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1 Introduction

Let .# be an n-dimensional complete Riemannian manifold with Riemannian metric g;;.
The following evolutionary equation for the metric g;;
9%gi;
ot?

= —2R;; (1.1)

has been recently introduced by Kong and Liu [8] and named as hyperbolic geometric flow,
where R;; stands for the Ricci curvature tensor of g;;. For the study on the hyperbolic
geometric flow, we refer to the recent papers [1], [2], [7], [8] and [9].

We are interested in the evolution of a Riemannian metric g;; on a Riemann surface .7
under the flow (1.1). On a surface, the hyperbolic geometric flow equation (1.1) simplifies,
because all of the information about curvature is contained in the scalar curvature function
R. In our notation, R = 2K where K is the Gauss curvature. The Ricci curvature is given
by

Rij = %Rgz‘j’ (1.2)

and the hyperbolic geometric flow equation (1.1) simplifies the following equation for the

special metric
629@'
ot?

The metric for a surface can always be written (at least locally) in the following form

= —Rgij. (1.3)

gij = v(t, x,y)dij, (1.4)

where v(t, z,y) > 0. Therefore, we have

Al
R=-="Y (1.5)
v
Thus the equation (1.3) becomes
9*v  Alnv
oz~ v U
namely,
v — Alnv = 0. (1.6)
Denote
u=Inwv, (1.7)
then the wave equation (1.6) reduces to
Uy — e “Au = —uf. (1.8)



(1.8) is a quasilinear hyperbolic wave equation. The global existence and the life-span
of classical solutions to the Cauchy problem for hyperbolic equations with the initial
data with compact support have been studied by many authors (e.g., [6], [15], [3], etc.).
However, only a few results have been known for the case of the initial data with non-
compact support, which plays an important role in both mathematics and physics.

Recently, Kong, Liu and Xu [9] studies the evolution of a Riemannian metric g;; on
a cylinder ¢ under the hyperbolic geometric flow (1.1). They prove that, for any given
initial metric on R? in a class of cylinder metrics, one can always choose suitable initial
velocity symmetric tensor such that the solution exists for all time, and the scalar curvature
corresponding to the solution metric g;; keeps uniformly bounded for all time; moreover, if
the initial velocity tensor is suitably “large”, then the solution metric g;; converges to the
flat metric at an algebraic rate. If the initial velocity tensor does not satisfy the condition,
then the solution blows up at a finite time, and the scalar curvature R(¢, z) goes to positive
infinity as (¢, x) tends to the blowup points, and a flow with surgery has to be considered.
This result shows that, by comparing to Ricci flow, the hyperbolic geometric flow has the
following advantage: the surgery technique may be replaced by choosing suitable initial
velocity tensor. Some geometric properties of hyperbolic geometric flow on general open
and closed Riemann surfaces are also discussed (see Kong et al [9]).

In this paper, we consider the Cauchy problem for (1.8) with the following initial data
t=0: u=cup(x), ur=cui(z), (1.9)

where € > 0 is a suitably small parameter, up(x) and u;(z) are two smooth functions of
x € R? and satisfy that there exist two positive constants A € Rt and k > 1,k € R such

that
A A

e MO T

(1.10) implies that the initial data satisfies the slow decay property, that is, the initial

lug(z)| < (1.10)

Riemann surface are asymptotic flat. We shall prove the following theorem.

Theorem 1.1 Suppose that ug(z), ui(zr) € C®(R?) and satisfy the decay condition
(1.10). Then there exist two positive constants § and €y such that for any fixed € € [0, ],
the Cauchy problem (1.8)-(1.9) has a unique C* solution on the interval [0,T.], where T

s given by
0
=

T, = —.
g3

(1.11)



As we know, the flow equation (1.1) is a system of fully nonlinear partial differential
equations of second order, it is very difficult to study the global existence or blow-up of
the classical solutions of (1.1). An interesting and important question is to investigate the
evolution of asymptotic flat initial Riemann surfaces under the flow (1.1). In this case,
although the equation (1.1) can simply reduce to (1.8), (1.8) is still a fully nonlinear wave
equation, only a few results have been known even for its Cauchy problem. Our main
result, Theorem 1.1, gives a lower bound on the life-span of the classical solution of the
Cauchy problem (1.8)-(1.9). This theorem shows that the smooth evolution of asymptotic
flat initial Riemann surfaces under the flow (1.1) exists at least on the interval [0, T%].

The paper is organized as follows. In Section 2 we establish some new estimates on the
solutions of linear wave equations in two space variables, these estimates play an important
role in the proof of Theorem 1.1. Based on this, we prove Theorem 1.1 in Section 3, which
gives a lower bound of the life-span of classical solutions to the hyperbolic geometric flow

with asymptotic flat initial Riemann surfaces.

2 Some useful lemmas
Following Klainerman [11], we introduce a set of partial differential operators

Z:{& (izO,l,---,n); Lo; Qij (1§Z<]§n), Q[)Z' (z’zl,---,n)}, (21)

where
3():%, 0; = Oii (i=1,---,n), (2.2)
Lo =ty + ZH: 20, (2.3)
i=1
Qyj =20, —x;0; (1<i<j<n) (2.4)
and
Qo =t0; +x:00 (i=1,--+,n). (2.5)

Let Z! denote a product of |I| of the vector fields (2.2)-(2.5), where I = (Iy,---,I,) is
a multi-index, |I| = I} + --- + I,, o is the number of partial differential operators in
Z: Z= (21, ,Zy) and

zt=zh... 7zl (2.6)



Throughout this paper, we use the following notations: LP(R"™) (1 < p < oo) stands
for the usual space of all LP(R™) functions on R™ with the norm || f||z», H® denotes s-order

Sobolev space on R"™ with the norm

1 llezs = 111+ 16D Fl 2,

where s is a given real number.

The following lemma has been proved in Li and Zhou [15].

Lemma 2.1 For any given multi-index I = (I,--- , 1), we have
0,z7= Y Ay,z0 (2.7)
[J1<|7]-1
and
0, 2" = Y Buz'o= > Bz’ (i=0,1,---,n), (2.8)
|71<11]-1 [J1<|1]-1
where [-,-] stands for the Poisson bracket, J = (Ji,--- ,Js) a multi-index, O denotes the

o 0 0

—,— -+, — | and A;;,B By stand for constants.
0t 9y’ O:Un> 17, Brs, Bry I

wave operator, O = <

Lemma 2.2 Assume that n > 1. Let u be a solution of the following Cauchy problem

— Ao = f,
o o= (2.9)
t=0: u=¢o(x), u = ¢pi(x).
Then
t
106(t, s < C(l0x0ll s + Il P15 +/O 1 (75 )l ), (2.10)
provided that all norms appearing in the right-hand side of (2.10) are bounded.
Proof. Taking the Fourier transformation on the variable x in (2.9) leads to
) —"_ 2 ) = f t’ )
b+ 1676 = F(0.6) o)

t=0:¢=00(¢) ¢ = h1(¢).
Solving the initial value problem (2.11) gives

3(t,€) = cos(tE])dol€) + Smfg'f Dgie) + / Wf(ﬂf)df (2.12)

Thanks to (2.12), we obtain
~ A ~ t ~
Or(t,€) = —[€] sin(t|¢])do (&) + cos(t[E])¢1(€) +/0 cos((t = )€ f(r,&)dr  (2.13)
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and

1€]6(t, &) = [€] cos(t[€])do(&) + sin(t|€])dr (€) + /0 sin((t — 7)[¢]) f (7, §)dr

It follows from (2.13) and Minkowski inequality that

10up(t, Vs < 1L+ 1) [€] sin(tE])do(€)| 2 + [|(L + €))7 cos(t]€]) b1 ()] 2

/ 11+ 1€D)% cos((t — 7)[€N) f(r, &) p2dr

t
c (namonm ol + [ 1567 ~>||Hs> .

t
10a6(t, e < C (uamonm +lole + [ 156 ->||Hs) .

IN

Similarly, we have

Thus, (2.10) comes from (2.15) and (2.16) immediately. This proves Lemma 2.2.

Lemma 2.3 Let ¢ be a solution of the Cauchy problem

b — D= a;0;f;,

J=0

Then

let e = € (Z/ 175 (7, M p2dr + [ fo (0, )m) :

In particular, for n > 2 it holds that

6(t,z)] < CL+t) "= {/0 1+7)T Z\If] Y pedr

t
+/0 G023 Y 120 lef}

3=0|I|<n+1
Proof. Taking the Fourier transformation on the variable x in (2.17) yields
n
Su + €170 = V=1a;&; f; + aod: fo,
j=1
t=0: ¢=0, ¢ =0.

Solving the initial value problem (2.20) gives

t .
tf Z / sin( 7)[¢]) Ffjf]dT—i— /0 Sln((t|;|7)|€|)8tf0dr.

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)



By Minkowski inequality, we have

Z / sin( ’E‘)ngf]dT SCZHfj(T> N pzdr. (2.22)

L2 Jj=1

Using the integration by parts, we obtain

" sin((t — 2 tsin((t — .
ao/o M@fng = ao/o Mdfo

€] €]
sin(tl¢]) - : A
~a0 ™ 3(0.9) + o /0 cos((t — 7)\€|) folr, £)dr

It follows from the Minkowski inequality that

o [ 20D

€] 12
t A
< fool | g0, Hlaol| [ costte =i impar| 229
< CIF0. ) +C / folr, Yl godr
0
Noting the definition of ! and using Holder inequality, we have
. 1(0, d
170 = sup ST GOUOE gy (2.21)
vEH w#£0 [Vl e
Combining (2.23) and (2.24) yields
t _ . t
oo [ EED D atr| < cpp0 40 [Ntrolpar @)
0 €] L 0

Thus, we obtain (2.18) immediately from (2.21), (2.22), (2.25) and Minkowski inequality.
The proof of (2.19) can be found in Li and Zhou [16], here we omit it. Thus the proof
of Lemma 2.3 is completed. |

The following lemma comes from Klainerman [10].

Lemma 2.4 Suppose that ¢ is C? smooth and satisfies

Do+ Z Yt )00k =F (0<t<T),
7,k=0

and suppose furthermore that
$» — 0 as |z|] — oc.

If

n
g
y=> W'“\Si (0<t<T),
k=0



then, for any given t € [0,T], it holds that

o0t < 20 | t2|v<+>|df} 9000, 22 [ a{ [ tzwwdv} (s, )l zads,
(2.26)

where

(6] = sup [9:77% (¢, )]

Lemma 2.5 Suppose that G = G(w) is a sufficiently smooth function of w = (wy, -+ ,wp,)
with
G(0) = 0. (2.27)
For any given integer N > 0, if a vector function w = w(t,x) satisfies
> 125wt e <vo, VEeE[0,T], (2.28)
1I<[F]

where [] stands for the integer part of a real number and vy is a positive constant, then it

holds that
S IZ7Gw(t, Dpr < Cw) 3 120wt ), Ve[0T, (229
[II<N [ I|[<N

provided that all norms appearing on the right-hand side of (2.29) are bounded, where

C(w) is a positive constant depending on vy, and p is a real number with 1 < p < co.
The proof of Lemma 2.5 can be found in Li and Chen [14].

Lemma 2.6 Assume that I = (I, - ,I,) and J = (J1, -+ ,Js) is a multi-indez. If a

vector function ¢ = ¢(t,x) satisfies
> 1Z7¢(t, )l < v, VEe[0,T], (2.30)
|7< (5]

then it holds that

1Z'((e™? =Daid)(t. ) < Clw) Do D 1276t )21 220:6(t, )| e+

1)-1
[11]<|1]| |]2\§[%]

Clwo) > Y 112"t )< Z220:i(t, )| 2
REISHTAISES
(2.31)

provided that all norms appearing on the right-hand side of (2.31) are bounded.



Proof. When |I| = 0, by Lemma 2.5 we have

I(e=? = 1)i(t, Iz < (e = 1)(E, Mz |t )l 2

(2.32)
< Co)llg(t, )llell0igp(t, ) 12
For |I| > 1, it follows from Minkowski inequality and Lemma 2.5 that
1Z"((e™? = D) (t, )2 < C > 12" (e = )t )2 228t ) | oo+
Hal+ 2| <[], 11> I2]
D D GBI P O

[T+ 2| <] <] 12|

< Cw) Y3 12"t 122056t )|+

SV EI

Cw) >, D 1125t )e<lZ2"20i(t, )| -

I
EEISHITAINES

(2.33)
(2.31) follows from (2.32) and (2.33) immediately. Thus the proof of Lemma 2.6 is com-
pleted. |

Lemma 2.7 Suppose that ¢o(z),¢1(x) € C®(R?) and suppose furthermore that there

exist two positive constants A € RY and k € RT such that

A A
[Po(z)] < A+ 2DF |P1(2)] < A+ [z (k>1). (H)
If ¢ = ¢(t, x) is a solution of the following Cauchy problem
bu — Lo =0,
(2.34)
t=0: ¢=go(x), o= di(x).
Then it holds that
CA
Vv -
lp(t, z)| < (2.35)
CA
(lz[ <)

V1+t+|z[/1+ ]t — |2
Remark 2.1 Here we would like to mention that, if the condition (H) is replaced by

A A

[¢o(2)] < A+ )T [¢1(2)] < A+ [z (k>1). (H')



Tsuyata [18] has showed that the solution of the Cauchy problem (2.34) satisfies the fol-

lowing decay estimate
CA
VI+t+|z[y1+ ]t — 2]

Obviously, Lemma 2.7 improve the Tsuyata’s result given in [18].

ot )| <

Proof of Lemma 2.7. It is easy to see that the solution of (2.34) reads

1 tgo(y) + 2P1(y) +tVo(y) - (y — )
= — d . .
R~ Iy~ =)} oo e
$o(y)
We first estimate |27rt /xy|<t @y x|2)% dy|.

Introduce
= (|z| cos @, |z|sinh), y = (rcos(6+ 1)), rsin(f+ 1))

and let x be the characteristic function of positive numbers. Then

1
/ Po(y) _dy
27t lz—y|<t (t2 _ |y _ x|2)§
<4 / ! dy
21t Jjo—yi<t /12 — |y — 22(1 + [y|)*

A t+|z| ® 1
< = / - / dipdr—+
20t \ Jjp—pay) (L4 7)* Sy /82 =22 — 1% + 2r[a| cos ¢

(t —|z]) /txl ' ’ L dipd
— |\ T b
X 0 L)k o /12 =22 = r2 4 2r|z] cos ¢

(2.37)

where
2|2 + r? — ¢

@ = arccos 2‘.’1}|7’

Let h(y) be a continuous function on R and y = (r cos(f + ), rsin(6 4+ 1)). Define

/%@ h(r,0 + ) o+ =] _ |
o /12— ]a;P — 12+ 2|z|r cos 2|z|r T
H(t,|z|,r,0,h) = s o
/ (r,0 4+ ) d |z + 75—t )
N~ |a:|2 r2 4+ 2z|rcosy 2|z|r -
and

H(t,|z|,r) = H(t,|x|,r0,1),

where, as before, ¢ is given by
|z* + 7% =

(p = arccos 2l

The following proposition has been proved in Kovalyov [13].

10



Proposition 2.1 (I) If

24,2 42
—1
1> ol 4 and |BEFT TS
2|x|r
then H(t,|x|,7) satisfies
ln{2+72_T‘$| 2} C
Hit, |a],r) < O— 0L < ;- (2.38)
VE R P+l
here and hereafter C stands for some constants.
(1
24 02 _ 42
t<|z|+r and ’x‘—i_—rgl,
2|z|r
then
c rlalx(t — |=[) }
H(t, |z],r) < Ind24 (XL 2.39
< e o IS (2:9)
where x is the characteristic function of positive numbers.
We now continue to estimate (2.37).
To do so, we distinguish the following two cases: |z| >t and |z| < t.
Case I: |z]| > ¢
It follows from (2.39) that
1 cA [tH=] 1
/ Soly) g l< €4 . S—; (2.40)
20t Je—yi<t (2 — |y — z]2)2 tv/ |zl Szl (1+7)F2

In the present situation, we distinguish the following cases: ¢t > 1 and 0 <t < 1.

Case I-A: ¢t > 1

In this case, according to k, we distinguish the following three cases:
Case I-A-1: k£ > %

In the present situation, it holds that

t+ || _\F3
CcA 1 CA [1_<1+|x| t) 2]‘

T =
tl2l Jo-e (L4772 /(L + |2 — )3 1+ [z + ¢

Noting
1-s"2<C(1-s), Vselo,1]
and

L+ x|—t 2t
1+ z|+t 1+ |z|+t

11



we have

CA
Izl + J2] = 05 (1 + |2 + 1)
CA

VIEl+E(1 + || — t)F 2

1
/ ®o(y) _dy
27t Jle—y<t (82 — |y — 2?)2

IN

(2.41)

IN

Case I-A-2: k = %
It follows from (2.40) that

1
/ Po(y) _dy
21t Jle—y)<t (82 — |y — 22)2

cA [tHlel g CA 2t
dr = nd14+-——
t\/l2] Jiaj—e (L+7) " t3/]2] L+ |z —t

CA CA

N R e D)

(2.42)

Case I-A-3: 1 <k < %

In the present situation, it follows from (2.40) that

1
/ Po(y) _dy
2mt lz—y|<t (t2 _ |y _ x|2)§

[(1 Pt le)iTE - (14 || — t)%_k}

Sk
T+t+x]\2 L
1+ x| —t ’

CA
tv/]]
CA
ty/Jl (1 + |z — £)F2

Noting the fact that 1 < k < %, we have

1+t+ |z %"“_1< Ct
1+ |z| —t T 14| -t

Hence,
CA

1
1 / Po(y) _dy| < —
21t Jig—yl<t (12 — |y — 2[2)2 Vil + 1+ |z — )2
Summarizing the above argument, for the case that |z| > ¢ and t > 1, we obtain from

(2.41)-(2.43) that

1
/ Po(y) _dy
27t Jja—yi<t (82 — |y — 2?)2

Case I-B: |z| >tand 0 <t < 1

(2.43)

< ¢4 (k>1).  (2.44)

T /I a1+ x| — t)F e

We next consider the case that |z| > ¢ and 0 < ¢ < 1. In this case, we distinguish the

following two cases.

Case I-B-1: |t — |z]| < 1

12



Introducing the variable r = |x — y|, we have

1 1 CA
T eyl (2 — |y —2?)2 T Jle—yl<e (8 = |y — 2?)2 (1+ [y|)*
CA /t T g < CA
- r < .
mt Jo V212 VIt 2|1+ |z| — )z
(2.45)
Case I-B-2: |t — |z]| > 1
Noting the fact that |z| >t and 0 < t < 1, we observe
|z| >t + 1.
Thus, by the case (I-A), we have
1 CA
i | P gy < L (246)
A Szt (2 = ly —2P) ] VIl |2l -6t
Therefore, combining (2.44)-(2.46) gives
1 CA
/ ¢O(y> 1 dy < 10 (2'47)
21t Jjo—yi<t (12 — |y — z[2)2 I+t |21+ |z —t)F2
provided that |z| > ¢.
Case II: |z| <t
We now consider the case that |z| < t.
It follows from (2.37) that
1
/ W) gl <1410, (2.48)
2t Jla—yl<t (82 — |y — af?)2
where
LA EG e A HE ]
21t Sy (L47)k 7 2t (1+r)k

We next estimate I and I1 by distinguishing the follows cases.
Case II-A: t + |z| > 1
It follows from (2.39) that

A t+|z| 1
1< 4 In {2 P } _dr. (2.49)
t\/|z| Ji—|a| [ +r—t] (14r)k2

13



Introducing the variable £ = |z| + r — ¢, we have

2|x|
[ < 94 ln{2+’x‘} ! -d¢
ty/Ixl Jo ) (A+e+t— o))z

d

2|z
< “ m{““}df
e /fal(1+ £ — [o)F Jo ¢
CA
= =[2|z| In(3|z]) — 2|z| In(2|z|) + 2|x|] (2.50)
t/lal(1+ £ — [o]) 3
CA CcCA
< T < T
VIO T t— 2l E T ER Rl 4t [l
CA
<

VIFt+]z[(1+t—|z))k 2

We now estimate 1.

By (2.38), we have

(2.51)

t—|x| 1
IT < % dr
N S
CA t=lzl 1
t\/t + |x| Jo t—|z|—r(1+r)k1
Let
p=t—|z|—r.
Then
CA Vi-lel 1
I < —— i1 4P
t\/t + |z] Jo (L4t —|z| = p?)
- CA /vtxl 1 p
< — .
tE+z](1+t—|z)) T Jo (V1+t—|z|=p)rt

In order to estimate II, we distinguish the following three cases.

Case II-A-1: k> 2
In the present situation, it follows from (2.51) that

CA 1
I < “{ —
tEt |1+t —|z)) = | (V1+t—|z] =tz
CA _
< = (V1+t— |z +/t—|z])"?
tE T el (14— o)
CA CA

< .
t/tr a1+t —[z] = T+t +[a[y/T+1—[z]

14

- W)



Case II-A-2: k=2
In this case, by (2.51) we have

CA VItt—|z]
11 < X In
t\/t+ |z[y/1+t — 2] V1tt—|z] =/t — 2]
CA y V1+t—|z|
tt+lz[ 1+t —|z] 1+t —|z]—/t—[z]
CA

VItt+|z[/1+t—Jz]

Case II-A-3: 1 <k <2
In this situation, we obtain from (2.51) that

A _
"< {0 )™ (VIR el Vi) )
2

t/EF 2|1+t —|])
CA
VIt o) /1T+t—|z]

Summarizing the above argument gives

CA
I< ;
V1+t+z/1+t—|z]

(2.52)

provided that ¢ + |z| > 1.

Case II-B: 0 < t+|z| < 1

As before, introducing the variable r = |z — y|, we have

1 1 A
Tt Jjp—y|<t (12 — |y — z|2)2 T J|p—y|<t (2 — |y — x|2)2 (1 + |y|)¥

C’A/t r CA

— ————dr < .

wt Jo Vit —r? V1+t+|z[/1+t— [z
(2.53)

Combining (2.50) and (2.52)-(2.53) leads to

1 Po(y) CA
omt dy| < <t). 2.54
ot /ﬂc—ylét (# |y — 2]z yl T VItttlel/I+t- [a] (lof <) (2:54)

(2.47) and (2.54) imply

CA
— (2l 1),
1/ o) | VIt 2|1+ [t — |z|)k 2 255
27t Jjamyi<t (82 — |y — 2?)? /= CA '
(lz] <t).

V1+t+z[/1+ ]t — |2

15



By Tsutaya [18], we have

CA
Vvt E
1/ #1y) rdy| < (2.56)
o izt (8~ ly —af): <2 (2] < )
V1+t+ |z /1 + ]t — |z -
and
CA
— (jz] > 1),
L V¢o(y)'(y—$)dy‘ _ ) VIR g )
1 —
21t Jig—yi<t (82 — |y — z|2)2 CA (le| < 9).
V1+t+ |z)/1+ |t — |z -
(2.57)

(2.35) follows from (2.55)-(2.57) and (2.36) immediately. Thus, the proof of Lemma 2.7 is
completed. [ ]

Lemma 2.8 Suppose that ¢ is a solution to the Cauchy problem

b —DNp=g

with zero initial data. Then

lo(t,x)| < C(A+t+|z|)” Z /H (Z1g) JA+74+]-]) 21HL1d7. (2.58)
[I|<n—1

In particular, for n =2 and p € (1,2] it holds that

16t M oae) < O+ £)5™ / 1907, )l ey (2.50)

Proof. The inequality (2.58) comes from Hémander [4] or Klainerman [11] directly, while

the proof of (2.59) has been proved by Li and Zhou [15]. |

Lemma 2.9 Suppose that n = 2, and suppose furthermore that ¢ = ¢(t,x) is a solution

of the wave equation
bt — Ad = [g192(t, )| (2.60)
with zero initial data. Then it holds that

[6(t, )l L2 (r2) < C(142)7 Z/ (1+7)72 Dy (7, )2 g2y dr {/0 ||92(T,-)||%2(R2)d7}

17]<1
(2.61)
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and

1
2

0ot e €4 [ X Mol b 3 [ 3 Mt

<1 |71<1

(2.62)
Proof. The proof of (2.61) can be found in [15]. In what follows, we prove (2.62).

Let E be the forward fundamental solution of the wave operator. By the positivity of

FE and the Hoélder inequality, we have

1 1
o(t,x) < Ex*|grgo(t,x)| < (E * g%(t,az)) 2 (E * g%(t, 1:)) 2, (2.63)
It follows from Lemma 2.8 and Hélder inequality that
dr
Begita) <O+t S [ 1700l (2.64)
147
171<1
Similarly,
dr
Exgd(t,z) < C(1+1t) 2 / z! —_— 2.65
g5(t, ) < C( %:1 127 g2 (7 )Hmm (2.65)
(2.62) comes from (2.63)-(2.65) immediately. This proves Lemma 2.9. [ |

The following lemma can be found in Klainerman [12].

n

Lemma 2.10 Assume that p € [1,00) and N is an integer satisfying N > e Then it
holds that

6t )| < COL+t+ o))~ (1+ |t —[a|l) 77 Z 127 ¢(t, )| v, (2.66)
[N

provided that all norms appearing on the right-hand side of (2.66) are bounded.

3 Lower bound of life-span

This section is devoted to the proof of Theorem 1.1. In order to prove Theorem 1.1, it

suffices to show the following theorem.

Theorem 3.1 Suppose that ug(z), ui(z) € C°°(R?) and satisfy that there exist two posi-

tive constants A € RT and k € Rt such that

A A

A+ 2)F lur ()] < A= (k> 1).

uo ()| <

17



Then there exist two positive constants 6 and ey such that for any fived € € (0,eq], the
Cauchy problem (1.8)-(1.9) has a unique C*° solution on the interval [0,T;], where T is

given by
T.=—F -1 (3.1)

Proof. The local existence of classical solutions has been proved by the method of Picard
iteration (see Sogge [17] and Hormander [5]). In what follows, we prove Theorem 3.1 by
the method of continuous induction, or say, the bootstrap argument.

Let [1 and Iy be two positive integers such that

1
11—321225%]—1—1

Introduce
= > 10Z%u(t, )l 22,
[1|<iy
t) = Z 127 u(t, )| L2 (r2),
<l
(3.2)
Z 102" u(t, )| oo (r2),
[T|<l2
Z ||Z u(t, )| Lo (R2)-
[1|<l2

By the bootstrap argument, for the time being it is supposed that there exist some positive

constants M;, N; (i = 1,2) and u such that
M (t) < Mqe,
My (t) < Mae(1+ 1)1,

(1+1)2Ny(t) < Npe,

(14 )2Ns(t) < Nae,

provided that e, p are suitably small and satisfy

e(1+1)1 < p. (3.3a)

18



According to the bootstrap argument, in what follows we show that, by choosing M;

and N; (1 = 1,2) sufficiently large and e suitably small such that

( 1
My(t) < 5Mae,
1
Ma(t) < 5 Moe(1+ 1)1,
(3.3b)
1 1
(L+1)2Ni(t) < 5N,
1
(1+)2Na(t) < 5 Noe,
provided that €, p are suitably small and (3.3a) holds.
We first estimate M (t).
The equation (1.8) can be rewritten as
Ou= (e —1)Au — u?. (3.4)
It follows from Lemma 2.1 and (3.4) that
0z = Z Z A]]1[2ZII (e_“ — 1)81-11-2Z12u+
[T |4| 12| <] 1| 0<i1,i2<2
(3.5)
Z Z Aulbaithu@izZI?u.
|1 |+ I | <| ] 0<i1i2 <2
By Minkowski inequality, (3.2) and Lemma 2.5, for I with |[I| <; — 1 we have
Z Z A[[lIQZh (e — 1)81'1,-2Z12u(t, )
[I1 |+ 12| <] 0<i1,i2 <2 L2
¢ 2 > 2 e = Dnn 2"l ) ot
|1 |+ | L2 | <|I],| 1 | > | 12| 0<i1,i9 <2
c o2 > 2 e = D 2 )
1|+ 2| <[], 11| <[ 12| 0<i1,i2<2 (3.6)
¢ ) > 12 e = )l 2 e, e+
|22 S| T > T2 | 0<in 2 <2
c o2 > 120 = Dl 10 2 ut, )

|12 |+ | <[], 1 | <[ To | 01 i2<2
< C{My(t)N1(t) + My (t)Na2(t)}

provided that €9 > 0 is suitably small.
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Again by Minkowski inequality and (3.2), for I with |I| <[; —1 we get

Z Z /1111128i1Z11u8iQZI2u

[T1|+[ 12| <|1] 0<i1,i2<2

L2
<C > S 110 Z e, ) 2105 2 ult, | e+
|[1 |+ L2 | <|T),| 11 | > | T2 ] 0<i1,i2 <2 (3.7)
c > ST 100 2" ult, | 105 2 ult, | 2

[T+ 12| <1 1| <12 | 0<i1,i2<2
< CMy ()N (1),

On the other hand, noting Lemma 2.2 and using (3.5)-(3.7), for I with |I| < ;3 — 1 we

have

1027 u(t, )| 2 < CllOZ1u(0,)|| 2 + C /O [Ma(7)N1(7) + My (7)Na(7) + My (7)N1(7)]d.

(3.8)
We now estimate ||0Z7u(t, )| 2 (|I| = l).
By Lemma 2.1 and (3.4),
0Z'w = Z'0u+ Y ApZ/0Ou
[JI<H]-1
2
= Z (6iu - 1)8i8jZIu + Z Z AIIIIQZh (67u - 1)81'11‘221211,
1,j=0 |I1 |+ | T2 <| I, T2 | <|T|—1 0<41,i2<2
+ Z Z 2111[281'1 ZhuaiQZI?u.
1|+ 12| <|1], 0<i1,i2<2
Hence
2 —
DZIU + Z (1 — e_“)aiajZIu = Z Z AIhIQZIl (e_u — 1)82‘1¢2Z12u
i,=0 |1 |+| T2 |<|T],| T2 | <[ T]—1 0<i1,i2 <2
+ Z Z EUIbathu&-QZI?u.
[11]+12]<|I], 0<i1,i2<2
(3.9)

Similar to the proof of (3.6), when ¢ > 0 is suitably small, for I with |I| = I it holds
that

I > > A Z" (e =1)0ii, Z%ult, )| 12 < C[Ma(t)Ni(t)+ My (t) Na(1)].
[T+ T2 S|, 12| <[ 1] =1 0<iy ip <2
(3.10)
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Similar to the proof of (3.7), for I with |I| =[; we have
> > A0, 20, Zu(t, )| 2 < CMy(H)Ny(2). (3.11)
[I1|+[12| <[], 0<i1,i2<2
On the other hand, because of (3.3), it holds that

2 1
Z 77| < CNae <

5 (3.12)

i,j=0
provided that ¢ is suitably small, where v/ = (1 —e~%). Moreover, for |¥(t)| defined as in
Lemma 2.4, we have

t
2/ 5(7)|dr < CNyp < In2, (3.13)
0

provided that e, p are suitably small and (3.3a) holds. Thus, noting Lemma 2.4 and using
(3.9)-(3.13), for I with |I| = l; we have

102 u(t, ) 12 < 41027u(0,)|| 12 + C /0 (M (7)N1(7) + My (7)No(7) + My (1) Ny (7)) dr.

(3.14)
Combining (3.8) and (3.14) yields
t
Mi(t) < Kie + C/ (My(T)N1(T) + My (7)Nao(7) + M1(T)N1(7))dT. (3.15)
0
We next estimate Ma(t).
In the present situation, the equation (1.8) can be rewritten as
2 2
Ou=Y_ di((e™ = 1)du) —u; = Y _ di(e™™ = 1)du. (3.16)
i=1 i=1
By Lemma 2.1 and (3.16), we obtain
0z = > > B (Z{(e™ - 1)0;,Z%u)+
|11 |+ T2| <|T) 0<i ip <2
Z Z B[h[z&il Z[1u6i2 ZIQU—I—
[11]+|12]<|I]| 0<i1,i2<2
> > Binndy (20 - 1) 9,2
T4 |+ I2|<| | 01 i2<2
Let
Zu = wy + w1 + wo + ws, (3.17)
where wy, wy, ws and ws satisfy
Owy o(Z)
wWo , Wolt=0 u(0,z), ot |,y ot (0, ), ( )
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_ ow
Dy = Z Z Bin 10 (le(e ‘- 1)31'22[2“) , Wile=o = 67751 =0,
[T1]+ 12| <|1] 0<iy,i2<2 t=0
(3.19)
B ow
Owy = 3 Y B0y Z"udi,Z2%u,,  wsli—o = 8—; =0, (3.20)
[11]+|12|<|1| 0<i1,i2<2 t=0
and
B I/ —u I 8’[1)3
Hws = Z Z Bin 1,9 (Z (e7" = 1)) 0, Z%u,  wsli=o = o =0,
|1 |+ 12| <| 1] 0<in ,i2 <2 =0
(3.21)
respectively. Thanks to Lemma 2.7 and (3.18), we have
Cey/In(2+1t) (x| <),
[wo(t, )2 < (3.22)

Ce (jz| > t).

When €9 > 0 is suitably small, noting Lemmas 2.3, 2.5 and using (3.19) and (3.2), we

obtain

IN

[wr(t, )] 2

/ Yoo D Iz e =gz u(r ) padr +

|1y |+ 1Tz < 1] 0<i<2

S Y 12 e Dz (0, ) (328)

|11 ]+| 2| <[] 0<i<2
¢

< C/ [My(7)N1(7) + My (7)Na(7)] dr + Ce.
0

Noting Lemmas 2.9, 2.1 and using (3.20), (3.2) gives

lwa(t, )|z < C(L+1)i 3 Sy { / +T>—%|rZJailzf2u<T,->\|%z}

L1+ Lo | <], |11 > | I2] | ] <1 0<i1,i2 <2

[N

t 2
. { [ 107"t ->||%2d7} "
0

cuvot > x> v {fa +T>%HZ"ailzhuvf)H%z}%

L+ I LT < | | 7]21 0<isi2<2
¢ ; i
2
x { [ 10u75utr ->||L2df}
0

< C(+1) {/Ot(l —I-T)_éM%(T)dT}% {/Ot Mf(f)df}é.
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By Lemma 2.9, Minkowski inequality, Lemmas 2.1, 2.6 and (3.2), it follows from (3.21)
that

Jws(t, )22 < C(1L + 1) 3 D { / (1+7) 2||zJai2zfzu<T,.>H§2dT}2

1 |+ L2 S| T[> 12| |T|<1 011,122

t 3
x { JC 1><7,->||de¢} ;
0

CETTIED SEEED DRD SN § KRR PO LI T

|1 |+ 2 |[<| ], 1| < | I2] | J]<1 0<i1,i2 <2
1
I 2
/ 105 2", )| 2

<C(1+1t)i 3 > s {/ (1+7) 2||Z‘]6i2212u(7-,-)|]%2d7-}é

|1 |+ 2| < ||, 1| > | Ta| |J|<1 0<41 ,i2<2

N

t (e — ) (T, )2 [1"11,7"227'%
x{/ourz (e = D@ u)(r, )2 + 12505 u(r, ) [22)d } n

C(1+1)3 > > 2 {/ (L+7)72 12725 (e — 1), u)(r, )22 +

1|+ L2 | < |I],| 11| <] I | || <1 0<i1 69 <2

127210, u(r,)|%2) dr}* x {/ 10: 2" u(, ->HL2cF}é
<0+ {/ot(l " T)%Mf(”‘”}% {/Ot [M2(r)N3(7) + M3(r)N¥(7) + ME(7)] aw}é +
{ [0t prono + szt + s ar) s { [ asoror)

/0 (1+7)72 [ME(r)N3(r) + M3 (r)NE(7) + M2 (7)] dT}Q

PN

C1+1)

{

=

<O +1)

1
2

<{ [ N3+ AN + 281 dr .
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provided that ey > 0 is suitably small. Thus, combining (3.17) and (3.22)-(3.25) yields
t
Mg(t) < Koen/ ln(2 + t) + C/ (MQ(T)Nl(T) + Ml(T)NQ(T))dT-f-
0

1
2

C(1+1t)1 {/0 (1+7)72 [M2(7)N2(7) + MZ(r)N(7) + M2(7)] dT}

2

<{ [ N + 1N + M2 ar )
(3.26)
We now estimate Na(t).

Using Lemma 2.7, we obtain from (3.18) that

(L+8)2 wo(t, )|z < Ce. (3.27)

Noting Lemmas 2.3, 2.5 and using (3.19), (3.2), when ¢ > 0 is suitably small, we have

t
(1+ )2 |Jwi (t, )| < C / t+nz S N 12 e - )92 u(r, ) | pedrt
0

[1]+[I2|<|1] 0<i<2

C/O(HT)—S S OS S 12 (20 (e - 1)aiZ") (7, ) | adr

I+ 2] < 1] |7]<30<i<2

t t
<C {/ (1 + 7)2 Ny (1) No(7)dr + / (1+ T)—iMl(T)MQ(t)dT} .
0 0
(3.28)
Noting Lemma 2.9 and using (3.20) and (3.2), we obtain

1
: t dr 2
L0zt ) < ¢ Y S Y {/ |ZJ(5i1Z11u)(7-,.)|%2}
N+ | <) |T|=1 0 i2<2 70 J+7
1
t dr 2
77 (83, Z"2u) (7, ) |12 }
X{/o 127 (03, 2" u) (7 )”LQW
<

t 9 dr
C/O Ml (T)\/m
(3.29)
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By Lemmas 2.9, 2.1, 2.6, Minkowski inequality and (3.2), when ¢y > 0 is suitably small,
we obtain from (3.21) that

Grodele s S S S {12 @z e - ) et

[I1 ]|+ 12| <|1| | J|<1 0<i1,i2<2

A [ 1200w )

<C {/Ot(l +7)7% [MA(T)NZ(7) + M3(r)N3(7) + M3 ()] dT}; {/Ota +7)73 f(f)df}% .

NI

Collecting (3.17) and (3.27)-(3.30) gives

(14 )2 Na(t) gK35+c/0t(1+7)%N1(7)N2(7)d7+c/0t(1+7)—3M1(T)M2(t)d7

1 1

e {/tu 1) (ME(r)N2(r) + ME(r)N2(7) +M12(T))d7}2 {/tu +T)—%M12(T)d7}2

" " (3.31)

Since, for the time being it supposed that (3.3) holds, (3.12) and (3.13) are true,
provided that ¢ is suitably small, and then, by (3.15), (3.26) and (3.31) it holds that

Mi(t) < Ky + C(MaNy + MiNy + My Ny )e2(1 + )1, (3.32)
My(t) < Koer/In(2 +t) + C(MaNy + My Ny + M Np)e*(1 +t) (3.33)

and

(1+1)2Na(t) < Kse + C(Ny Ny + My My + MyNy + MiNy + M2)e2y/1+t.  (3.34)
On the other hand, by Lemma 2.10, we have

(14 )2 Ny (t) < CMy (). (3.35)
Thus, choosing
My > 4Ky, My > 4Ky, No > 4K3, Ny > 2CMj,

we obtain from (3.32)-(3.35) that
M (t) < 5Mie,
My(t) < LMye(1 4 1)3,

(3.36)
(1+8)2N,(t) < INpe,

(14 1)2 No(t) < £ Nae,
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provided that €y and p are suitably small and satisfy
3
80(1 + t)Z < p.
Take § = u%. Thus, the proof of Theorem 3.1 is completed. |
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