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Harnack estimates for curvature flows depending on mean

curvature

FANG Shou-wen

Abstract. We prove the Harnack estimates of curvature flows of hypersurfaces in R™™!, where
the normal velocity is given by a smooth function f depending only on the mean curvature.
By use of the estimates, we get some corollaries including the integral Harnack inequality. In
particular, we give the conditions, with which the solution to the flow is a translation soliton

and an expanding soliton respectively.

81 Introduction

It is well-known that there are many results about Harnack estimates for some geometric
flows. We also call it LYH inequality, which is first noted by Peter Li and S.-T.Yau for the scalar
heat flow in [9] . Hamilton studied the Ricci flow on surfacel®! and got such estimate. He also
got the matrix Harnack inequality in the scalar heat flow!®!, and such estimates in Ricci flow for
all dimensions!” and mean curvature flow®l. Ben Chow obtained similar inequalities for Gauss
curvature flow!?) and Yamabe flow[3]. Moreover, Ben Andrews treated a class of geometric flows
by the inverse map of Guass map in [1]. Wang Jie got the estimate for H*-flow in [11].

Let M™ be a smooth manifold without boundary, and let Fy: M™ — R™*! be a smooth im-
mersion which is convex. We consider a smooth evolving one-parameter family of hypersurface
immersions described by a map F(-,t) : M"™ x [0,T) — R"*!, where the evolution is given by
the following equation:

{ B F(x,t) = f(H(x,))7
F(z,0) = Fy(z), Yaxe M,
where 7 is the unit inward normal and f is a smooth function depending only on the mean
curvature H.

If f = H we get the mean curvature flow, and for f = H¥ it is the H*-flow. In this paper,
we call it f-flow. Ben Andrews also considered a class of geometric flows and his results hold
on the compact case. K.Smoczyk proved the short time existence of smooth admissible solution

Received: 2008-04-21.

MR Subject Classification: 53C21.

Keywords: f-flow, Harnack estimate, translation soliton, expanding soliton.
Digital Object Identifier(DOI):10.1007/s11766-007-***.



2 My Paper Vol. 23, No. 1

to the f-flow under the condition f’ > 0 and the Harnack inequality on compact hypersurfaces
of R™*1 in [10]. The purpose of this paper is to prove the same estimate for the complete case.

Throughout this paper, we denote M; as the admissible solution to the flow, and
t € [0,7] on which the solution exists.

We always assume the solution satisfies the following condition

(x) compact or complete with bounded |A|,|DA|,|D?A|, at each time ¢,

where A is the second fundamental form of M;.
Theorem 1.1. Assume that Fy: M™ — R"™*! is an admissible smooth and convex immersion,
M, is convex under the condition (x) and that f : [0, +00) — R is a smooth function such that

for all z € [0, +00) we have

I >0f—//x > ax, (fll

7 o) SO ff e £ = () e 2 0
where a € R is a constant. Then we can find a small positive constant d such that
0
af +2Df(V)+ A(V,V)+cf'H >0
holds for all tangent vectors V as long as t € [0,7] and d + (a + 2)t > 0, where we have set
o 1
It is just the differential Harnack inequality for the f-flow. As usual we integrate it over
paths in space-time to get an integral Harnack inequality.
Corollary 1.1. Under the assumption of Theorem 1.1, for V 0 < t; < to < T satisfying
d+ (a+2)t; >0,(:=1,2) and Y1,Y2 € M, we have

H(Ya,t2) > (d+(a+2)tl>+

AN
" H(Y,t
d+ (a+2)ts (Y1, 1)
where

. ay|?
D= inf f'(H(z,t)), and A=inf [ |—| dt
xeM dt
ty<t<to M

is the infimum over all paths Y (t) remaining on the surface at time t with Y = Y7 at ¢t = ¢4
is the length of its

and Y =Y, at t = to, ¥ is the velocity vector of the path, and |

dt ‘M

component tangent to the surface M. In particular, if f(0) > 0, then A < %, where
d(Ys, Yg, t1)is the distance along the surface at time ¢; between Y7 and Yg, such that Yg evolves
normally to Y5 at ts.

We say a solution is eternal if it is defined for —oco < t < 400. Eternal solutions arise as
limits of dilations (in space-time) of slowly forming singularities. One interesting class of eternal
solutions is the translation solitons. These are surfaces which evolve by translating in space
with a constant velocity T' = V + f77. So the Harnack inequality is also held on translation
solitons. For any strictly convex eternal solutions to mean curvature flow and H*-flow, we have
known they must be translation solitons when the mean curvature attains its maximum value
at a point in space-time. For the f-flow, we have the similar result in the following.
Theorem 1.2. If f satisfies the assumptions of Theorem 1.1 and a + 2 > 0, then any strictly
convex eternal solution under the condition () to the f-flow where the mean curvature attains

its maximum value at a point in space-time, it must be a translation soliton.
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Translation solitons are steady solitons, which exist for —oco < t < +o00. There are also
homothetically expanding solitons and shrinking solitons. In fact, the homothetic solution is
closely related to the Harnack inequality, because it becomes an equality in this case. In [10], for
a homothetic solution we have DQ‘N/I, = fhap+cgap. For ¢ > 0, the solution is expanding soliton,
and for ¢ < 0, it is shrinking. B.L.Chen proved the type III singularity of mean curvature flow
must be the expanding gradient soliton in [4]. Similarly we have the following result for f-flow.
Theorem 1.3. If f satisfies the assumptions of Theorem 1.1 and a + 2 > 0, then any strictly
convex solution under the condition (x) to the f-flow which exists for 0 < ¢ < +o0, where
(d+ (a+2)t) H**? attains its maximum value at a point in space-time, it must be an expanding

soliton.
82 Notations and evolution equations

Suppose M is an n-dimensional manifold without boundary immersed in FEuclidean space
R"*!) it is parametrized locally by X = {z‘} in R", where i = 1,...,n. On M a point
Y = {y“}az1,..nt1 in R"T s given locally by y® = F*(2'). Then the tangent vectors on M
in R"*! is denoted by D;Y = g;fi. The Euclidean metric is I = {I,3}, then the induced metric
G ={gi;} on M is

9i; = 1(D;Y,D;Y) = IngD;iy*D;yP.
The unit normal 7 = {N“} is defined by
I.sN°NP =1 and  I.zsN*Diy’ =0.
On the convex surfaces we choose 7 to be inward. The metric G = {g;;} induces a Levi-Civita
connection I' = {I'}; } on M. So we can take covariant derivatives D = {D;} of tensors on M.

The covariant derivative of 1-form D;y® is
DiDjya = hijNa

where A = {h;;} be the second fundamental form of M. Its trace H = g“h;; is the mean

curvature.
By assumption we have
SRt =7,
As [10] we formally derive the evolution equations for various geometric objects on M, these
are:
agij
= =2 hiﬁ
ot This
Oh;;
o = ['Ahi+ f'DHDH — (f + FH)haohs + f'|Ahy;.

We have to calculate many evolution equations. To avoid too complicated formulas it is
most convenient to work with coordinates associated to a moving frame. We use similar moving

orthonormal frame coordinates as [10].

Let {E,},(a = 1,...,n) be an orthonormal frame locally, where E, = E%-2

a dx?
M. To keep the vectors orthonormal and tangent to M; under the flow, we let

o . y
—E! = fg hyEL.
ot a fg g

is tangent to
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We can write the components of tensors in terms of the frame, for example hy, = A(E,, Ep)
or in local coordinates, hyp = hingEg. We always denote indices a, b, c... under orthonormal
frame, and i, j, k... under local coordinates.

Now we take covariant derivatives under moving orthonormal frame, for example D,V;, =
E;EgDJ/J Then the Laplacian is A = >~ D,D,. We define the operator O = f’A.

In addition, we also define the time like vector field D; on the frame bundle as [10], which

differentiates in the direction of the moving frame. In local coordinates

K] g
DVa = {3Vi+ fg"hpVi}E;
0 . 0
= = Va+ fhVi= Vot fhacV.
gi et IhaVi= G Vot
By direct computations, we have
Dtgab = 0;
Dihay = Dy(BLE]hij) = f'Ahg, + f' D HDyH

+(f - f/H)hachcb + f/|A|2hab§
Dif = f(Af+ fIAP).
We can also calculate some formulas of the commutator of derivations, which are useful for

the computation of Section 3.
Formula 2.1. If V = {V,} is a covector on M, then

DDV — Do DiViy = fhacDeVo + (haeDof — hapDe f)Ve.
Formula 2.2. If g is a smooth function on M, then we have commutator relations,
(1).(D¢ = 0)Dag — Da(Dy —O)g = f"DeHAg + f'haghacDeg
+(f = f'H)hacDeg;
(2).(D; =O)0g —0O(Dy —=O)g = ['AfAg+ ff"|APPAg
+2f f'hacDaDeg + 2f haeDafDeg
+(f = f'H)DqafDag.
Formula 2.3.
DoDyf = Dihap — fhachpe-

The proofs of these formulas are similar in [7,8,11]. We leave the details as an exercise.
83 The computation

In this section we can get the evolution equation of the basic Harnack expression under the
f-flow. To this end we define the following basic quantities, which all vanish on a translation
soliton.

Definition 3.1. We let

Xa = Daf + hab%a Yab = Du‘/b - fhaba
Z = th + 2VaDaf + habVaVb7 Wab = Dthab + ‘/chhab;
W =D f+V.D.f, P=D:H+V.DH,
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Ua = (Dt - D)Va + f/h'abDbf'
Then now we can take the computation.
Theorem 3.1. For any solution to f-flow and any vector field V', we have:

(Dt - D)Z = f/|A‘QZ + 2XaULL - 2f/hchabYac - 4f/WabYab + f”PQ
+(f = fH)IXP.
Proof. The computation is very tedious but direct,
(Dy — f'A)Z = (Dy— f'A)Dyf +2VaDof + hapVa Vi)

= {f'DfIAP + 2 Va Do f|AP + f'|APhayVaVi}
{2 hacDafDef +2Do f(Dy — ['A)V,
+2f haahacVaDef + 2hap Vo (Dy — f'A)V3}
H=2f2 'hachaphve +Af ' DyVahachve = 2f'hayDcVa DV}
+{4f f'havDihap + 4f ['VaheaDahea — 4f Dy Vo Dihay
—4f' DehapVaDe Vi }
+{f"D:HDH +2f"V,D,HD.H + f"D,HD,HV,V,}
H(f = ['H)DofDef +2Va(f = f'H)haeDef + (f = [ H)hachueVaVi}
= [IAPZ +2X.Us = 2f hoeYarYae — 4f' WarYap + [ P2
+(f = fH)XP f
Now we make a little change of these quantities by adding the factors of % We can refer to

K. Smocyzk’s paper [10] and make the following definition.
Definition 3.2. Again we let

Xo = X, i;a/b:Yab_Cgabv Z:Z—I—Cf,H, %:Wab+0hab7

- g(lnc)Va,

W=W+cfH P=P+cH, U,=U, o

where c is given in Theorem 1.1.
Here we denote that f’ P=W=2 —EVG. By direct computation, we can get the evolution
equation of c¢f'H
0
(D =O)(cf'H) = g (me)ef H +cf (f"H + AP = e(=

Combining it with Theorem 3.1, we obtain:

o 2
7 H)'|Df".

Corollary 3.1. For any solution to f-flow and for any vector field V' we have

. "
(D, —0)Z = (f'1A)? - (cf—H +20)Z + 2XoUs — 2 hopaYapYad — Af' Wap Y, + f/ P2

f
+(f = f'H)X? + 2(cJ;,I//H+ (Inc) +2¢)X,V, — (J;,H
sef D1+ 2 ) +20) + 70" + 17— (1PH) AP
The evolution of Z is identical with the result in [10].

)'|DfI?

84 Proof of Theorem 1.1
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Under the condition (%), we have |A| < Bo(Ty), |DA| < By(Ty),|D?*A| < By(Ty) on closed
interval [0, 7], where Ty < T. Here By(Tp), B1(T0), B2(Tp) are positive constants depending
on Ty, and | - | is the norm for tensors with respect to {g;;(t)}. We give the following lemma
first.

Lemma 4.1. If f: [0,+00) — R is a smooth function, there exists a function ¢(z,t) > 0, s.t.
@(z,t) = 00 as x — oo, and (D; — f'(H)Ay4))e > Cyp on M x [0, Tp) for any C' > 0.

Proof. As [11], we set p(z,t) = eePlgy(x) for e > 0 and B will be chosen later, where go(z) €
C°°(M) such that go(x) > 1 everywhere and go(x) — o0, as x — oo, and |A g go(z)| < Co for
a positive constant Cy depending on n, By, By, Tp, for t € [0, Tp).

We get | f'Agyg0(x)| < Cigo(x), since f is smooth function and H is bounded on M x [0, Tp].
Therefore

(De — f'Ag))e > (B —Ch)p > Co,
it B>C+C. 1

Now we prove Theorem 1.1.

Proof. For the compact case, K.Smoczyk had proven the estimate in [10]. For the complete

case under the condition (x), we will show the inequality holding on any closed interval [0, Tp],
where Ty < T and on which d + (a + 2)t > 0 holds.

Let p(z,t) = e1ePtgo(x) be the function defined in Lemma 4.1, and (t) = egel? a function
depending only on ¢, where €1,e2 > 0 are small constants, and B, L will be chosen later. Set
Z=7+¢+y|V]

Dif = (f)?AH + f'f"|DH|* + ff'|A]? > =C,
Do f| = |fDH| < C,
where we use the facts that f is a smooth function and |H|, |AH| and |DH| are bounded on
M x [0,Tp]. And
hab + ¥ gab > €29ap > 0,
s0 Z + ¥|V|? has lower bound on M x [0, Ty] for any V.

From those above, we can choose d sufficiently small such that Z>6>0fort=0and for
all tangent vectors V' or where it is out of a compact set 2 C M. We assume if Z first attains
zero at (xg,t9) € Q x [0, Tp], with the direction V. Then

OZ(V + sW =
0= P20 LW o, t0) = 2WalKa+ 0Va),
for any W, so we get .S(V = —V,. We extend V to a vector field in space-time such that
Yab =0, U = 0, then at the point we have
" . P — o
0 > (D,—0)Z > (f1AP - @§4f+%»z+2XJ@—2fmguxw—4fwwnb
f// _ f//
+U)(Z X, V,)? U—fﬂﬂxﬁ+ﬂfﬁﬂ+ (m@+2QXV—HDt D)
+HD)|V|?
2 f 2 o f 2
> (AP = 2Aeg H +20) (-9 = wIVIT) + T T 0 (lne) + 209V
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+(f = ['H?|V]? + Co + Ly|V
f// f//

= (C—fAP+ 2(07H +2¢) + (fl)2<p)g0
HE = FIAP =20 () + (7 — FHW)IV > 0.

The second inequality is because f satisfies the conditions of the theorem and ¢ > 0. The last
inequality is because f smoothly depends on H and |A]| is bounded on M X [0,Tp], and we
choose €1 and e, sufficiently small and B and L large enough. So it is the contradiction. We
get2>00nM>< [0,Tp]. We take £1,e92 — 0, then Z > 0. i

Example 1. For the H*-flow we have f(H) = H* a < k — 1, and hence we choose a = k — 1,
the Harnack estimate becomes

OH" .
’ —— > 0.
o TIH W+ AVVI+ g 20

It has been obtained by Wang Jie'). When k = 1, it has been obtained by Hamilton!®!.
Example 2. When f(H) = V14 H? and we choose a = 0, the function f satisfies the
conditions of Theorem 1.1. The Harnack estimate of the f-flow is

O"  opHV) + fA(VV)+idzo

ot

kH*

85 Some corollaries

We first give the proof of Corollary 1.1.
Proof. Along any path Y (t) = F(X(¢), t) we have

f dX
—=F (— + DH(—>)),
and hence from the Harnack estlmate we obtaln7 by taking V = %%
df dX dX ,
- > — ) —cf'H.
i = G a)
Because f' >0 and A(%Y, 2X) < H|%X \2 for a convex surface, we arrive at the inequality
d 1
InH > —
a =Ty f’
Note that ‘Z—X is the tangential component of & dt , SO that
H (Y- 1 2 A
n (27t2)>_ 1md+(a+ Jto A

H(Yhtl) - a+2 d+(a—|—2)t1 4D
where )
) dy
D= inf f'(H(z,t),and A=inf [ |—| d
xEM dt
t1<t<tg M
The result follows by exponentiating.

In particular, if f(0) > 0, then f > 0 for all convex solution since f’ > 0. Moreover, agz-f =
—2fhi; and h;; > 0, the metric g;; will be weakly shrinking. Hence, ‘ | u < w i

Corollary 5.1(Nondecreasing of tH). Under the assumption of Theorem 1.1,if a+2 > 1, then
for any two times 0 < t; <to <T and V x € M at ty, we have:

t -
H(z,ts) > t—lH(:r,tl)
2
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which T at t; evolves normally to x at ts.
Proof. Take V = 0. We have ) ,
OH . OH t f OH
0<D 'H = f'(— H)=—~t—+———H)< —(t— + H).
< Duftef J g et t(8t+d+(a+2)t s TG 1)
O(tH)

Corollary 5.2. Under the assumption of Theorem 1.1, if a strictly convex solution to f-flow
exists in (—o0, 0] under the condition () and a + 2 > 0, then

OH
— > 0.
ot —
Proof. For any a > 0, the solution exists on [—«, 0], and H > 0, then we have
OH H OH H
"=t ———)> (= >0
f(8t+(a+2)(t+a))_f(8t d+(a+2)(t+a))_
We take limit as e — 400. i

86 Translation soliton

In this section and next we suppose that f satisfies the assumption of Theorem 1.1 and
a+ 2 > 0. If the solution under the condition (*) is strictly convex and eternal, then it exists
on any closed interval [—C, C],C > 0, so
['H

7 =27+ > 0.
d+ (a+2)(t+C) =

As C — o0, we have Z > 0, for all V.
Lemma 6.1. Under the condition (x), if F' > 0 is a weakly positive function on M, such that
(D;—O)F =0, and if Z > F at t =0 for all V, then Z > F at all subsequent times for all V.
Proof. For the compact case, we set Z=7-F+ eeB?; for the complete case, set 7 =
Z — F + ¢ +9|V|?, where ¢, are the functions mentioned in Section 4. Now we may prove
Z >0 as in the proof of Theorem 1.1. f
Lemma 6.2. If (D; — O)F = 0, and F(x,0) > 0, g € M, then F > 0, for t > 0 and
everywhere on M.
Proof. Because H > 0 everywhere and f' > 0, so O is a strictly elliptic operator. Therefore
the strong maximum principle holds. i

From the above lemmas, we get, if there is a point where Z > 0 for all V' at t = tg, then
Z > 0 every where on M, for t > ty and for all V.

We assume H attains its maximum at (xg,tg), then at this point

of
— =0,D,f =0.
5 =~ O f
So Z(xg,tg) = % 4+ 2VoDof + hapVaVy, = 0 when V = 0. The strong maximum principle

(Lemma 6.2) implies that prior to that time Z has a zero vector V' at each point in space-time.
Since Z > 0 and hgp > 0, the zero vector V' is unique and varies smoothly. By the first variation
of Z, we can obtain the zero vector V, = —h;lebf.

Additionally, We can extend V' to be a vector field in space-time satisfying
Yoo = —Waahy, .
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Note X, = 0 at that point, and 0 = Z = V, X, + /P, so we also have P = 0 at that point.
Then we have
0> (Dy —O)Z = 2f"hy Way Waaq > 0,
then Wy, = 0. So we get a vector field V' on M; such that on each point X, = 0, W, = 0 with
V.
We will get Theorem 1.2 from the following theorem.
Theorem 6.1. If on a strictly convex solution to f-flow, a vector field satisfies
Dof +hapVy =0, (6.1)
and
Dihay + VeDchay = 0, (6.2)
then the solution must be a translation soliton.
Proof. Differentiate (6.1), it is
DDy f + VeDahpe + hpe Do Ve = 0. (6.3)
By the Formula 2.3
DoDyf = Dihap — fhachpe- (6.4)
From (6.2),(6.3) and (6.4), we have fhachpe = hpeDoVe. Since hqp > 0, it means {hqp} is
invertible, we get
Jhae = Do Ve. (6.5)
We consider the vector field T = V+ f 77, where 7 is the unit inward normal. Differentiating

it, we have

) . OX )
DT = (D;V7 — fhf)% + (V?hij + Dif)7 =0,

the last equality is because (6.1) and (6.5). So T is a constant vector and the solution is a

translation soliton. f
87 Expanding soliton

If the solution under the condition (%) is strictly convex and exists for 0 < ¢ < +o00, then
by Theorem 1.1 we have Z >0, for all V.

We assume (d + (a + 2)t)H2 attains its maximum at (zg,%o), then at this point Z = 0
when V' = 0. By Corollary 3.1, the strong maximum principle also holds in this case. It implies
there must be a zero vector V such that Z = 0 at each point (z,t), for t < tg. Since Z >0 and
hap > 0, we can obtain the zero vector V, = —h;lebf by using the first variation of Z.

Similarly, We extend V to be a vector field in space-time satisfying

?a/b == A(;ihb_dl-
Note )/(va = 0 at that point, and 0 = Z = Va)?a + f’ﬁ, so we also have P = 0 at that point.
Then we have
0> (D —O)Z > 2f hyt Wy Waa > 0,
then @ = 0. So we get a vector field V' on M; such that on each point )A(; =0, VI//Z, = 0 with
V.
We will get Theorem 1.3 from the following theorem.
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Theorem 7.1. If on a strictly convex solution to f-flow, a vector field satisfies

and

Daf + haoVo = 0, (71)

Dihay + VaDghay + chay, = 0, (7.2)

where ¢ > 0, then the solution must be an expanding soliton.
Proof. Differentiate (7.1), it is

D.Dyf + VyDghpg + hya Do Vg = 0. (7.3)

By the Formula 2.3

DyDyf = Dihay — fhaahpa- (7.4)

From (7.2),(7.3) and (7.4), we have

fhaahea + chay = hpa Do Vy.

Since hgp > 0, we obtain fheq + cgoq = Do Vy. So the solution is an expanding soliton. f
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