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1 Introduction

Let M be an n-dimensional complete Riemannian manifold with Riemannian metric gij .

The following evolutionary equation for the metric gij

∂2gij

∂t2
= −2Rij (1.1)

has been recently introduced by Kong and Liu [8] and named as hyperbolic geometric flow,

where Rij stands for the Ricci curvature tensor of gij . For the study on the hyperbolic

geometric flow, we refer to the recent papers [1], [2], [7], [8] and [9].

We are interested in the evolution of a Riemannian metric gij on a Riemann surface S

under the flow (1.1). On a surface, the hyperbolic geometric flow equation (1.1) simplifies,

because all of the information about curvature is contained in the scalar curvature function

R. In our notation, R = 2K where K is the Gauss curvature. The Ricci curvature is given

by

Rij =
1
2
Rgij , (1.2)

and the hyperbolic geometric flow equation (1.1) simplifies the following equation for the

special metric
∂2gij

∂t2
= −Rgij . (1.3)

The metric for a surface can always be written (at least locally) in the following form

gij = v(t, x, y)δij , (1.4)

where v(t, x, y) > 0. Therefore, we have

R = −4 ln v

v
. (1.5)

Thus the equation (1.3) becomes

∂2v

∂t2
=
4 ln v

v
· v,

namely,

vtt −4 ln v = 0. (1.6)

Denote

u = ln v, (1.7)

then the wave equation (1.6) reduces to

utt − e−u∆u = −u2
t . (1.8)
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(1.8) is a quasilinear hyperbolic wave equation. The global existence and the life-span

of classical solutions to the Cauchy problem for hyperbolic equations with the initial

data with compact support have been studied by many authors (e.g., [6], [15], [3], etc.).

However, only a few results have been known for the case of the initial data with non-

compact support, which plays an important role in both mathematics and physics.

Recently, Kong, Liu and Xu [9] studies the evolution of a Riemannian metric gij on

a cylinder C under the hyperbolic geometric flow (1.1). They prove that, for any given

initial metric on R2 in a class of cylinder metrics, one can always choose suitable initial

velocity symmetric tensor such that the solution exists for all time, and the scalar curvature

corresponding to the solution metric gij keeps uniformly bounded for all time; moreover, if

the initial velocity tensor is suitably “large”, then the solution metric gij converges to the

flat metric at an algebraic rate. If the initial velocity tensor does not satisfy the condition,

then the solution blows up at a finite time, and the scalar curvature R(t, x) goes to positive

infinity as (t, x) tends to the blowup points, and a flow with surgery has to be considered.

This result shows that, by comparing to Ricci flow, the hyperbolic geometric flow has the

following advantage: the surgery technique may be replaced by choosing suitable initial

velocity tensor. Some geometric properties of hyperbolic geometric flow on general open

and closed Riemann surfaces are also discussed (see Kong et al [9]).

In this paper, we consider the Cauchy problem for (1.8) with the following initial data

t = 0 : u = εu0(x), ut = εu1(x), (1.9)

where ε > 0 is a suitably small parameter, u0(x) and u1(x) are two smooth functions of

x ∈ R2 and satisfy that there exist two positive constants A ∈ R+ and k > 1, k ∈ R+ such

that

|u0(x)| ≤ A

(1 + |x|)k
, |u1(x)| ≤ A

(1 + |x|)k+1
. (1.10)

(1.10) implies that the initial data satisfies the slow decay property, that is, the initial

Riemann surface are asymptotic flat. We shall prove the following theorem.

Theorem 1.1 Suppose that u0(x), u1(x) ∈ C∞(R2) and satisfy the decay condition

(1.10). Then there exist two positive constants δ and ε0 such that for any fixed ε ∈ [0, ε0],

the Cauchy problem (1.8)-(1.9) has a unique C∞ solution on the interval [0, Tε], where Tε

is given by

Tε =
δ

ε
4
3

. (1.11)
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As we know, the flow equation (1.1) is a system of fully nonlinear partial differential

equations of second order, it is very difficult to study the global existence or blow-up of

the classical solutions of (1.1). An interesting and important question is to investigate the

evolution of asymptotic flat initial Riemann surfaces under the flow (1.1). In this case,

although the equation (1.1) can simply reduce to (1.8), (1.8) is still a fully nonlinear wave

equation, only a few results have been known even for its Cauchy problem. Our main

result, Theorem 1.1, gives a lower bound on the life-span of the classical solution of the

Cauchy problem (1.8)-(1.9). This theorem shows that the smooth evolution of asymptotic

flat initial Riemann surfaces under the flow (1.1) exists at least on the interval [0, Tε].

The paper is organized as follows. In Section 2 we establish some new estimates on the

solutions of linear wave equations in two space variables, these estimates play an important

role in the proof of Theorem 1.1. Based on this, we prove Theorem 1.1 in Section 3, which

gives a lower bound of the life-span of classical solutions to the hyperbolic geometric flow

with asymptotic flat initial Riemann surfaces.

2 Some useful lemmas

Following Klainerman [11], we introduce a set of partial differential operators

Z = {∂i (i = 0, 1, · · · , n); L0; Ωij (1 ≤ i < j ≤ n); Ω0i (i = 1, · · · , n)}, (2.1)

where

∂0 =
∂

∂t
, ∂i =

∂

∂xi
(i = 1, · · · , n), (2.2)

L0 = t∂0 +
n∑

i=1

xi∂i, (2.3)

Ωij = xi∂j − xj∂i (1 ≤ i < j ≤ n) (2.4)

and

Ω0i = t∂i + xi∂0 (i = 1, · · · , n). (2.5)

Let ZI denote a product of |I| of the vector fields (2.2)-(2.5), where I = (I1, · · · , Iσ) is

a multi-index, |I| = I1 + · · · + Iσ, σ is the number of partial differential operators in

Z : Z = (Z1, · · · , Zσ) and

ZI = ZI1
1 · · ·ZIσ

σ . (2.6)
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Throughout this paper, we use the following notations: Lp(Rn) (1 ≤ p ≤ ∞) stands

for the usual space of all Lp(Rn) functions on Rn with the norm ‖f‖Lp , Hs denotes s-order

Sobolev space on Rn with the norm

‖f‖Hs = ‖(1 + |ξ|) s
2 f̂‖L2 ,

where s is a given real number.

The following lemma has been proved in Li and Zhou [15].

Lemma 2.1 For any given multi-index I = (I1, · · · , Iσ), we have

[¤, ZI ] =
∑

|J |≤|I|−1

AIJZJ¤ (2.7)

and

[∂i, Z
I ] =

∑

|J |≤|I|−1

BIJZJ∂ =
∑

|J |≤|I|−1

B̃IJ∂ZJ (i = 0, 1, · · · , n), (2.8)

where [·, ·] stands for the Poisson bracket, J = (J1, · · · , Jσ) a multi-index, ¤ denotes the

wave operator, ∂ =
(

∂

∂t
,

∂

∂x1
, · · · ,

∂

∂xn

)
and AIJ , BIJ , B̃IJ stand for constants.

Lemma 2.2 Assume that n ≥ 1. Let u be a solution of the following Cauchy problem




φtt −4φ = f,

t = 0 : u = φ0(x), ut = φ1(x).
(2.9)

Then

‖∂φ(t, ·)‖Hs ≤ C(‖∂xφ0‖Hs + ‖φ1‖Hs +
∫ t

0
‖f(τ, ·)‖Hs), (2.10)

provided that all norms appearing in the right-hand side of (2.10) are bounded.

Proof. Taking the Fourier transformation on the variable x in (2.9) leads to




φ̂tt + |ξ|2φ̂ = f̂(t, ξ),

t = 0 : φ̂ = φ̂0(ξ), φ̂t = φ̂1(ξ).
(2.11)

Solving the initial value problem (2.11) gives

φ̂(t, ξ) = cos(t|ξ|)φ̂0(ξ) +
sin(t|ξ|)
|ξ| φ̂1(ξ) +

∫ t

0

sin((t− τ)|ξ|)
|ξ| f̂(τ, ξ)dτ. (2.12)

Thanks to (2.12), we obtain

∂tφ̂(t, ξ) = −|ξ| sin(t|ξ|)φ̂0(ξ) + cos(t|ξ|)φ̂1(ξ) +
∫ t

0
cos((t− τ)|ξ|)f̂(τ, ξ)dτ (2.13)
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and

|ξ|φ̂(t, ξ) = |ξ| cos(t|ξ|)φ̂0(ξ) + sin(t|ξ|)φ̂1(ξ) +
∫ t

0
sin((t− τ)|ξ|)f̂(τ, ξ)dτ. (2.14)

It follows from (2.13) and Minkowski inequality that

‖∂tφ(t, ·)‖Hs ≤ ‖(1 + |ξ|) s
2 |ξ| sin(t|ξ|)φ̂0(ξ)‖L2 + ‖(1 + |ξ|) s

2 cos(t|ξ|)φ̂1(ξ)‖L2

+
∫ t

0
‖(1 + |ξ|) s

2 cos((t− τ)|ξ|)f̂(τ, ξ)‖L2dτ

≤ C

(
‖∂xφ0‖Hs + ‖φ1‖Hs +

∫ t

0
‖f(τ, ·)‖Hs

)
.

(2.15)

Similarly, we have

‖∂xφ(t, ·)‖Hs ≤ C

(
‖∂xφ0‖Hs + ‖φ1‖Hs +

∫ t

0
‖f(τ, ·)‖Hs

)
. (2.16)

Thus, (2.10) comes from (2.15) and (2.16) immediately. This proves Lemma 2.2. ¥

Lemma 2.3 Let φ be a solution of the Cauchy problem




φtt −4φ =
n∑

j=0

aj∂jfj ,

t = 0 : φ = 0, φt = 0

(2.17)

Then

‖φ(t, ·)‖L2 ≤ C




n∑

j=0

∫ t

0
‖fj(τ, ·)‖L2dτ + ‖f0(0, ·)‖L2


 . (2.18)

In particular, for n ≥ 2 it holds that

|φ(t, x)| ≤ C(1 + t)−
n−1

2





∫ t

0
(1 + τ)

n−1
2

n∑

j=0

‖fj(τ, ·)‖L∞dτ

+
∫ t

0
(1 + τ)−

n+1
2

n∑

j=0

∑

|I|≤n+1

‖ZIfj(τ, ·)‖L1dτ



 .

(2.19)

Proof. Taking the Fourier transformation on the variable x in (2.17) yields




φ̂tt + |ξ|2φ̂ =
n∑

j=1

√−1ajξj f̂j + a0∂tf̂0,

t = 0 : φ̂ = 0, φ̂t = 0.

(2.20)

Solving the initial value problem (2.20) gives

φ̂(t, ξ) =
n∑

j=1

aj

∫ t

0

sin((t− τ)|ξ|)
|ξ|

√−1ξj f̂jdτ + a0

∫ t

0

sin((t− τ)|ξ|)
|ξ| ∂tf̂0dτ. (2.21)
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By Minkowski inequality, we have
∥∥∥∥∥∥

n∑

j=1

aj

∫ t

0

sin((t− τ)|ξ|)
|ξ|

√−1ξj f̂jdτ

∥∥∥∥∥∥
L2

≤ C
n∑

j=1

‖fj(τ, ·)‖L2dτ. (2.22)

Using the integration by parts, we obtain

a0

∫ t

0

sin((t− τ)|ξ|)
|ξ| ∂tf̂0dτ = a0

∫ t

0

sin((t− τ)|ξ|)
|ξ| df̂0

= −a0
sin(t|ξ|)
|ξ| f̂0(0, ξ) + a0

∫ t

0
cos((t− τ)|ξ|)f̂0(τ, ξ)dτ.

It follows from the Minkowski inequality that
∥∥∥∥a0

∫ t

0

sin((t− τ)|ξ|)
|ξ| ∂tf̂0dτ

∥∥∥∥
L2

≤ |a0|
∥∥∥∥
sin(t|ξ|)
|ξ| f̂0(0, ξ)

∥∥∥∥
L2

+ |a0|
∥∥∥∥
∫ t

0
cos((t− τ)|ξ|)f̂0(τ, ξ)dτ

∥∥∥∥
L2

≤ C‖f(0, ·)‖Ḣ−1 + C

∫ t

0
‖f0(τ, ·)‖L2dτ.

(2.23)

Noting the definition of Ḣ−1 and using Hölder inequality, we have

‖f(0, ·)‖Ḣ−1 = sup
v∈H1,v 6=0

∫
Rn f(0, ξ)v(ξ)dξ

‖v‖H1

≤ ‖f(0, ·)‖L2 . (2.24)

Combining (2.23) and (2.24) yields
∥∥∥∥a0

∫ t

0

sin((t− τ)|ξ|)
|ξ| ∂tf̂0dτ

∥∥∥∥
L2

≤ C‖f(0, ·)‖L2 + C

∫ t

0
‖f0(τ, ·)‖L2dτ. (2.25)

Thus, we obtain (2.18) immediately from (2.21), (2.22), (2.25) and Minkowski inequality.

The proof of (2.19) can be found in Li and Zhou [16], here we omit it. Thus the proof

of Lemma 2.3 is completed. ¥
The following lemma comes from Klainerman [10].

Lemma 2.4 Suppose that φ is C2 smooth and satisfies

¤φ +
n∑

j,k=0

γjk(t, x)∂j∂kφ = F (0 ≤ t ≤ T ),

and suppose furthermore that

φ −→ 0 as |x| → ∞.

If

|γ| =
n∑

j,k=0

|γjk| ≤ 1
2

(0 ≤ t ≤ T ),
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then, for any given t ∈ [0, T ], it holds that

‖∂φ(t, ·)‖L2 ≤ 2 exp
{∫ t

0
2| ˙γ(τ)|dτ

}
‖∂φ(0, ·)‖L2 +2

∫ t

0
exp

{∫ t

s
2| ˙γ(τ)|dτ

}
‖F (s, ·)‖L2ds,

(2.26)

where

|γ̇(t)| = sup |∂iγ
jk(t, ·)|.

Lemma 2.5 Suppose that G = G(w) is a sufficiently smooth function of w = (w1, · · · , wm)

with

G(0) = 0. (2.27)

For any given integer N ≥ 0, if a vector function w = w(t, x) satisfies

∑

|I|≤[N
2

]

‖ZIw(t, ·)‖L∞ ≤ ν0, ∀ t ∈ [0, T ], (2.28)

where [·] stands for the integer part of a real number and ν0 is a positive constant, then it

holds that

∑

|I|≤N

‖ZIG(w(t, ·))‖LP ≤ C(ν0)
∑

|I|≤N

‖ZIw(t, ·)‖Lp , ∀ t ∈ [0, T ], (2.29)

provided that all norms appearing on the right-hand side of (2.29) are bounded, where

C(ν0) is a positive constant depending on ν0, and p is a real number with 1 ≤ p ≤ ∞.

The proof of Lemma 2.5 can be found in Li and Chen [14].

Lemma 2.6 Assume that I = (I1, · · · , Iσ) and J = (J1, · · · , Jσ) is a multi-index. If a

vector function φ = φ(t, x) satisfies

∑

|J |≤[
|I|
2

]

‖ZJφ(t, ·)‖L∞ ≤ ν0, ∀ t ∈ [0, T ], (2.30)

then it holds that

‖ZI((e−φ − 1)∂iφ)(t, ·)‖L2 ≤ C(ν0)
∑

|I1|≤|I|

∑

|I2|≤[
|I|−1

2
]

‖ZI1φ(t, ·)‖L2‖ZI2∂iφ(t, ·)‖L∞+

C(ν0)
∑

|I2|≤|I|

∑

|I1|≤[
|I|
2

]

‖ZI1φ(t, ·)‖L∞‖ZI2∂iφ(t, ·)‖L2 .

(2.31)

provided that all norms appearing on the right-hand side of (2.31) are bounded.
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Proof. When |I| = 0, by Lemma 2.5 we have

‖(e−φ − 1)∂iφ(t, ·)‖L2 ≤ ‖(e−φ − 1)(t, ·)‖L∞‖∂iφ(t, ·)‖L2

≤ C(ν0)‖φ(t, ·)‖L∞‖∂iφ(t, ·)‖L2 .

(2.32)

For |I| ≥ 1, it follows from Minkowski inequality and Lemma 2.5 that

‖ZI((e−φ − 1)∂iφ)(t, ·)‖L2 ≤ C
∑

|I1|+|I2|≤|I|,|I1|>|I2|
‖ZI1(e−φ − 1)(t, ·)‖L2‖ZI2∂iφ(t, ·)‖L∞+

C
∑

|I1|+|I2|≤|I|,|I1|≤|I2|
‖ZI1(e−φ − 1)(t, ·)‖L∞‖ZI2∂iφ(t, ·)‖L2

≤ C(ν0)
∑

|I1|≤|I|

∑

|I2|≤[
|I|−1

2
]

‖ZI1φ(t, ·)‖L2‖ZI2∂iφ(t, ·)‖L∞+

C(ν0)
∑

|I2|≤|I|

∑

|I1|≤[
|I|
2

]

‖ZI1φ(t, ·)‖L∞‖ZI2∂iφ(t, ·)‖L2 .

(2.33)

(2.31) follows from (2.32) and (2.33) immediately. Thus the proof of Lemma 2.6 is com-

pleted. ¥

Lemma 2.7 Suppose that φ0(x), φ1(x) ∈ C∞(R2) and suppose furthermore that there

exist two positive constants A ∈ R+ and k ∈ R+ such that

|φ0(x)| ≤ A

(1 + |x|)k
, |φ1(x)| ≤ A

(1 + |x|)k+1
(k > 1). (H)

If φ = φ(t, x) is a solution of the following Cauchy problem




φtt −4φ = 0,

t = 0 : φ = φ0(x), φt = φ1(x).
(2.34)

Then it holds that

|φ(t, x)| ≤





CA√
1 + t + |x|(1 + |t− |x||)k− 1

2

(|x| ≥ t),

CA√
1 + t + |x|

√
1 + |t− |x|| (|x| ≤ t).

(2.35)

Remark 2.1 Here we would like to mention that, if the condition (H) is replaced by

|φ0(x)| ≤ A

(1 + |x|)k+1
, |φ1(x)| ≤ A

(1 + |x|)k+1
(k > 1). (H ′)
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Tsuyata [18] has showed that the solution of the Cauchy problem (2.34) satisfies the fol-

lowing decay estimate

|φ(t, x)| ≤ CA√
1 + t + |x|

√
1 + |t− |x|| .

Obviously, Lemma 2.7 improve the Tsuyata’s result given in [18].

Proof of Lemma 2.7. It is easy to see that the solution of (2.34) reads

φ(t, x) =
1

2πt2

∫

|x−y|≤t

tφ0(y) + t2φ1(y) + t∇φ0(y) · (y − x)

(t2 − |y − x|2) 1
2

dy. (2.36)

We first estimate | 1
2πt

∫

|x−y|≤t

φ0(y)

(t2 − |y − x|2) 1
2

dy|.
Introduce

x = (|x| cos θ, |x| sin θ), y = (r cos(θ + ψ), r sin(θ + ψ))

and let χ be the characteristic function of positive numbers. Then
∣∣∣∣∣

1
2πt

∫

|x−y|≤t

φ0(y)

(t2 − |y − x|2) 1
2

dy

∣∣∣∣∣

≤ A

2πt

∫

|x−y|≤t

1√
t2 − |y − x|2(1 + |y|)k

dy

≤ A

2πt

(∫ t+|x|

|t−|x||

r

(1 + r)k

∫ ϕ

−ϕ

1√
t2 − |x|2 − r2 + 2r|x| cos ψ

dψdr+

χ(t− |x|)
∫ t−|x|

0

r

(1 + r)k

∫ π

−π

1√
t2 − |x|2 − r2 + 2r|x| cos ψ

dψdr

)
,

(2.37)

where

ϕ = arccos
|x|2 + r2 − t2

2|x|r .

Let h(y) be a continuous function on R and y = (r cos(θ + ψ), r sin(θ + ψ)). Define

H(t, |x|, r, θ, h) =





∫ ϕ

−ϕ

h(r, θ + ψ)√
t2 − |x|2 − r2 + 2|x|r cos ψ

dψ,

∣∣∣∣
|x|2 + r2 − t2

2|x|r

∣∣∣∣ ≤ 1,

∫ π

−π

h(r, θ + ψ)√
t2 − |x|2 − r2 + 2|x|r cos ψ

dψ,

∣∣∣∣
|x|2 + r2 − t2

2|x|r

∣∣∣∣ ≥ 1

and

H(t, |x|, r) = H(t, |x|, r, θ, 1),

where, as before, ϕ is given by

ϕ = arccos
|x|2 + r2 − t2

2|x|r .

The following proposition has been proved in Kovalyov [13].
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Proposition 2.1 (I) If

t ≥ |x|+ r and
∣∣∣∣
|x|2 + r2 − t2

2|x|r

∣∣∣∣ ≥ 1,

then H(t, |x|, r) satisfies

H(t, |x|, r) ≤ C
ln

{
2 + r|x|

t2−(r+|x|)2
}

√
t2 − |x|2 − r2

≤ C

t2 − (r + |x|)2 , (2.38)

here and hereafter C stands for some constants.

(II) If

t ≤ |x|+ r and
∣∣∣∣
|x|2 + r2 − t2

2|x|r

∣∣∣∣ ≤ 1,

then

H(t, |x|, r) ≤ C√
r|x| ln

{
2 +

r|x|χ(t− |x|)
(r + |x|)2 − t2

}
, (2.39)

where χ is the characteristic function of positive numbers.

We now continue to estimate (2.37).

To do so, we distinguish the following two cases: |x| ≥ t and |x| ≤ t.

Case I: |x| ≥ t

It follows from (2.39) that
∣∣∣∣∣

1
2πt

∫

|x−y|≤t

φ0(y)

(t2 − |y − x|2) 1
2

dy

∣∣∣∣∣ ≤
CA

t
√
|x|

∫ t+|x|

|x|−t

1

(1 + r)k− 1
2

dr. (2.40)

In the present situation, we distinguish the following cases: t ≥ 1 and 0 < t < 1.

Case I-A: t ≥ 1

In this case, according to k, we distinguish the following three cases:

Case I-A-1: k > 3
2

In the present situation, it holds that

CA

t
√
|x|

∫ t+|x|

|x|−t

1

(1 + r)k− 1
2

dr =
CA

t
√
|x|(1 + |x| − t)k− 3

2

[
1−

(
1 + |x| − t

1 + |x|+ t

)k− 3
2

]
.

Noting

1− sk− 3
2 ≤ C(1− s), ∀ s ∈ [0, 1]

and

1− 1 + |x| − t

1 + |x|+ t
=

2t

1 + |x|+ t
,

11



we have
∣∣∣∣∣

1
2πt

∫

|x−y|≤t

φ0(y)

(t2 − |y − x|2) 1
2

dy

∣∣∣∣∣ ≤ CA√
|x|(1 + |x| − t)k− 3

2 (1 + |x|+ t)
,

≤ CA√
|x|+ t(1 + |x| − t)k− 1

2

.

(2.41)

Case I-A-2: k = 3
2

It follows from (2.40) that
∣∣∣∣∣

1
2πt

∫

|x−y|≤t

φ0(y)

(t2 − |y − x|2) 1
2

dy

∣∣∣∣∣ ≤ CA

t
√
|x|

∫ t+|x|

|x|−t

1
(1 + r)

dr =
CA

t
√
|x| ln

{
1 +

2t

1 + |x| − t

}

≤ CA√
|x|(1 + |x| − t)

≤ CA√
|x|+ t(1 + |x| − t)

.

(2.42)

Case I-A-3: 1 < k < 3
2

In the present situation, it follows from (2.40) that
∣∣∣∣∣

1
2πt

∫

|x−y|≤t

φ0(y)

(t2 − |y − x|2) 1
2

dy

∣∣∣∣∣ ≤ CA

t
√
|x|

[
(1 + t + |x|) 3

2
−k − (1 + |x| − t)

3
2
−k

]

=
CA

t
√
|x|(1 + |x| − t)k− 3

2

[(
1 + t + |x|
1 + |x| − t

) 3
2
−k

− 1

]
.

Noting the fact that 1 < k < 3
2 , we have

(
1 + t + |x|
1 + |x| − t

) 3
2
−k

− 1 ≤ Ct

1 + |x| − t
.

Hence, ∣∣∣∣∣
1

2πt

∫

|x−y|≤t

φ0(y)

(t2 − |y − x|2) 1
2

dy

∣∣∣∣∣ ≤
CA√

|x|+ t(1 + |x| − t)k− 1
2

. (2.43)

Summarizing the above argument, for the case that |x| ≥ t and t ≥ 1, we obtain from

(2.41)-(2.43) that
∣∣∣∣∣

1
2πt

∫

|x−y|≤t

φ0(y)

(t2 − |y − x|2) 1
2

dy

∣∣∣∣∣ ≤
CA√

1 + |x|+ t(1 + |x| − t)k− 1
2

(k > 1). (2.44)

Case I-B: |x| ≥ t and 0 < t < 1

We next consider the case that |x| ≥ t and 0 < t < 1. In this case, we distinguish the

following two cases.

Case I-B-1: |t− |x|| ≤ 1

12



Introducing the variable r = |x− y|, we have
∣∣∣∣∣

1
2πt

∫

|x−y|≤t

φ0(y)

(t2 − |y − x|2) 1
2

dy

∣∣∣∣∣ ≤ 1
2πt

∫

|x−y|≤t

CA

(t2 − |y − x|2) 1
2 (1 + |y|)k

dy

≤ CA

πt

∫ t

0

r√
t2 − r2

dr ≤ CA√
1 + t + |x|(1 + |x| − t)k− 1

2

.

(2.45)

Case I-B-2: |t− |x|| > 1

Noting the fact that |x| ≥ t and 0 < t < 1, we observe

|x| > t + 1.

Thus, by the case (I-A), we have
∣∣∣∣∣

1
2πt

∫

|x−y|≤t

φ0(y)

(t2 − |y − x|2) 1
2

dy

∣∣∣∣∣ ≤
CA√

1 + t + |x|(1 + |x| − t)k− 1
2

. (2.46)

Therefore, combining (2.44)-(2.46) gives
∣∣∣∣∣

1
2πt

∫

|x−y|≤t

φ0(y)

(t2 − |y − x|2) 1
2

dy

∣∣∣∣∣ ≤
CA√

1 + t + |x|(1 + |x| − t)k− 1
2

, (2.47)

provided that |x| ≥ t.

Case II: |x| ≤ t

We now consider the case that |x| ≤ t.

It follows from (2.37) that
∣∣∣∣∣

1
2πt

∫

|x−y|≤t

φ0(y)

(t2 − |y − x|2) 1
2

dy

∣∣∣∣∣ ≤ I + II, (2.48)

where

I =
A

2πt

∫ t+|x|

t−|x|

H(t, |x|, r)r
(1 + r)k

, II =
A

2πt

∫ t−|x|

0

H(t, |x|, r)r
(1 + r)k

.

We next estimate I and II by distinguishing the follows cases.

Case II-A: t + |x| ≥ 1

It follows from (2.39) that

I ≤ CA

t
√
|x|

∫ t+|x|

t−|x|
ln

{
2 +

|x|
|x|+ r − t

}
1

(1 + r)k− 1
2

dr. (2.49)
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Introducing the variable ξ = |x|+ r − t, we have

I ≤ CA

t
√
|x|

∫ 2|x|

0
ln

{
2 +

|x|
ξ

}
1

(1 + ξ + t− |x|)k− 1
2

dξ

≤ CA

t
√
|x|(1 + t− |x|)k− 1

2

∫ 2|x|

0
ln

{
3|x|
ξ

}
dξ

=
CA

t
√
|x|(1 + t− |x|)k− 1

2

[2|x| ln(3|x|)− 2|x| ln(2|x|) + 2|x|]

≤ CA√
t(1 + t− |x|)k− 1

2

≤ CA√
t + |x|(1 + t− |x|)k− 1

2

≤ CA√
1 + t + |x|(1 + t− |x|)k− 1

2

.

(2.50)

We now estimate II.

By (2.38), we have

II ≤ CA

t

∫ t−|x|

0

1√
t2 − (|x|+ r)2(1 + r)k−1

dr

≤ CA

t
√

t + |x|

∫ t−|x|

0

1√
t− |x| − r(1 + r)k−1

dr.

Let

ρ =
√

t− |x| − r.

Then

II ≤ CA

t
√

t + |x|

∫ √
t−|x|

0

1
(1 + t− |x| − ρ2)k−1

dρ

≤ CA

t
√

t + |x|(1 + t− |x|) k−1
2

∫ √
t−|x|

0

1
(
√

1 + t− |x| − ρ)k−1
dρ.

(2.51)

In order to estimate II, we distinguish the following three cases.

Case II-A-1: k > 2

In the present situation, it follows from (2.51) that

II ≤ CA

t
√

t + |x|(1 + t− |x|) k−1
2

{
1

(
√

1 + t− |x| −
√

t− |x|)k−2
− (

√
1 + t− |x|)k−2

}

≤ CA

t
√

t + |x|(1 + t− |x|) k−1
2

(
√

1 + t− |x|+
√

t− |x|)k−2

≤ CA

t
√

t + |x|
√

1 + t− |x| ≤
CA√

1 + t + |x|
√

1 + t− |x| .
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Case II-A-2: k = 2

In this case, by (2.51) we have

II ≤ CA

t
√

t + |x|
√

1 + t− |x| × ln

{ √
1 + t− |x|√

1 + t− |x| −
√

t− |x|

}

≤ CA

t
√

t + |x|
√

1 + t− |x| ×
√

1 + t− |x|√
1 + t− |x| −

√
t− |x|

≤ CA√
1 + t + |x|

√
1 + t− |x| .

Case II-A-3: 1 < k < 2

In this situation, we obtain from (2.51) that

II ≤ CA

t
√

t + |x|(1 + t− |x|) k−1
2

{
(1 + t− |x|)−k+2

2 − (
√

1 + t− |x| −
√

t− |x|)−k+2
}

≤ CA√
1 + t + |x|

√
1 + t− |x| .

Summarizing the above argument gives

II ≤ CA√
1 + t + |x|

√
1 + t− |x| , (2.52)

provided that t + |x| ≥ 1.

Case II-B: 0 < t + |x| < 1

As before, introducing the variable r = |x− y|, we have
∣∣∣∣∣

1
2πt

∫

|x−y|≤t

φ0(y)

(t2 − |y − x|2) 1
2

dy

∣∣∣∣∣ ≤ 1
2πt

∫

|x−y|≤t

CA

(t2 − |y − x|2) 1
2 (1 + |y|)k

dy

≤ CA

πt

∫ t

0

r√
t2 − r2

dr ≤ CA√
1 + t + |x|

√
1 + t− |x| .

(2.53)

Combining (2.50) and (2.52)-(2.53) leads to
∣∣∣∣∣

1
2πt

∫

|x−y|≤t

φ0(y)

(t2 − |y − x|2) 1
2

dy

∣∣∣∣∣ ≤
CA√

1 + t + |x|
√

1 + t− |x| (|x| ≤ t). (2.54)

(2.47) and (2.54) imply

∣∣∣∣∣
1

2πt

∫

|x−y|≤t

φ0(y)

(t2 − |y − x|2) 1
2

dy

∣∣∣∣∣ ≤





CA√
1 + t + |x|(1 + |t− |x||)k− 1

2

(|x| ≥ t),

CA√
1 + t + |x|

√
1 + |t− |x|| (|x| ≤ t).

(2.55)

15



By Tsutaya [18], we have

∣∣∣∣∣
1
2π

∫

|x−y|≤t

φ1(y)

(t2 − |y − x|2) 1
2

dy

∣∣∣∣∣ ≤





CA√
1 + t + |x|(1 + |t− |x||)k− 1

2

(|x| ≥ t),

CA√
1 + t + |x|

√
1 + |t− |x|| (|x| ≤ t)

(2.56)

and

∣∣∣∣∣
1

2πt

∫

|x−y|≤t

∇φ0(y) · (y − x)

(t2 − |y − x|2) 1
2

dy

∣∣∣∣∣ ≤





CA√
1 + t + |x|(1 + |t− |x||)k− 1

2

(|x| ≥ t),

CA√
1 + t + |x|

√
1 + |t− |x| (|x| ≤ t).

(2.57)

(2.35) follows from (2.55)-(2.57) and (2.36) immediately. Thus, the proof of Lemma 2.7 is

completed. ¥

Lemma 2.8 Suppose that φ is a solution to the Cauchy problem

φtt −4φ = g

with zero initial data. Then

|φ(t, x)| ≤ C(1 + t + |x|)−n−1
2

∑

|I|≤n−1

∫ t

0
‖(ZIg)(τ, ·)/(1 + τ + | · |)n−1

2 ‖L1dτ. (2.58)

In particular, for n = 2 and p ∈ (1, 2] it holds that

‖φ(t, ·)‖Lp(R2) ≤ C(1 + t)
2
p
−1

∫ t

0
‖g(τ, ·)‖L1(R2)dτ. (2.59)

Proof. The inequality (2.58) comes from Hömander [4] or Klainerman [11] directly, while

the proof of (2.59) has been proved by Li and Zhou [15]. ¥

Lemma 2.9 Suppose that n = 2, and suppose furthermore that φ = φ(t, x) is a solution

of the wave equation

φtt −∆φ = |g1g2(t, x)| (2.60)

with zero initial data. Then it holds that

‖φ(t, ·)‖L2(R2) ≤ C(1+t)
1
4





∑

|I|≤1

∫ t

0
(1 + τ)−

1
2 ‖Γg1(τ, ·)‖2

L2(R2)dτ





1
2 {∫ t

0
‖g2(τ, ·)‖2

L2(R2)dτ

} 1
2

(2.61)
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and

(1+t)
1
2 ‖φ(t, ·)‖L∞(R2) ≤ C





∫ t

0

∑

|I|≤1

‖ΓIg1(τ, ·)‖2
L2

dτ√
1 + τ





1
2




∫ t

0

∑

|I|≤1

‖ΓIg2(τ, ·)‖2
L2

dτ√
1 + τ





1
2

.

(2.62)

Proof. The proof of (2.61) can be found in [15]. In what follows, we prove (2.62).

Let E be the forward fundamental solution of the wave operator. By the positivity of

E and the Hölder inequality, we have

φ(t, x) ≤ E ∗ |g1g2(t, x)| ≤ (
E ∗ g2

1(t, x)
) 1

2
(
E ∗ g2

2(t, x)
) 1

2 . (2.63)

It follows from Lemma 2.8 and Hölder inequality that

E ∗ g2
1(t, x) ≤ C(1 + t)−

1
2

∑

|I|≤1

∫ t

0
‖ZIg1(τ, ·)‖2

L2

dτ√
1 + τ

. (2.64)

Similarly,

E ∗ g2
2(t, x) ≤ C(1 + t)−

1
2

∑

|I|≤1

∫ t

0
‖ZIg2(τ, ·)‖2

L2

dτ√
1 + τ

. (2.65)

(2.62) comes from (2.63)-(2.65) immediately. This proves Lemma 2.9. ¥
The following lemma can be found in Klainerman [12].

Lemma 2.10 Assume that p ∈ [1,∞) and N is an integer satisfying N > n
p . Then it

holds that

|φ(t, x)| ≤ C(1 + t + |x|)−n−1
p (1 + |t− |x||)− 1

p

∑

|I|≤N

‖ZIφ(t, ·)‖Lp , (2.66)

provided that all norms appearing on the right-hand side of (2.66) are bounded.

3 Lower bound of life-span

This section is devoted to the proof of Theorem 1.1. In order to prove Theorem 1.1, it

suffices to show the following theorem.

Theorem 3.1 Suppose that u0(x), u1(x) ∈ C∞(R2) and satisfy that there exist two posi-

tive constants A ∈ R+ and k ∈ R+ such that

|u0(x)| ≤ A

(1 + |x|)k
, |u1(x)| ≤ A

(1 + |x|)k+1
(k > 1).
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Then there exist two positive constants δ and ε0 such that for any fixed ε ∈ (0, ε0], the

Cauchy problem (1.8)-(1.9) has a unique C∞ solution on the interval [0, Tε], where Tε is

given by

Tε =
δ

ε
4
3

− 1. (3.1)

Proof. The local existence of classical solutions has been proved by the method of Picard

iteration (see Sogge [17] and Hörmander [5]). In what follows, we prove Theorem 3.1 by

the method of continuous induction, or say, the bootstrap argument.

Let l1 and l2 be two positive integers such that

l1 − 3 ≥ l2 ≥ 1
2
[l1] + 1.

Introduce 



M1(t) =
∑

|I|≤l1

‖∂ZIu(t, ·)‖L2(R2),

M2(t) =
∑

|I|≤l1

‖ZIu(t, ·)‖L2(R2),

N1(t) =
∑

|I|≤l2

‖∂ZIu(t, ·)‖L∞(R2),

N2(t) =
∑

|I|≤l2

‖ZIu(t, ·)‖L∞(R2).

(3.2)

By the bootstrap argument, for the time being it is supposed that there exist some positive

constants Mi, Ni (i = 1, 2) and µ such that




M1(t) ≤ M1ε,

M2(t) ≤ M2ε(1 + t)
1
4 ,

(1 + t)
1
2 N1(t) ≤ N1ε,

(1 + t)
1
2 N2(t) ≤ N2ε,

(3.3)

provided that ε, µ are suitably small and satisfy

ε(1 + t)
3
4 ≤ µ. (3.3a)
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According to the bootstrap argument, in what follows we show that, by choosing Mi

and Ni (i = 1, 2) sufficiently large and ε suitably small such that




M1(t) ≤ 1
2
M1ε,

M2(t) ≤ 1
2
M2ε(1 + t)

1
4 ,

(1 + t)
1
2 N1(t) ≤ 1

2
N1ε,

(1 + t)
1
2 N2(t) ≤ 1

2
N2ε,

(3.3b)

provided that ε, µ are suitably small and (3.3a) holds.

We first estimate M1(t).

The equation (1.8) can be rewritten as

¤u = (e−u − 1)∆u− u2
t . (3.4)

It follows from Lemma 2.1 and (3.4) that

¤ZIu =
∑

|I1|+|I2|≤|I|

∑

0≤i1,i2≤2

AII1I2Z
I1(e−u − 1)∂i1i2Z

I2u+

∑

|I1|+|I2|≤|I|

∑

0≤i1,i2≤2

ÃII1I2∂i1Z
I1u∂i2Z

I2u.

(3.5)

By Minkowski inequality, (3.2) and Lemma 2.5, for I with |I| ≤ l1 − 1 we have
∥∥∥∥∥∥

∑

|I1|+|I2|≤|I|

∑

0≤i1,i2≤2

AII1I2Z
I1(e−u − 1)∂i1i2Z

I2u(t, ·)
∥∥∥∥∥∥

L2

≤ C
∑

|I1|+|I2|≤|I|,|I1|>|I2|

∑

0≤i1,i2≤2

‖ZI1(e−u − 1)∂i1i2Z
I2u(t, ·)‖L2+

C
∑

|I1|+|I2|≤|I|,|I1|≤|I2|

∑

0≤i1,i2≤2

‖ZI1(e−u − 1)∂i1i2Z
I2u(t, ·)‖L2

≤ C
∑

|I1|+|I2|≤|I|,|I1|>|I2|

∑

0≤i1,i2≤2

‖ZI1(e−u − 1)‖L2‖∂i1i2Z
I2u(t, ·)‖L∞+

C
∑

|I1|+|I2|≤|I|,|I1|≤|I2|

∑

0≤i1,i2≤2

‖ZI1(e−u − 1)‖L∞‖∂i1i2Z
I2u(t, ·)‖L2

≤ C{M2(t)N1(t) + M1(t)N2(t)}.

(3.6)

provided that ε0 > 0 is suitably small.
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Again by Minkowski inequality and (3.2), for I with |I| ≤ l1 − 1 we get
∥∥∥∥∥∥

∑

|I1|+|I2|≤|I|

∑

0≤i1,i2≤2

ÃII1I2∂i1Z
I1u∂i2Z

I2u

∥∥∥∥∥∥
L2

≤ C
∑

|I1|+|I2|≤|I|,|I1|>|I2|

∑

0≤i1,i2≤2

‖∂i1Z
I1u(t, ·)‖L2‖∂i2Z

I1u(t, ·)‖L∞+

C
∑

|I1|+|I2|≤|I|,|I1|≤|I2|

∑

0≤i1,i2≤2

‖∂i1Z
I1u(t, ·)‖L∞‖∂i2Z

I1u(t, ·)‖L2

≤ CM1(t)N1(t).

(3.7)

On the other hand, noting Lemma 2.2 and using (3.5)-(3.7), for I with |I| ≤ l1 − 1 we

have

‖∂ZIu(t, ·)‖L2 ≤ C‖∂ZIu(0, ·)‖L2 + C

∫ t

0
[M2(τ)N1(τ) + M1(τ)N2(τ) + M1(τ)N1(τ)]dτ.

(3.8)

We now estimate ‖∂ZIu(t, ·)‖L2 (|I| = l1).

By Lemma 2.1 and (3.4),

¤ZIu = ZI¤u +
∑

|J |≤|I|−1

AIJZJ¤u

=
2∑

i,j=0

(e−u − 1)∂i∂jZ
Iu +

∑

|I1|+|I2|≤|I|,|I2|≤|I|−1

∑

0≤i1,i2≤2

ĀII1I2Z
I1(e−u − 1)∂i1i2Z

I2u

+
∑

|I1|+|I2|≤|I|,

∑

0≤i1,i2≤2

¯̄AII1I2∂i1Z
I1u∂i2Z

I2u.

Hence

¤ZIu +
2∑

i,j=0

(1− e−u)∂i∂jZ
Iu =

∑

|I1|+|I2|≤|I|,|I2|≤|I|−1

∑

0≤i1,i2≤2

ĀII1I2Z
I1(e−u − 1)∂i1i2Z

I2u

+
∑

|I1|+|I2|≤|I|,

∑

0≤i1,i2≤2

¯̄AII1I2∂i1Z
I1u∂i2Z

I2u.

(3.9)

Similar to the proof of (3.6), when ε0 > 0 is suitably small, for I with |I| = l1 it holds

that

‖
∑

|I1|+|I2|≤|I|,|I2|≤|I|−1

∑

0≤i1,i2≤2

ĀII1I2Z
I1(e−u−1)∂i1i2Z

I2u(t, ·)‖L2 ≤ C[M2(t)N1(t)+M1(t)N2(t)].

(3.10)
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Similar to the proof of (3.7), for I with |I| = l1 we have

‖
∑

|I1|+|I2|≤|I|,

∑

0≤i1,i2≤2

¯̄AII1I2∂i1Z
I1u∂i2Z

I2u(t, ·)‖L2 ≤ CM1(t)N1(t). (3.11)

On the other hand, because of (3.3), it holds that

2∑

i,j=0

|γij | ≤ CN2ε <
1
2
, (3.12)

provided that ε is suitably small, where γij = (1− e−u). Moreover, for |γ̇(t)| defined as in

Lemma 2.4, we have

2
∫ t

0
|γ̇(τ)|dτ ≤ CN1µ ≤ ln 2, (3.13)

provided that ε, µ are suitably small and (3.3a) holds. Thus, noting Lemma 2.4 and using

(3.9)-(3.13), for I with |I| = l1 we have

‖∂ZIu(t, ·)‖L2 ≤ 4‖∂ZIu(0, ·)‖L2 + C

∫ t

0
(M2(τ)N1(τ) + M1(τ)N2(τ) + M1(τ)N1(τ))dτ.

(3.14)

Combining (3.8) and (3.14) yields

M1(t) ≤ K1ε + C

∫ t

0
(M2(τ)N1(τ) + M1(τ)N2(τ) + M1(τ)N1(τ))dτ. (3.15)

We next estimate M2(t).

In the present situation, the equation (1.8) can be rewritten as

¤u =
2∑

i=1

∂i((e−u − 1)∂iu)− u2
t −

2∑

i=1

∂i(e−u − 1)∂iu. (3.16)

By Lemma 2.1 and (3.16), we obtain

¤ZIu =
∑

|I1|+|I2|≤|I|

∑

0≤i1,i2≤2

BII1I2∂i1

(
ZI

1 (e−u − 1)∂i2Z
I2u

)
+

∑

|I1|+|I2|≤|I|

∑

0≤i1,i2≤2

B̄II1I2∂i1Z
I1u∂i2Z

I2u+

∑

|I1|+|I2|≤|I|

∑

0≤i1,i2≤2

B̃II1I2∂i1

(
ZI1(e−u − 1)

)
∂i2Z

I2u.

Let

ZIu = w0 + w1 + w2 + w3, (3.17)

where w0, w1, w2 and w3 satisfy

¤w0 = 0, w0|t=0 = ZIu(0, x),
∂w0

∂t

∣∣∣∣
t=0

=
∂(ZIu)

∂t
(0, x), (3.18)
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¤w1 =
∑

|I1|+|I2|≤|I|

∑

0≤i1,i2≤2

BII1I2∂i1

(
ZI

1 (e−u − 1)∂i2Z
I2u

)
, w1|t=0 =

∂w1

∂t

∣∣∣∣
t=0

= 0,

(3.19)

¤w2 =
∑

|I1|+|I2|≤|I|

∑

0≤i1,i2≤2

B̄II1I2∂i1Z
I1u∂i2Z

I2u, , w2|t=0 =
∂w2

∂t

∣∣∣∣
t=0

= 0, (3.20)

and

¤w3 =
∑

|I1|+|I2|≤|I|

∑

0≤i1,i2≤2

B̃II1I2∂i1

(
ZI1(e−u − 1)

)
∂i2Z

I2u, w3|t=0 =
∂w3

∂t

∣∣∣∣
t=0

= 0,

(3.21)

respectively. Thanks to Lemma 2.7 and (3.18), we have

‖w0(t, ·)‖L2 ≤




Cε
√

ln(2 + t) (|x| ≤ t),

Cε (|x| ≥ t).
(3.22)

When ε0 > 0 is suitably small, noting Lemmas 2.3, 2.5 and using (3.19) and (3.2), we

obtain

‖w1(t, ·)‖L2 ≤ C




∫ t

0

∑

|I1|+|I2|≤|I|

∑

0≤i≤2

‖ZI1(e−u − 1)∂iZ
I2u(τ, ·)‖L2dτ +

∑

|I1|+|I2|≤|I|

∑

0≤i≤2

‖ZI1(e−u − 1)∂iZ
I2u(0, ·)‖L2




≤ C

∫ t

0
[M2(τ)N1(τ) + M1(τ)N2(τ)] dτ + Cε.

(3.23)

Noting Lemmas 2.9, 2.1 and using (3.20), (3.2) gives

‖w2(t, ·)‖L2 ≤ C(1 + t)
1
4

∑

|I1|+|I2|≤|I|,|I1|>|I2|

∑

|J |≤1

∑

0≤i1,i2≤2

{∫ t

0
(1 + τ)−

1
2 ‖ZJ∂i1Z

I2u(τ, ·)‖2
L2

} 1
2

×
{∫ t

0
‖∂i2Z

I1u(τ, ·)‖2
L2dτ

} 1
2

+

C(1 + t)
1
4

∑

|I1|+|I2|≤|I|,|I1|≤|I2|

∑

|J |≤1

∑

0≤i1,i2≤2

{∫ t

0
(1 + τ)−

1
2 ‖ZJ∂i1Z

I1u(τ, ·)‖2
L2

} 1
2

×
{∫ t

0
‖∂i2Z

I2u(τ, ·)‖2
L2dτ

} 1
2

≤ C(1 + t)
1
4

{∫ t

0
(1 + τ)−

1
2 M2

1 (τ)dτ

} 1
2
{∫ t

0
M2

1 (τ)dτ

} 1
2

.

(3.24)
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By Lemma 2.9, Minkowski inequality, Lemmas 2.1, 2.6 and (3.2), it follows from (3.21)

that

‖w3(t, ·)‖L2 ≤ C(1 + t)
1
4

∑

|I1|+|I2|≤|I|,|I1|>|I2|

∑

|J |≤1

∑

0≤i1,i2≤2

{∫ t

0
(1 + τ)−

1
2 ‖ZJ∂i2Z

I2u(τ, ·)‖2
L2dτ

} 1
2

×
{∫ t

0
‖∂i1Z

I1(e−u − 1)(τ, ·)‖L2dτ

} 1
2

+

C(1 + t)
1
4

∑

|I1|+|I2|≤|I|,|I1|≤|I2|

∑

|J |≤1

∑

0≤i1,i2≤2

{∫ t

0
(1 + τ)−

1
2 ‖ZJ∂i1Z

I1(e−u − 1)(τ, ·)‖2
L2dτ

} 1
2

×
{∫ t

0
‖∂i2Z

I2u(τ, ·)‖L2dτ

} 1
2

≤ C(1 + t)
1
4

∑

|I1|+|I2|≤|I|,|I1|>|I2|

∑

|J |≤1

∑

0≤i1,i2≤2

{∫ t

0
(1 + τ)−

1
2 ‖ZJ∂i2Z

I2u(τ, ·)‖2
L2dτ

} 1
2

×
{∫ t

0
(‖ZI1((e−u − 1)∂i1u)(τ, ·)‖2

L2 + ‖ZI1∂i1u(τ, ·)‖2
L2)dτ

} 1
2

+

C(1 + t)
1
4

∑

|I1|+|I2|≤|I|,|I1|≤|I2|

∑

|J |≤1

∑

0≤i1,i2≤2

{∫ t

0
(1 + τ)−

1
2
[‖ZJZI1((e−u − 1)∂i1u)(τ, ·)‖2

L2 +

‖ZJZI1∂i1u(τ, ·)‖2
L2

]
dτ

} 1
2 ×

{∫ t

0
‖∂i2Z

I2u(τ, ·)‖L2dτ

} 1
2

≤ C(1 + t)
1
4

{∫ t

0
(1 + τ)−

1
2 M2

1 (τ)dτ

} 1
2
{∫ t

0

[
M2

1 (τ)N2
2 (τ) + M2

2 (τ)N2
1 (τ) + M2

1 (τ)
]
dτ

} 1
2

+

C(1 + t)
1
4

{∫ t

0
(1 + τ)−

1
2
[
M2

1 (τ)N2
2 (τ) + M2

2 (τ)N2
1 (τ) + M2

1 (τ)
]
dτ

} 1
2

×
{∫ t

0
M2

1 (τ)dτ

} 1
2

≤ C(1 + t)
1
4

{∫ t

0
(1 + τ)−

1
2
[
M2

1 (τ)N2
2 (τ) + M2

2 (τ)N2
1 (τ) + M2

1 (τ)
]
dτ

} 1
2

×
{∫ t

0

[
M2

1 (τ)N2
2 (τ) + M2

2 (τ)N2
1 (τ) + M2

1 (τ)
]
dτ

} 1
2

.

(3.25)
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provided that ε0 > 0 is suitably small. Thus, combining (3.17) and (3.22)-(3.25) yields

M2(t) ≤ K2ε
√

ln(2 + t) + C

∫ t

0
(M2(τ)N1(τ) + M1(τ)N2(τ))dτ+

C(1 + t)
1
4

{∫ t

0
(1 + τ)−

1
2
[
M2

1 (τ)N2
2 (τ) + M2

2 (τ)N2
1 (τ) + M2

1 (τ)
]
dτ

} 1
2

×
{∫ t

0

[
M2

1 (τ)N2
2 (τ) + M2

2 (τ)N2
1 (τ) + M2

1 (τ)
]
dτ

} 1
2

.

(3.26)

We now estimate N2(t).

Using Lemma 2.7, we obtain from (3.18) that

(1 + t)
1
2 ‖w0(t, ·)‖L∞ ≤ Cε. (3.27)

Noting Lemmas 2.3, 2.5 and using (3.19), (3.2), when ε0 > 0 is suitably small, we have

(1 + t)
1
2 ‖w1(t, ·)‖L∞ ≤ C

∫ t

0
(1 + τ)

1
2

∑

|I1|+|I2|≤|I|

∑

0≤i≤2

‖ZI1(e−u − 1)∂iZ
I2u(τ, ·)‖L∞dτ+

C

∫ t

0
(1 + τ)−

3
2

∑

|I1|+|I2|≤|I|

∑

|J |≤3

∑

0≤i≤2

‖ZJ
(
ZI1(e−u − 1)∂iZ

I2u
)
(τ, ·)‖L1dτ

≤ C

{∫ t

0
(1 + τ)

1
2 N1(τ)N2(τ)dτ +

∫ t

0
(1 + τ)−

3
2 M1(τ)M2(t)dτ

}
.

(3.28)

Noting Lemma 2.9 and using (3.20) and (3.2), we obtain

(1 + t)
1
2 ‖w2(t, ·)‖L∞ ≤ C

∑

|I1|+|I2|≤|I|

∑

|J |=1

∑

0≤i1,i2≤2

{∫ t

0
‖ZJ(∂i1Z

I1u)(τ, ·)‖2
L2

dτ√
1 + τ

} 1
2

×
{∫ t

0
‖ZJ(∂i2Z

I2u)(τ, ·)‖2
L2

dτ√
1 + τ

} 1
2

≤ C

∫ t

0
M2

1 (τ)
dτ√
1 + τ

.

(3.29)
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By Lemmas 2.9, 2.1, 2.6, Minkowski inequality and (3.2), when ε0 > 0 is suitably small,

we obtain from (3.21) that

(1 + t)
1
2 ‖w3(t, ·)‖L∞ ≤ C

∑

|I1|+|I2|≤|I|

∑

|J |≤1

∑

0≤i1,i2≤2

{∫ t

0
‖ZJ

(
∂i1Z

I1(e−u − 1)
)
(τ, ·)‖2

L2

dτ√
1 + τ

} 1
2

×
{∫ t

0
‖ZJ(∂i2Z

I2u)(τ, ·)‖2
L2

dτ√
1 + τ

} 1
2

≤ C

{∫ t

0
(1 + τ)−

1
2
[
M2

1 (τ)N2
2 (τ) + M2

2 (τ)N2
1 (τ) + M2

1 (τ)
]
dτ

} 1
2
{∫ t

0
(1 + τ)−

1
2 M2

1 (τ)dτ

} 1
2

.

(3.30)

Collecting (3.17) and (3.27)-(3.30) gives

(1 + t)
1
2 N2(t) ≤ K3ε + C

∫ t

0
(1 + τ)

1
2 N1(τ)N2(τ)dτ + C

∫ t

0
(1 + τ)−

3
2 M1(τ)M2(t)dτ

+C

{∫ t

0
(1 + τ)−

1
2 (M2

1 (τ)N2
2 (τ) + M2

2 (τ)N2
1 (τ) + M2

1 (τ))dτ

} 1
2
{∫ t

0
(1 + τ)−

1
2 M2

1 (τ)dτ

} 1
2

.

(3.31)

Since, for the time being it supposed that (3.3) holds, (3.12) and (3.13) are true,

provided that ε0 is suitably small, and then, by (3.15), (3.26) and (3.31) it holds that

M1(t) ≤ K1ε + C(M2N1 + M1N2 + M1N1)ε2(1 + t)
3
4 , (3.32)

M2(t) ≤ K2ε
√

ln(2 + t) + C(M2N1 + M1N2 + M1N1)ε2(1 + t) (3.33)

and

(1 + t)
1
2 N2(t) ≤ K3ε + C(N1N2 + M1M2 + M2N1 + M1N2 + M2

1 )ε2
√

1 + t. (3.34)

On the other hand, by Lemma 2.10, we have

(1 + t)
1
2 N1(t) ≤ CM1(t). (3.35)

Thus, choosing

M1 ≥ 4K1, M2 ≥ 4K2, N2 ≥ 4K3, N1 ≥ 2CM1,

we obtain from (3.32)-(3.35) that




M1(t) ≤ 1
2M1ε,

M2(t) ≤ 1
2M2ε(1 + t)

1
4 ,

(1 + t)
1
2 N1(t) ≤ 1

2N1ε,

(1 + t)
1
2 N2(t) ≤ 1

2N2ε,

(3.36)
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provided that ε0 and µ are suitably small and satisfy

ε0(1 + t)
3
4 ≤ µ.

Take δ = µ
4
3 . Thus, the proof of Theorem 3.1 is completed. ¥
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