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Abstract

In this paper we investigate the L2-solutions of vector refinement equations with exponentially decay-
ing masks and a general dilation matrix. A vector refinement equation with a general dilation matrix and
exponentially decaying masks is of the form

�(x) =
∑
�∈Zs

a(�)�(Mx − �), x ∈ Rs ,

where the vector of functions � = (�1, . . . , �r )
T is in (L2(Rs ))r , a =: (a(�))�∈Zs is an exponentially

decaying sequence of r × r matrices called refinement mask and M is an s × s integer matrix such that
limn→∞M−n = 0. Associated with the mask a and dilation matrix M is a linear operator Qa on (L2(Rs ))r

given by

Qaf (x) :=
∑
�∈Zs

a(�)f (Mx − �), x ∈ Rs , f = (f1, . . . , fr )
T ∈ (L2(Rs ))r .

The iterative scheme (Qn
af )n=1,2,..., is called vector subdivision scheme or vector cascade algorithm.

The purpose of this paper is to provide a necessary and sufficient condition to guarantee the sequence
(Qn

af )n=1,2,... to converge in L2-norm. As an application, we also characterize biorthogonal multiple
refinable functions, which extends some main results in [B. Han, R.Q. Jia, Characterization of Riesz bases
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of wavelets generated from multiresolution analysis, Appl. Comput. Harmon. Anal., to appear] and [R.Q. Jia,
Convergence of vector subdivision schemes and construction of biorthogonal multiple wavelets, Advances
in Wavelet (Hong Kong, 1997), Springer, Singapore, 1998, pp. 199–227] to the general setting.
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1. Introduction

A homogeneous vector refinement equation with mask a and a general dilation matrix M is the
functional equation of the form

�(x) =
∑
�∈Zs

a(�)�(Mx − �), x ∈ Rs , (1.1)

where � = (�1, . . . ,�r )
T is unknown, a is an infinitely supported refinement mask such that each

a(�) is an r×r complex number matrix and M is an s×s integer matrix such that limn→∞ M−n=0.
The solution of (1.1) is called multiple refinable functions. It is well known that refinement equa-
tions play an important role in wavelet analysis and computer graphics (see [1,5,15,12,10,18,29]).
Most useful wavelets in applications are generated from refinable functions. The convergence of
subdivision schemes in some Banach spaces is an important issue in wavelet analysis. For exam-
ple, subdivision schemes can be used to characterize the existence and smoothness of solutions of
Eq. (1.1) and also can be used to characterize orthogonality of the shifts of solutions of Eq. (1.1)
with mask a having finitely supported. When mask a is infinitely supported, subdivision scheme
associated with (1.1) is also important in wavelets analysis. It was known that subdivision scheme
with masks having exponentially decay was used to characterize Riesz bases generated from
multiresolution analysis in [9,12,19].

Before proceeding further, we introduce some notations. Let (L2(R
s))r denote the linear space

of all vectors f = (f1, . . . , fr )
T such that ‖f ‖2 < ∞, where

‖f ‖2 :=
⎛
⎝ r∑

j=1

∫
Rs

|fj |2 dx

⎞
⎠

1/2

.

By (L2,c(R
s))r we denote the linear space of all compactly supported vectors of functions on

(L2(R
s))r .

The Fourier transform of a vector of functions in (L1(R
s))r is defined by

f̂ (�) :=
∫

Rs
f (x)e−ix·� dx, � ∈ Rs ,

where (L1(R
s))r denotes the space of all Lebesgue integrable vectors of functions on Rs , � · x

is the inner product of two vectors � and x in L2(R
s). The Fourier transform can be naturally

extended to functions in (L2(R
s))r . If mask a is an absolute summable sequence of r ×r matrices

on Zs , taking Fourier transform of both sides of (1.1), we obtain

�̂(�) = H((MT )−1�)�((MT )−1�), � ∈ Rs , (1.2)
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where MT denotes the transpose of M , and

H(�) = 1

m

∑
�∈Zs

a(�)e−i�·�, � ∈ Rs

with m = | det M|. Evidently, H(�) is 2�-periodic. If �̂(0) �= 0, then �̂(0) is an eigenvector of
the matrix H(0) corresponding to eigenvalue 1.

When mask a is finitely supported, let � be a solution of refinement equation (1.1). Furthermore,
suppose � is a compactly supported vector of functions in (L2(R

s))r , satisfies �̂(0) �= 0 and span
{�̂(2��) : � ∈ Zs} = Cr , it was pointed out in [31] that 1 is a simple eigenvalue of H(0) and other
eigenvalues of H(0) are less than 1 in modulus. In this paper we assume that these conditions are
satisfied. In such a case, it is reasonable to assume that matrix H(0) has the following form:

H(0) =
(

1 0
0 �

)
where lim

n→∞ �n = 0. (1.3)

For j = 1, . . . , r, we use ej to denote the jth column of the r × r identity matrix. Obviously,
eT

1 H(0) = eT
1 and H(0)e1 = e1.

Let M be a fixed dilation matrix with m = | det M|. Then the coset spaces Zs/MZs consists
of m elements. Let �k + MZs , k = 0, 1, . . . , m − 1 be the m distinct elements of Zs/MZs with
�0 = 0. We denote E = {�k, k = 0, 1, . . . , m − 1}. Thus, each element � ∈ Zs can be uniquely
represented as ε + M�, where ε ∈ E and � ∈ Zs .

We say that a satisfies the basic sum rule if for k = 0, 1, . . . , m − 1,

eT
1

∑
�∈Zs

a(M� + �k) = eT
1 . (1.4)

If c is a (complex-valued) summable sequence on Zs , then its Fourier series is defined by

ĉ(�) :=
∑
�∈Zs

c(�)e−i�·�, � ∈ Rs .

Evidently, ĉ is a 2�-periodic continuous function on Rs . When c is finitely supported, ĉ is a
trigonometric polynomial. We call ĉ, the symbol of c. We also define the Fourier series for c to
be vector sequences or matrix sequences in similar ways.

It is easily seen that a summable sequence of r × r matrices a satisfies the basic sum rule if
and only if

eT
1 â(2�(MT )−1�k) = 0, k = 0, 1, . . . , m − 1. (1.5)

Let (�1(Z
s))r×r be the linear space of all sequences of r × r matrices such that its each element

absolutely converges on Zs . Suppose a ∈ (�1(Z
s))r×r and M is a general dilation matrix. In

order to solve the refinement equation (1.1), we introduce the linear operator Qa on (L2(R
s))r

given by

Qa�(x) =
∑
�∈Zs

a(�)�(Mx − �), x ∈ Rs , � ∈ (L2(R
s))r . (1.6)

Let �0 be a vector of compactly supported functions in (L2(R
s))r . We consider the iteration

scheme �n := Qn
a�0, n = 1, 2, . . . . This iteration scheme is called the vector cascade algorithm

or vector subdivision schemes associated with mask a and a general dilation matrix M . Subdivision
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scheme has been extensively studied for the case in which mask a is finitely supported. A vector
� = (�1, . . . ,�r )

T ∈ (L2,c(R
s))r is said to satisfy Strang–Fix conditions of order 1 if

eT
1 �̂(0) = 1 and eT

1 �̂(2��) = 0 ∀� ∈ Zs\{0}. (1.7)

By using the Poisson summation formula, it is easily seen that (1.7) is equivalent to the following
condition:

eT
1

∑
�∈Zs

�(· − �) = 1. (1.8)

When mask a is finitely supported, in order for the subdivision scheme to converge in (L2(R
s))r ,

initial vector of functions �0 must satisfy Strang–Fix conditions of order 1 [28].
When mask a ∈ (�1(Z

s))r×r , we say that the (vector) subdivision scheme associated with mask
a and a general dilation matrix M converges in the L2-norm, if there exists a vector � ∈ (L2(R

s))r

such that for any �0 ∈ (L2,c(R
s))r satisfying the Strang–Fix conditions of order 1,

lim
n→∞ ‖Qn

a�0 − �‖2 = 0.

If this is the case, then � is a solution of the refinement equation (1.1) in (L2(R
s))r .

Great efforts have been spent on the convergence of subdivision schemes mentioned above
when masks a are finitely supported (see [1,10,11,21,23,27,28,33,35,36]).

Let � = (�1, . . . ,�r )
T and �̃ = (�̃1, . . . , �̃r )

T belong to (L2(R
s))r . We say that the shifts of

�1, . . . ,�r and the shifts of �̃1, . . . , �̃r are biorthogonal, if

〈�j (· − �), �̃k(· − �)〉 = 	jk	�� ∀j, k = 1, . . . , r, �, � ∈ Zs , (1.9)

where 	jk and 	�� stand for the Kronecker sign and 〈�j , �̃k〉 denotes the inner product of two

functions �j and �̃k in L2(R
s). If this is the case, then �̃ is said to be a dual to � in L2(R

s).

If, in addition, � and �̃ are multiple refinable functions, then � and �̃ are a pair of biorthogonal
multiple refinable functions.

In engineering, infinitely supported masks are needed [9]. Due to some desirable properties,
infinitely supported masks with exponentially decaying and fractional splines [37] are of interest
in the area of digital signal processing in electrical engineering [3,4,6,16,32]. To study Riesz bases
of wavelets generated from multiresolution analysis, the L2-convergence of subdivision schemes
with mask a having exponential decay was investigated for r = 1 by Han and Jia [12], for s = 1
and M = 2 by Jia [19]. Han [9] also characterized the convergence of subdivision scheme with
mask a having exponential decay in weighted subspaces of L2(R) when r = 1, s = 1 and M = 2.
As pointed out in [9] that the study of subdivision schemes and refinable functions with infinitely
supported masks is not a trivial generalization of known results in the literature mentioned above.
To study refinement equation, the spectral theory of compact operator is involved for the case in
which mask a is infinitely supported.

The purpose of this paper is to investigate the vector refinement equation with mask a having
exponential decay and a general dilation matrix M . In this paper, we will characterize the L2-
solutions of refinement equations (1.1).A necessary and sufficient condition for the convergence of
subdivision schemes with this mask a and a general dilation matrix M in (L2(R

s))r is obtained. As
an application, we also characterize the biorthogonal multiple refinable functions, which extends
some main results in [11,12,19,20] to the general setting.
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2. Notations and lemmas

Let E
 denote linear space of all sequences u on Zs for which

‖u‖E
 :=
∑
�∈Zs

|u(�)|e
|�| < ∞,

where the vector norm | · | on Rs so chosen that ‖M−1‖ := sup|x|�1 |M−1x| < 1. Equipped with
the norm ‖ · ‖E
 , E
 becomes a Banach space. Let Er


 denote the linear space of all vectors of

sequences u = (u1, . . . , ur )
T such that u1, . . . , ur ∈ E
. The norm on Er


 is defined by

‖u‖Er



:=
r∑

j=1

‖uj‖E
 .

By Er×r

 we denote the linear space of all matrices of sequences u(�) = (uj,k(�))1� j,k � r such

that uj,k ∈ E
 j, k = 1, . . . , r . The norm on Er×r

 is defined by

‖u‖Er×r



:=
r∑

j=1

r∑
k=1

‖uj,k‖E
 .

We point out that the spaces E
, Er

 and Er×r


 were used by Cohen and Daubechies [4], by Jia

[19] and by Han and Jia [12]. When 
 = 0, E0, E
r
0 and Er×r

0 are the usual �1(Z
s), (�1(Z

s))r and
(�1(Z

s))r×r spaces.
Before going on, we introduce the Kronecker product of two matrices. The Kronecker product of

two matrices is an important tool in the study of vector refinement equations (see
[19,21,24,25,38]). Let us mention some useful properties of the Kronecker product from [26,7].
Let A = (ai,j )1� i �m,1� j �n, and B = (bi,j )1� i �k,1� j � l , be two matrices. The (right)
Kronecker product of A and B, written A ⊗ B, is defined to be the block matrix

A ⊗ B :=

⎛
⎜⎜⎜⎝

a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB

⎞
⎟⎟⎟⎠ .

For three matrices A, B and C of the same type, we have

(A + B) ⊗ C = (A ⊗ C) + (B ⊗ C),

A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C).

If A, B, C, D are four matrices such that the products AC and BD are well defined, then

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).

If �1, . . . , �r are the eigenvalues of an r × r matrix A and 
1, . . . , 
r are the eigenvalues of an
r × r matrix B, it follows from [26] that the eigenvalues of A ⊗ B are �j
k, j, k = 1, . . . , r .

For two functions f, g in L2(R
s), f � g is defined as follows:

f � g(x) :=
∫

Rs
f (x + y)g(y) dy, x ∈ Rs ,
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where g(y) stands for the complex conjugate of g(y). In other words, f � g is the convolution
of f with the function y → g(−y), y ∈ Rs . It is easily seen that f � g lies in C0(R

s), the space
of continuous functions on Rs which vanish at ∞. Evidently

‖f � g‖∞ �‖f ‖2‖g‖2. (2.1)

Moreover (f � f )(0) = ‖f ‖2
2.

For a matrix A = (aij )1� i,j � r , the vector

(a11, . . . , ar1, a12, . . . , ar2, . . . , a1r , . . . , arr )
T

is said to be the vec-function of A and written as vec A. Suppose A, X and B are three r × r

matrices. Then we have (see [17])

vec(AXB) = (BT ⊗ A)vec X. (2.2)

Suppose � = (�1, . . . ,�r )
T and � = (�1, . . . ,�r )

T belong to (L2(R
s))r , let ���T be defined

as follows:

� � �T :=

⎛
⎜⎜⎜⎝

�1 � �1 �1 � �2 · · · �1 � �r

�2 � �1 �2 � �2 · · · �2 � �r
...

...
. . .

...

�r � �1 �r � �2 · · · �r � �r

⎞
⎟⎟⎟⎠ .

By (2.1) we have

‖vec(� � �T )‖∞ �‖�‖2‖�‖2 (2.3)

and

|vec(� � �T )(0)| =
r∑

j=1

r∑
k=1

|�j � �k(0)|�
r∑

j=1

|�j � �j (0)| =
r∑

j=1

‖�j‖2
2.

Consequently

|vec(� � �T )(0)|�‖�‖2
2. (2.4)

Suppose mask a ∈ Er×r

 for some 
 > 0, let b be defined as follows:

b(�) :=
∑
�∈Zs

a(�) ⊗ a(� + �)/m, � ∈ Zs . (2.5)

It follows from a simple computation that b lies in Er2×r2


 . By (2.5), we have

∑
�∈Zs

b(�)/m =
⎛
⎝ ∑

�∈Zs

a(�)/m

⎞
⎠ ⊗

⎛
⎝∑

�∈Zs

a(� + �)/m

⎞
⎠ = H(0) ⊗ H(0)

and

(eT
1 ⊗ eT

1 )(H(0) ⊗ H(0)) = (eT
1 H(0)) ⊗ (eT

1 H(0)) = eT
1 ⊗ eT

1 .
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It follows from above discussions that the matrix
∑

�∈Zs b(�)/m has a simple eigenvalue 1, eT
1 ⊗eT

1
is a left eigenvector of

∑
�∈Zs b(�)/m corresponding to eigenvalue 1, and other eigenvalues of∑

�∈Zs b(�)/m are less than 1 in modulus. If a satisfies the basic sum rule, we claim that b also
satisfies the basic sum rule. In fact, for �k ∈ E, k = 0, 1, . . . , m − 1,

(eT
1 ⊗ eT

1 )
∑
�∈Zs

b(M� + �k) = (eT
1 ⊗ eT

1 )
∑
�∈Zs

∑
�∈Zs

a(�) ⊗ a(M� + �k + �)/m

= eT
1

∑
�∈Zs

a(�) ⊗ eT
1

∑
�∈Zs

a(M� + �k + �)/m

= eT
1

∑
�∈Z

a(�) ⊗ eT
1 /m = eT

1 ⊗ eT
1 .

It is easily seen that b satisfies the basic sum rule if and only if (eT
1 ⊗ eT

1 )b̂(2�(MT )−1�k) =
0, k = 0, 1, . . . , m−1. By the definition of b, we know that (eT

1 ⊗eT
1 )b̂(2�(MT )−1�k) = 0 imply

eT
1 â(2�(MT )−1�k) = 0, for k = 0, 1, . . . , m − 1. Hence a satisfies the basic sum rule. Above

discussions tell us that a satisfies the basic sum rule if and only if b also satisfies the basic sum
rule.

For a ∈ Er×r

 , let Ta be the transition operator on Er


 defined by

Tau(�) :=
∑
�∈Zs

a(M� − �)u(�), � ∈ Zs , u ∈ Er

. (2.6)

See [1,8,10,12,18–21,23–25] for some earlier works on this operator.
It follows from the proofs of Lemmas 3.1 and 3.2 in [12] that the transition operator Ta is a

bounded and compact operator on Er

.

Lemma 2.1. Let a ∈ Er×r

 for some 
 > 0. Then the transition operator Ta is a bounded operator

on Er

. Moreover,

‖Tau‖Er


�‖a‖Er×r



‖u‖Er



∀u ∈ Er


. (2.7)

Proof. For � ∈ Zs , we have

|�| = |M−1M�|�‖M−1‖|M�| < |M� − �| + |�|.
Consequently

‖Tau‖Er


�

∑
�∈Zs

⎛
⎝∑

�∈Zs

|a(M� − �)u(�)|e
|M�−�|
⎞
⎠ e
|�| �‖a‖Er×r



‖u‖Er



.

Hence, Ta is a bounded operator on Er

. �

Lemma 2.2. Let a ∈ Er×r

 for some 
 > 0. Then the transition operator Ta is a compact operator

on Er

.

Proof. When a is finitely supported, then Ta is the limit of a sequence of finite-rank operator.
Hence Ta is a compact operator. In general, for L = 1, 2, . . . , let aL be the sequences in Er×r
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defined by aL(�) = a(�) for |�|�L, and aL(�) = 0 for |�| > L. Each aL is finitely supported,
then each TaL

is a compact operator for L = 1, 2, . . . . By the definition of aL, we obtain∑
�∈Zs

|(TaL
− Ta)u(�)|e
|�| =

∑
�∈Zs

∑
|M�−�|>L

|a(M� − �)u(�)|e
|�|

�
∑
�∈Zs

∑
|M�−�|>L

|a(M� − �)u(�)|e
|M�−�|e
|�|

� ‖u‖Er



∑
|�|>L

r∑
j=1

r∑
k=1

|ajk(�)|e
|�|,

where a(�) = (ajk(�))1� j,k � r .
Therefore

lim
L→∞ ‖TaL

− Ta‖� lim
L→∞

r∑
j=1

r∑
k=1

∑
|�|>L

|ajk(�)|e
|�| = 0.

It follows from the above estimate that Ta is a compact operator. �

Since Ta is a compact linear operator on Er×r

 , the Riesz Theory of compact operators (see

Chapter 3 in [34]) says that the spectrum of Ta is a countable compact set whose only possible
limit point is 0. In particular, there exists an eigenvalue  of Ta such that �(Ta) = ||, where
�(Ta) denotes the spectral radius of Ta . It follows from [12] that if (Tn)n=1,2,..., is a sequence
of bounded linear operators on Banach space Er×r


 such that ‖Tn − T ‖ → 0 as n → ∞, then
limn→∞ �(Tn) = �(T ).

Consider the subspace V of Er2


 defined by

V :=
⎧⎨
⎩v ∈ Er2


 : (eT
1 ⊗ eT

1 )
∑
�∈Zs

v(�) = 0

⎫⎬
⎭ . (2.8)

Theorem 2.3. Let b ∈ Er2×r2


 be defined by (2.5). Then V is invariant under Tb, if and only if b
satisfies the basic sum rule.

Proof. Let b satisfy the basic sum rule and v ∈ V . Then we have

(eT
1 ⊗ eT

1 )
∑
�∈Zs

Tbv(�) = (eT
1 ⊗ eT

1 )
∑
�∈Zs

∑
�∈Zs

b(M� − �)v(�)

=
∑
�∈Zs

⎛
⎝∑

�∈Zs

(eT
1 ⊗ eT

1 )b(M� − �)

⎞
⎠ v(�)

= (eT
1 ⊗ eT

1 )
∑
�∈Zs

v(�) = 0.

Therefore v ∈ V implies Tbv ∈ V . This proves that V is invariant under Tb.
Next, we prove the necessity part of the theorem. Note that for �i ∈ E, i = 0, 1, . . . ,

m-1, (ek ⊗ ej )∇−�i
	 ∈ V, for j, k = 1, 2, . . . , r, where for a vector � ∈ Zs , the difference
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operator ∇� is defined by

∇�v := v − v(· − �), v ∈ l(Zs),

and for � ∈ Zs , the sequence 	� on Zs given by

	�(�) =
{

1 for � = �,

0 for � ∈ Zs\{�}.
If � = 0, we write 	 for 	0.

Hence∑
�∈Zs

(eT
1 ⊗eT

1 )
[
b(M�)−b(M�+�i )

]
(ek⊗ej )=(eT

1 ⊗eT
1 )

∑
�∈ Zs

Tb(ek⊗ej∇−�i
	)(�)=0.

It follows that for j, k = 1, 2, . . . , r ,

(eT
1 ⊗ eT

1 )
∑
�∈Zs

b(M�)(ek ⊗ ej ) = (eT
1 ⊗ eT

1 )
∑
�∈Zs

b(M� + �i )(ek ⊗ ej ).

Since the above relation is true for all j, k = 1, 2, . . . , r. Therefore

(eT
1 ⊗ eT

1 )
∑
�∈Zs

b(M�) = (eT
1 ⊗ eT

1 )
∑
�∈Zs

b(M� + �i ).

Since eT
1

∑
�∈Zs a(�) = meT

1 . We have

(eT
1 ⊗ eT

1 )
∑
�∈Zs

b(�) = (eT
1 ⊗ eT

1 )
∑
�∈Zs

∑
�∈Zs

a(�) ⊗ a(� + �)/m

=
∑
�∈Zs

eT
1 a(�) ⊗

∑
�∈Zs

eT
1 a(� + �)/m =

∑
�∈Zs

eT
1 a(�) ⊗ eT

1

= meT
1 ⊗ eT

1 .

It follows that

(eT
1 ⊗ eT

1 )
∑
�∈Zs

b(M� + �i ) = eT
1 ⊗ eT

1 , �i ∈ E, i = 0, 1, . . . , m − 1.

Hence b satisfies the basic sum rule. �

Suppose � ∈ (L2(R
s))r is a solution of the refinement equation (1.1), where the mask a is

assumed to be in (l1(Z
s))r×r for the time being, then

� � �T =
∑
�∈Zs

∑
�∈Zs

a(�)�(M · −�) � �T (M · −�)a(�)T .

Since

�(M · −�) � �T (M · −�) = 1

m
� � �T (M · −� + �).

By (2.2), we have

vec(a(�)�(M · −�) � �T (M · −�)a(�)T ) = 1

m
a(�) ⊗ a(�)vec(� � �T )(M · −� + �).
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Hence

vec(� � �T ) =
∑
�∈Zs

∑
�∈Zs

1

m
a(�) ⊗ a(�)vec(� � �T )(M · −� + �). (2.9)

Let f := vec(� � �T ), then f ∈ (C0(R
s))r

2
, the linear space of r2 × 1 vectors of functions in

C0(R
s). It is easily checked that f satisfies the refinement equation as follows:

f =
∑
�∈Zs

b(�)f (M · −�),

where b is given by (2.5).
For n = 1, 2, . . . , let a1 = a and an be defined by the following iterative relations:

an(�) =
∑
�∈Zs

an−1(�)a(� − M�), � ∈ Zs . (2.10)

By (1.2) and induction on n, it is easily seen that

Qn
a� =

∑
�∈Zs

an(�)�(Mn · −�). (2.11)

Similarly, for f ∈ (C0(R
s))r

2
, we have

Qn
bf =

∑
�∈Zs

bn(�)f (Mn · −�), (2.12)

where bn (n = 1, 2, . . .) are the sequences of r2 × r2 matrices defined as follows:

b1 = b and bn(�) =
∑
�∈Zs

bn−1(�)b(� − M�), � ∈ Zs . (2.13)

It was proved in [21] that an and bn satisfy the following relations:

bn(�) =
∑
�∈Zs

an(�) ⊗ an(� + �)/mn, � ∈ Zs , n = 1, 2, . . . . (2.14)

The following is an outline of this proof. We can prove (2.14) by induction on n. By the definition
of b, (2.14) holds true for n = 1. Suppose n > 1 and (2.14) is valid for n − 1. For � ∈ Zs ,
we have

bn(�) =
∑
�∈Zs

bn−1(�)b(� − M�)

= m−n
∑
�∈Zs

⎛
⎝∑

�∈Zs

an−1(�) ⊗ an−1(� + �)

⎞
⎠

⎛
⎝ ∑

�∈Zs

a(�) ⊗ a(� − M� + �)

⎞
⎠

= m−n
∑
�∈Zs

∑
�∈Zs

∑
�∈Zs

an−1(�)a(� − M�) ⊗ (an−1(�)a(� + � − M�))

= m−n
∑
�∈Zs

an(�) ⊗ an(� + �),

which implies that (2.14) is true for all n.
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Let �0 and �0 lie in (L2(R
s))r . It follows from above discussions that

vec((Qn
a�0) � (Qn

a�0)
T ) =

∑
�∈Zs

∑
�∈Zs

m−nan(�) ⊗ an(�)vec(�0 � �T
0 )(Mn · −� + �).

By (2.14), we have, for n = 1, 2, . . . ,

vec((Qn
a�0) � (Qn

a�0)
T ) = Qn

b(vec(�0 � �T
0 )). (2.15)

Theorem 2.4. Suppose a ∈ Er×r

 for some 
 > 0, H(0) = ∑

�∈Zs a(�)/m satisfies (1.3). Let b
and Tb be given by (2.5) and (2.6), respectively, then �(Tb|Er2



)�1.

Proof. First, we consider the case when a is finitely supported. Let �0 be the characteristic
function of the unit cube [0, 1]s . By (2.4) we have

∥∥Qn
a(e1�0)

∥∥2
2 �

∣∣∣vec((Qn
a(e1�0))�(Qn

a(e1�0))
T )(0)

∣∣∣=
∣∣∣Qn

b(vec((e1�0)�(e1�0)
T ))(0)

∣∣∣ .
By an induction on n, we have

T n
b v(�) =

∑
�∈Zs

bn(M
n� − �)v(�). (2.16)

It follows that∥∥Qn
a(e1�0)

∥∥2
2 �

∣∣∣Qn
b(vec((e1�0) � (e1�0)

T ))(0)

∣∣∣ =
∣∣∣T n

b (vec((e1�0) � (e1�0)
T ))(0)

∣∣∣ .
If �(Tb|Er2



) < 1, then Qn

a(e1�0) would converge to 0 in the L2-norm, as n → ∞. Since

H(0) = ∑
�∈Zs a(�)/m satisfies (1.3), by a simple computation, we have

Q̂n
a(e1�0)(0) = H(0)ne1 = e1.

This contradiction demonstrates that �(Tb|Er2



)�1.

For the general cases, suppose a ∈ Er×r

 for some 
 > 0. For L = 1, 2, . . . , we can find matrix

sequencesaL (L = 1, 2, . . .) such that eachaL is supported on [−L, L]s , eT
1

∑
�∈Z aL(�)/m = eT

1
and ‖aL − a‖Er×r



→ 0 as L → ∞. Let bL(�) = ∑

�∈Zs aL(�) ⊗ aL(� + �)/m, by Lemma 2.1,
‖TbL

|
Er2



− Tb|Er2



‖ → 0 as L → ∞. It follows that limL→∞ �(TbL

|
Er2



) = �(Tb|Er2



). If

�(Tb|Er2



) < 1, then �(TbL
|
Er2



) < 1 for sufficiently large L, which is impossible. Therefore, we

have �(Tb|Er2



)�1. �

3. Convergence of subdivision scheme

In this section, we will show that the vector subdivision schemes associated with a having
exponentially decay and a general dilation matrix M converges in the L2-norm if and only if V is
invariant under Tb and �(Tb|V ) < 1. Our proofs are based on [12,19,23].

Theorem 3.1. Let a ∈ Er×r

 for some 
 > 0 and H(0) = ∑

�∈Zs a(�)/m satisfies (1.3). Suppose
b is given by (2.5) and Tb is defined by (2.6). Then the subdivision scheme associated with mask
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a and a general dilation matrix M converges in the L2-norm if and only if

(1) limn→∞ ‖T n
b v‖∞ = 0, ∀v ∈ V.

(2) a satisfies the basic sum rule,

where V is defined by (2.8).

Proof. We first establish the necessity part of the theorem. We choose � to be the characteristic
function of the unit interval [0, 1). Then e1� satisfies the moment conditions of order 1, and
vec((e1�) � (e1�)T ) = (e1 ⊗ e1)h, where h is the hat function given by h(x) := max{1 −
|x|, 0}, x ∈ R. We have that Qn

a(e1�) converges to some limit function � in the L2-norm.
By (2.3), we have∥∥∥vec(Qn

a(e1�) � (Qn
a(e1�))T − � � �T )

∥∥∥∞

�
∥∥∥vec(Qn

a(e1�) � (Qn
a(e1�) − �)T )

∥∥∥∞ +
∥∥∥vec((Qn

a(e1�) − �) � �T )

∥∥∥∞
�

∥∥Qn
a(e1�)

∥∥
2

∥∥Qn
a(e1�) − �

∥∥
2 + ∥∥Qn

a(e1�) − �
∥∥

2 ‖�‖2 .

Which implies that vec(Qn
a(e1�)� (Qn

a(e1�))T ) converges to vec(���T ) uniformly. By (2.15),
we have Qn

b(e1 ⊗ e1h) converges to vec(� � �T ) uniformly. Since vec(� � �T ) is uniformly
continuous, and∥∥Qn

b(e1 ⊗ e1h) − Qn
b(e1 ⊗ e1h)(· − M−nej )

∥∥∞

�
∥∥∥Qn

b(e1 ⊗ e1h) − vec(� � �T )

∥∥∥∞ +
∥∥∥vec(� � �T ) − vec(� � �T )(· − M−nej )

∥∥∥∞

+
∥∥∥Qn

b(e1 ⊗ e1h)(· − M−nej ) − vec(� � �T )(· − M−nej )

∥∥∥∞ .

Consequently,

lim
n→∞

∥∥Qn
b(e1 ⊗ e1h) − Qn

b(e1 ⊗ e1h)(· − M−nej )
∥∥∞ = 0.

It follows from (2.12) that

Qn
b(e1 ⊗ e1h) − Qn

b(e1 ⊗ e1h)(· − M−nej ) =
∑
�∈Zs

∇ej
bn(�)(e1 ⊗ e1h)(Mn · −�).

Note that the shifts of h are stable, therefore

lim
n→∞

∥∥∇ej
bn(e1 ⊗ e1)

∥∥∞ = 0. (3.1)

For j = 2, . . . , r , we know that e1� and (e1 + ej )� both satisfy the moment conditions of order
1, hence, Qn

a(e1�) and Qn
a(e1 + ej )� converge to the same limit � in the L2-norm. This shows

that, for j = 2, . . . , r ,
∥∥Qn

a(ej�)
∥∥

2 → 0 as n → ∞. By using (2.15), we have

vec((Qn
a(ej�)) � (Qn

a(ek�))T ) = Qn
b((ek ⊗ ej )h), j, k = 1, . . . , r, n = 1, 2, . . . .

By (2.3), we obtain

lim
n→∞

∥∥Qn
b(ek ⊗ ej )h

∥∥∞ = 0, (j, k) �= (1, 1).
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Since

Qn
b(ek ⊗ ej )h =

∑
�∈Z

bn(�)(ek ⊗ ej )h(Mn · −�),

it follows that

lim
n→∞

∥∥bn(ek ⊗ ej )
∥∥∞ = 0, (j, k) �= (1, 1). (3.2)

Since {ej , j = 1, . . . , r} is a basis for Cr , it follows that {ek ⊗ ej , j, k = 1, . . . , r} is a basis

for Cr2
. Then each v ∈ V can be expressed as

v =
r∑

j=1

r∑
k=1

∑
�∈Zs

djk(�)(ek ⊗ ej )	�,

where djk ∈ E
, j, k = 1, . . . , r . Since v ∈ V , we have

0 = (eT
1 ⊗ eT

1 )
∑
�∈Zs

v(�) = (eT
1 ⊗ eT

1 )

r∑
j=1

r∑
k=1

∑
�∈Zs

djk(�)(eT
1 ⊗ eT

1 ) =
∑
�∈Zs

d11(�).

It follows from [12] that there exist u1, u2, . . . , us ∈ �1(Z
s) such that d11 = ∑s

j=1 ∇ej
uj .

We have

T n
b

⎛
⎝ ∑

�∈Zs

s∑
j=1

∇ej
uj (�)(e1 ⊗ e1)	�

⎞
⎠ (�)

=
∑
�∈Zs

bn(M
n� − �)

s∑
j=1

∇ej
uj (�)(e1 ⊗ e1), � ∈ Zs

and

T n
b

⎛
⎝ ∑

(j,k)�=(1,1)

∑
�∈Zs

djk(�)(ej ⊗ ek)	�

⎞
⎠ (�)

=
∑

(j,k)�=(1,1)

∑
�∈Zs

bn(M
n� − �)(ej ⊗ ek)djk(�), � ∈ Zs .

Therefore∥∥∥∥∥∥T n
b

⎛
⎝ ∑

�∈Zs

s∑
j=1

∇ej
uj (�)(e1 ⊗ e1)	�

⎞
⎠

∥∥∥∥∥∥∞
�

s∑
j=1

‖∇ej
bn(e1 ⊗ e1)‖∞‖uj‖1 (3.3)

and ∥∥∥∥∥∥T n
b

⎛
⎝ ∑

(j,k)�=(1,1)

∑
�∈Zs

djk(�)(ej ⊗ ek)	�

⎞
⎠

∥∥∥∥∥∥∞
�‖bn(ej ⊗ ek)‖∞

∑
(j,k)�=(1,1)

‖djk‖1. (3.4)

Using (2.6), (3.1)–(3.4) and the expression of v, we prove that (1) of Theorem 3.1 holds.
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To prove (2) of Theorem 3.1. We claim that V is invariant under Tb. Indeed, if not, then there
exists v ∈ V such that Tbv is not in V. Note that the codimension of V in Er2


 is 1. Hence, any

u ∈ Er2


 can be expressed as u = w + c(Tbv) for some w ∈ V and c ∈ C. By (1) of Theorem 3.1,
we have

lim
n→∞ ‖T n

b u‖∞ = 0 ∀u ∈ Er2


 .

Therefore, �(Tb|Er2



) < 1. On the other hand, by Theorem 2.4, we have �(Tb|Er2



)�1. This

contradiction shows that V is invariant under Tb. It follows from Theorem 2.3 that b satisfies the
basic sum rule. Hence, a also satisfies the basic sum rule.

To establish the sufficiency part of the theorem. Let �0 be a vector of compactly supported
functions in (L2(R

s))r such that �0 satisfies the moment conditions of order 1, and let g0 :=
Qa�0 − �0. To estimate Qn+1

a �0 − Qn
a�0, we observe that

Qn+1
a �0 − Qn

a�0 = Qn
a(Qa�0 − �0) = Qn

ag0. (3.5)

Since eT
1

∑
�∈Zs �0(· − �) = 1 and a satisfies the basic sum rule, we have

eT
1

∑
�∈Zs

(Qa�0)(· − �) = eT
1

∑
�∈Zs

∑
�∈Zs

a(�)�0(M · −M� − �)

=
∑
�∈Zs

eT
1

⎡
⎣∑

�∈Zs

a(� − M�)

⎤
⎦ �0(M · −�)=eT

1

∑
�∈Zs

�0(M · −�)=1.

Therefore, Qa�0 also satisfies the moment conditions of order 1. Consequently, for almost every
x ∈ Rs ,

eT
1

∑
�∈Zs

g0(· − �) = 0.

By (2.2), we obtain

(eT
1 ⊗ eT

1 )
∑
�∈Zs

vec(g0 � gT
0 )(�) = (eT

1 ⊗ eT
1 )

∑
�∈Zs

∫
Rs

vec(g0(� + x)g0(x)
T
) dx = 0.

Since a ∈ Er×r

 and �0 is compactly supported, we have

‖vec(g0 � gT
0 )‖

Er2



< ∞.

Hence vec(g0 � gT
0 ) lies in V . By (2.4), we have

‖Qn
ag0‖2

2 � |vec((Qn
ag0) � (Qn

ag0)
T )(0)|.

Since

T n
b (vec(g0 � gT

0 ))(�) =
∑

�∈ Zs

bn(M
n� − �)vec(g0 � gT

0 )(�),

then

T n
b vec(g0 � gT

0 )(0) =
∑
�∈Zs

bn(−�)vec(g0 � gT
0 )(�) =

∑
�∈Zs

bn(�)vec(g0 � gT
0 )(−�)

= Qn
bvec(g0 � gT

0 )(0) = vec((Qn
ag0) � (Qn

ag0)
T )(0).
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It follows that∥∥Qn
ag0

∥∥2
2 �

∣∣∣vec((Qn
ag0) � (Qn

ag0)
T )(0)

∣∣∣
=

∣∣∣T n
b vec(g0 � gT

0 )(0)

∣∣∣ �
∥∥∥T n

b vec(g0 � gT
0 )

∥∥∥∞ , n = 1, 2, . . . .

Since Tb is a compact operator, then there exists an eigenvalue � of Tb|V such that �(Tb|V ) = |�|.
We write Tbv = �v for some v ∈ V with v �= 0. Therefore T n

b v = �nv, for n = 1, 2, . . . . It
follows from (1) of Theorem 3.1 that �(Tb|V ) < 1. Hence there exist positive constants C and
0 < � < 1, such that

‖Qn
ag0‖2

2 �C�n, n = 1, 2, . . . ,

which implies that Qn
a�0 is a Cauchy sequence in (L2(R

s))r . Let �0 be another r × 1 vector of
(L2,c(R

s))r that satisfies the Strang–Fix conditions of order 1, then eT
1

∑
�∈Zs (�0 − �0) = 0.

It follows from above discussions, Qn
a(�0 − �0) converges to 0 in the L2-norm. Therefore,

Qn
a�0 and Qn

a�0 converge to the same limit. Thus, the subdivision scheme associated with
mask a and a general dilation matrix M converges in the L2-norm. We complete the proof of
Theorem 3.1. �

By the proof of Theorem 3.1, we have

Theorem 3.2. Let a ∈ Er×r

 for some 
 > 0, and H(0) = ∑

�∈Zs a(�)/m satisfies (1.3). Let b
be given by (2.5) and Tb be defined by (2.6). Then the subdivision scheme associated with mask
a and a general dilation matrix M converges in the L2-norm if and only if

(1) a satisfies the basic sum rule, and
(2) �(Tb|V ) < 1,

where V is the linear space defined by (2.8).

When mask a is finitely supported, let W be the minimum invariant subspace of the transition
operator Tb generated by vec(e1e

T
1 �j	), j = 1, 2, . . . , s, vec(e2e

T
2 	), . . . , vec(ere

T
r 	), where �j

denotes the difference operator on �0(Z
s) given by

�j u := 2u − u(· − ej ) − u(· + ej ), u ∈ �0(Z
s).

It follows from Theorem 5.1 in [20] and Theorem 4.1 in [28] that

Theorem 3.3. Suppose that a is finitely supported. Then the subdivision schemes associated with
mask a and a general dilation matrix M converges in L2-norm if and only if

�(Tb|W) < 1.

Remark 3.4. We remark that L2-convergence of subdivision schemes associated with masks a
having exponential decay was investigated in [12] with r = 1 and in [19] for the case s = 1 and
M = 2. These theorems will also provide some sufficient conditions for the characterization of
smoothness of multiple refinable functions associated with Eq. (1.1). Using a different approach,
the L2-convergence of subdivision schemes with an infinitely supported mask has also been
considered in [14] with r = 1, s = 1 and M = 2 and in [13] for the case s = 1 and M = 2. When
mask a is polynomially decaying, the L2-solution of refinement equation with s = 1 and M = 2
was investigated in [30].
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4. Biorthogonal multiple refinable functions

Linear independence and stability are two important concepts. The shifts of compactly sup-
ported functions �1, . . . ,�r ∈ L2(R

s) are said to be linearly independent if

r∑
j=1

∑
�∈Zs

cj (�)�j (· − �) = 0

implies cj = 0, j = 1, 2, . . . , r . The shifts of �1, . . . ,�r are linearly independent if and only if,
for any � ∈ Cs , the sequences (�̂j (�+2��))�∈Zs , j = 1, . . . , r are linearly independent [22,30].
Hence linear independence implies stability.

Suppose � = (�1, . . . ,�r )
T and �̃ = (�̃1, . . . , �̃r )

T are dual vectors of compactly supported
functions in L2(R

s). It is easily seen that the shifts of � and �̃ are linearly independent. Thus,
linear independence is a necessary condition for the existence of a dual vector of compactly
supported functions.

Let � = (�1, . . . ,�r )
T be a L2-solution of (1.1) with mask a being finitely supported such

that the shifts of �1, . . . ,�r are linearly independent, we want to find a dual �̃ such that �̃ =
(�̃1, . . . , �̃r )

T satisfies following refinement equation

�̃(x) =
∑
�∈Zs

ã(�)�̃(Mx − �), x ∈ Rs , (4.1)

where ã is a finitely supported sequence of r × r matrices on Zs .
When s = 1 and M = 2, Jia [19] proved that there exists a dual �̃ of � such that �̃ satisfies

(4.1) for some finite mask ã. Thus, linear independence is a sufficient and necessary condition for
the existence of a dual refinable vector of compactly supported functions for the case s = 1 and
M = 2. In this section we shall show that under some mild assumptions on masks a and ã, there
exists a vector �̃ = (�̃1, . . . , �̃r )

T satisfying (4.1) such that �̃ is dual to �. For finite mask ã, let

H̃ (�) := 1

| det M|
∑
�∈Zs

ã(�)e−i�·�, � ∈ Rs .

We assume that H̃ (0) also satisfies eigenvalue condition. Let � be a complete set of representatives
of the distinct cosets of the quotient group Zs/MT Zs with 0 ∈ �. It was proved in [31] that if �
is dual to �̃, then

∑
�∈�

H(� + (MT )−12��)H̃ (� + (MT )−12��)∗ = Ir , (4.2)

for all � ∈ Rs , where H̃ (� + (MT )−12��)∗ denotes the complex conjugate transpose of H̃ (� +
(MT )−12��) and Ir is the r × r identity matrix.

Therefore, to find a vector refinable function �̃ satisfying (4.1) such that �̃ is dual to �, one
must solve (4.2). However, there is no general method to solve this equation. By using block
centrally symmetric matrices, Chen, Micchelli and Xu proved that for a large family of masks a
and ã, Eq. (4.2) is solvable (see Theorem 3.1 of [2]). In this section, we always assume that (4.2)
is solvable.



174 S. Li, J. Yang / Journal of Approximation Theory 148 (2007) 158–176

Theorem 4.1. Let a be finitely supported and � = (�1, . . . ,�r )
T be a L2-solution of (1.1) with

linearly independent shifts. Suppose that (4.2) is solvable. Then there exists a refinable vector
�̃ = (�̃1, . . . , �̃r ) of compactly supported functions in L2(R

s) such that �̃ is dual to �.

Proof. The proof of Theorem 4.1 follows the line [19]. Let

G(�) := ([�j , �k](e−i�))1� j,k � r ,

where the bracket product of �j and �k is defined by

[�j , �k](e−i�) :=
∑
�∈Zs

�̂j (� + 2��)�̂k(� + 2��), � ∈ Rs .

Since the shifts of �1, . . . ,�r are linearly independent, it follows from [22,25] that the matrix
G(�) is positive definite for every � ∈ Rs . Denote �̃ = (�̃1, . . . , �̃r )

T by

ˆ̃�(�) := G(�)−1�̂(�), � ∈ Rs .

It is easy to check that the shifts of �̃1, . . . , �̃r are stable. For every � ∈ Rs , we have∑
�∈Zs

ˆ̃�(� + 2��)�̂(� + 2��)∗ = G(�)−1
∑
�∈Zs

�̂(� + 2��)�̂(� + 2��)∗

= G(�)−1G(�) = Ir ,

which implies that �̃ is dual to �. Note that

ˆ̃�(�) = G(�)−1H((MT )−1�)�̂((MT )−1�)

= G(�)−1H((MT )−1�)G((MT )−1�) ˆ̃�((MT )−1�).

Let H̃ (�) = G(MT �)−1H(�)G(�), � ∈ Rs , then

ˆ̃�(�) = H̃ ((MT )−1�) ˆ̃�((MT )−1�).

Hence, �̃ is a vector refinable functions. Clearly, H̃ (�) is 2�-periodic. We write H̃ (�) =
(h̃jk(�))1� j,k � r , where

h̃jk(�) =
∑
�∈Zs

ãjk(�)e−i�·�/m, � ∈ Rs .

It follows from the definition of H̃ (�) that there exists some 
 > 0 such that ã = (ãjk)1� j,k � r

∈ Er×r

 for all j, k = 1, . . . , r. Since �̃ is dual to �, we have that the subdivision scheme

associated with ã and dilation matrix M is convergent in the L2-norm. Let b̃ ∈ Er2×r2


 be denoted
as follows:

b̃(�) :=
∑
�∈Zs

ã(�) ⊗ ã(� + �)/m, � ∈ Zs

and let Ṽ be the linear space given by (2.8). It follows from Theorem 3.2 that ã satisfies the
basic sum rule and �(T

b̃
|
Ṽ
) < 1. For L = 1, 2, . . . , we can find ãL ∈ (�0(Z

s))r×r such that
‖ãL − ã‖Er×r



→ 0 as L → ∞. Let

H̃L(�) :=
∑
�∈Zs

ãL(�)e−i�·�/m, � ∈ Rs
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and

eL(�) := Ir −
∑
�∈�

H(� + (MT )−12��)H̃L(� + (MT )−12��)∗ (4.3)

for all � ∈ Rs . Since (4.2) is solvable for mask a, there exists an r × r matrix of trigonometric
polynomial F(�) such that H(�) and F(�) satisfy (4.2). Denote

FL(�) = H̃L(�) + eL(�)∗F(�), � ∈ Rs .

Then FL(�) is an r × r matrix of trigonometric polynomial. Write

FL(�) =
∑
�∈Zs

fL(�)e−i�·�/m, � ∈ Rs ,

where fL ∈ (�0(Z
s))r×r . Since ‖ãL − ã‖Er×r



→ 0 as L → ∞, by the construction of FL, we

have that ‖fL − ã‖Er×r



→ 0 as L → ∞. Therefore, we may choose ãL (L = 1, 2, . . .) in such
a way that each fL satisfies the basic sum rule. For sufficiently large L, 1 is a simple eigenvalue
of

∑
�∈Zs fL(�)/m and its other eigenvalues are less than 1 in modulus.

With the help of the following identity (see [20])

∑
�∈�

e−i�·2�(MT )−1 =
{

m if � = M� for some � ∈ Zs ,

0 if � /∈ MZs .

We have eL(� + 2�(MT )−1�) = eL(�) for any � ∈ �. It follows from (4.2) and (4.3) that∑
�∈�

H(� + 2�(MT )−1�)FL(� + 2�(MT )−1�)∗

=
∑
�∈�

H(� + 2�(MT )−1�)H̃L(� + 2�(MT )−1�)∗

+
∑
�∈�

H(� + 2�(MT )−1�)F (� + 2�(MT )−1�)∗eL(�) = Ir .

Let b̃L be denoted by

b̃L(�) :=
∑
�∈Zs

fL(�) ⊗ fL(� + �)/m, � ∈ Zs . (4.4)

It follows from above discussion that b̃L→b̃ in the space Er2×r2


 as L→∞. Note that �(T
b̃
|
Ṽ
)<1,

where Ṽ is the linear space defined by (2.8), therefore �(T
b̃L

|
Ṽ
) < 1, for sufficiently large L.

By Theorem 3.2, subdivision scheme associated with fL and dilation matrix M converges in the
L2-norm. It follows from Theorem 3.1 in [31] that limit function �L is an r × 1 refinable vector
of compactly supported functions in (L2(R

s))r . Furthermore, �L is dual to �. �
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