at r0 which can be
removed by changing coordinates. However, the manifold has an inner
boundary. Note that in case (iii), A

r4 + B
r6 is singular at r = r0. This

implies that the curvature tensor is singular at r = r0 and the metric
can not be regularized. A metric in case (iv) can never be regularized
except that A,B = 0. Now we study the case (i). Let

u2 = r2
(
1− 2A

r2
− B

r4

)
.

Clearly u → 0 as r → r0. By changing variable, the metric (3.3)
becomes

ds2 =
(
1 +

B

r4

)−2

du2 + u2σ2
3 + r2

(
σ2

1 + σ2
2

)
.

For fixed θ, φ, it approximates to
(
1 +

B

r4
0

)−2

du2 +
u2

4
dψ2

as u → 0. Therefore if we re-choose the range of ψ such that

0 ≤ ψ ≤ 4π
(
1 +

B

r4
0

)−1

, (4.7)

we can remove the singularity at r = r0. Note that B/r4
0 must be

a rational number in order that M does not collapse along ψ factor.
When A = 0, B/r4

0 = 1. So we assume A 6= 0, and
√

1 +
B

A2
=

k

l

for certain positive integers k, l. Then (4.7) is equivalent to

0 ≤ ψ ≤ 2π
(
1 +

l

k

)
. (4.8)
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Summarizing, if B > 0, −∞ < A < ∞; or B < 0, A >
√−B, we

can obtain a geodesically complete metric (3.3) with f given by (3.5),
r ≥ r0 where r0 is given by (4.6), and ψ satisfies (4.7) or (4.8).

5. Action and mass

For asymptotically flat geometries, the physical action of a metric g
is defined as [5, 6]

I(g) =
1

16π

∫

M

R +
1

8π

∫

∂M

(
H −H0

)
(5.9)

where R is the scalar curvature of g, H is the trace of the extrinsic
curvature of the boundary, and H0 is the trace of the extrinsic curvature
of the boundary embedded in flat space.

Now we compute the action of the metric (3.3). Let ω0
i = hijω

j at
the constant-r hypersurface. We find

h11 = −f

r
, h22 = −f

r
, h33 = −f

r
− f

′
, hij = 0 (i 6= j).

Therefore

H = −3f

r
− f

′
= −3

r
+

A

r3
+ O

( 1

r5

)
,

and H0 = −3
r

which is obtained by taking A,B = 0. The value of the

following integral is used in this note frequently. Let D =
{
0 ≤ θ ≤

π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 4π
(
1 + B

r4
0

)−1}
,

V0 =

∫

D
σ1σ2σ3 = 2π2

(
1 +

B

r4
0

)−1

.

Since (3.3) has zero scalar curvature, we obtain

I(g) =
1

8π
lim
r→∞

∫

∂Mr

A

r3
r3σxσyσz =

πA

4

(
1 +

B

r4
0

)−1

.

The action is zero if A = 0.
The total mass of an asymptotically (locally) flat metric is propor-

tional to

lim
r→∞

(
∂jgij − ∂igjj

)xi

r
· r3

in Cartesian coordinates. In Ref. [1], LeBrun computed the compo-
nents of (3.3) in Cartesian coordinates and obtained its total mass.
By choosing 2A = −(k − 1)a2, B = ka4, he found a counter-example
to the Generalized Positive Action Conjecture of Hawking and Pope
[2]. However, in most spacetime geometry, the polar coordinates play
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much more important role than the Cartesian coordinates. So we use
the definition of the total mass via arbitrary orthonormal basis of the
background metric [7]. Let {ĕi} be the coframe of (2.1), i.e.,

ĕ0 = dr, ĕ1 = rσ1, ĕ2 = rσ2, ĕ3 = rσ3.

Let {ĕi} be their dual frame. Denote ∇̆ the Levi-Civita connection of
(2.1). Then the total mass of an asymptotically (locally) flat metric g
can be defined as follows:

E =
1

4vol(S3)
lim
r→∞

∫

∂Mr

(
∇̆jgij − ∇̆itrg0(g)

)
? ĕi (5.10)

where vol(S3) is the volume of unit 3-sphere, ? is the Hodge star oper-

ator of the metric (2.1), ∇̆j = ∇̆ĕj
and gij = g

(
ĕi, ĕj

)
.

Now we use (5.10) to compute the total mass of metric (3.3). The
connection 1-form of (2.1) is

ω̆1
0 =

1

r
ĕ1, ω̆2

0 =
1

r
ĕ2, ω̆3

0 =
1

r
ĕ3,

ω̆2
3 =

1

r
ĕ1, ω̆3

1 =
1

r
ĕ2, ω̆1

2 =
1

r
ĕ3.

The components of the metric (3.3) are

g00 = f−2, g11 = g22 = 1, g33 = f 2.

Thus

∇̆igi0 = ĕi

(
gi0

)− g0lω̆
l
i

(
ĕi

)− gilω̆
l
0

(
ĕi

)

=
∂

∂r
g00 + g00

3

r
− (

g11 + g22 + g33

)1

r

=
4A

r3
+ O

( 1

r5

)
,

∇̆0trg0(g) = O
( 1

r6

)
.

We obtain

E =
1

4vol(S3)
lim
r→∞

∫

∂Mr

(
∇̆jg0j − ∇̆0trg0(g)

)
? ĕ0

=
A

vol(S3)
V0 = A

(
1 +

B

r4
0

)−1

.

We obtain an interesting positive mass phenomena that any geodesi-
cally complete, zero scalar curved Eguchi-Hanson type metric (3.3)
with f given by (3.5) and B < 0 must have strictly positive total mass.
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6. Topological invariants

In Ref. [4], the authors computed the Euler number χ(M), the first
Pontrjagin number P1[M ] and the signature τ [M ] of (2.2) and found
χ(M) = 2, P1[M ] = −3 and τ [M ] = −1. Here we will see whether the
nonzero A changes these topological invariants.

First we compute the Euler number of (3.3). By Chern’s formula [8],

χ(M) =
1

32π2

{ ∫

M

εabcdR
a
b ∧Rc

d −
∫

∂M∞
εabcd

(
2ωa

b ∧Rc
d −

4

3
ωa

b ∧ ωc
s ∧ ωs

d

)}

=
8V0

π2

∫ ∞

r0

{(A

r4
+

B

r6

)2

+
B

r6

(A

r4
+

B

r6

)}
r3dr

− 2

π2
V0

= 4
(
1− A

r2
0

)(
1 +

B

r4
0

)−1

= 2.

Next we compute the first Pontrjagin number of (3.3). Denote R
the curvature tensor. It is straightforward that

P1[M ] = − 1

8π2

∫

M

Tr
(
R∧R

)

= − 4

π2

∫

M

{
6
(A

r4
+

B

r6

)2

− A2

r8

}
r3drσ1σ2σ3

= − 4

π2
2π2

(
1 +

B

r4
0

)−1(5A2

4r4
0

+
2AB

r6
0

+
3B2

4r8
0

)

= −3 +
A

r2
0

.

In above computations 1− 2A
r2
0
− B

r4
0

= 0 is used.

The signature of M can be computed via the Chern-Simons bound-
ary correction [9] (which is zero in the current case) and the signature
η-invariant for the boundary (using Proposition 2.12 [10]). It relates to
the total mass in an implicit way. We leave it to readers as an exercise.

Acknowledgments
The project partially supported by National Science Foundation of

China under 10231050 and the innovation project of Chinese Academy
of Sciences.



SCALAR FLAT METRICS OF EGUCHI-HANSON TYPE 9

References

[1] C. LeBrun, Commun. Math. Phys. 118(1988)595.
[2] S.W. Hawking, C. Pope, Nucl. Phys. B146(1978)381.
[3] T. Eguchi, A.J. Hanson, Phys. Lett. 74B(1978)249.
[4] T. Eguchi, A.J. Hanson, Ann. Phys. 120(1979)82.
[5] G.W. Gibbons, S.W. Hawking, Phys. Rev. D15(1977)2752.
[6] S.W. Hawking, G.T. Horowitz, Class. Quantum Grav. 13(1996)1487.
[7] X. Zhang, In preperation.
[8] S.S. Chern, Ann. Math. 46(1945)674.
[9] S.S. Chern, J. Simons, Ann. Math. 99(1974)48.

[10] M.F. Atiyah, V.K. Patodi, I.M. Singer, Math. Proc. Camb. Phil. Soc. 78(1975),
405.

E-mail address: xzhang@amss.ac.cn

Center of Mathematical Sciences, Zhejiang University, Hangzhou
310027, China, and, Institute of Mathematics, Academy of Mathemat-
ics and Systems Science, Chinese Academy of Sciences, Beijing 100080,
China,


