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Harnack estimates for curvature flows depending on mean

curvature

FANG Shou-wen

Abstract. We prove the Harnack estimates of curvature flows of hypersurfaces in Rn+1, where

the normal velocity is given by a smooth function f depending only on the mean curvature.

By use of the estimates, we get some corollaries including the integral Harnack inequality. In

particular, we give the conditions, with which the solution to the flow is a translation soliton

and an expanding soliton respectively.

§1 Introduction

It is well-known that there are many results about Harnack estimates for some geometric
flows. We also call it LYH inequality, which is first noted by Peter Li and S.-T.Yau for the scalar
heat flow in [9] . Hamilton studied the Ricci flow on surface[5] and got such estimate. He also
got the matrix Harnack inequality in the scalar heat flow[6], and such estimates in Ricci flow for
all dimensions[7] and mean curvature flow[8]. Ben Chow obtained similar inequalities for Gauss
curvature flow[2] and Yamabe flow[3]. Moreover, Ben Andrews treated a class of geometric flows
by the inverse map of Guass map in [1]. Wang Jie got the estimate for Hk-flow in [11].

Let Mn be a smooth manifold without boundary, and let F0: Mn → Rn+1 be a smooth im-
mersion which is convex. We consider a smooth evolving one-parameter family of hypersurface
immersions described by a map F (·, t) : Mn × [0, T ) → Rn+1, where the evolution is given by
the following equation: {

∂
∂tF (x, t) = f(H(x, t))−→ν
F (x, 0) = F0(x), ∀x ∈Mn,

where −→ν is the unit inward normal and f is a smooth function depending only on the mean
curvature H.

If f = H we get the mean curvature flow, and for f = Hk it is the Hk-flow. In this paper,
we call it f -flow. Ben Andrews also considered a class of geometric flows and his results hold
on the compact case. K.Smoczyk proved the short time existence of smooth admissible solution
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to the f -flow under the condition f ′ > 0 and the Harnack inequality on compact hypersurfaces
of Rn+1 in [10]. The purpose of this paper is to prove the same estimate for the complete case.

Throughout this paper, we denote Mt as the admissible solution to the flow, and
t ∈ [0, T ] on which the solution exists.

We always assume the solution satisfies the following condition

(?) compact or complete with bounded |A|, |DA|, |D2A|, at each time t,

where A is the second fundamental form of Mt.

Theorem 1.1. Assume that F0: Mn → Rn+1 is an admissible smooth and convex immersion,
Mt is convex under the condition (?) and that f : [0,+∞) → R is a smooth function such that
for all x ∈ [0,+∞) we have

f ′ > 0,
f ′′

f ′
x2 ≥ ax, (

f ′′

f ′
x)′ ≤ 0, ff ′′x+ ff ′ − (f ′)2x ≥ 0

where a ∈ R is a constant. Then we can find a small positive constant d such that
∂

∂t
f + 2Df(V ) +A(V, V ) + cf ′H ≥ 0

holds for all tangent vectors V as long as t ∈ [0, T ] and d + (a + 2)t > 0, where we have set
c(t) := 1

d+(a+2)t .

It is just the differential Harnack inequality for the f -flow. As usual we integrate it over
paths in space-time to get an integral Harnack inequality.

Corollary 1.1. Under the assumption of Theorem 1.1, for ∀ 0 ≤ t1 < t2 < T satisfying
d+ (a+ 2)ti > 0, (i = 1, 2) and Y1, Y2 ∈M , we have

H(Y2, t2) ≥
(
d+ (a+ 2)t1
d+ (a+ 2)t2

) 1
a+2

e−
4
4DH(Y1, t1)

where

D = inf
x∈M

t1≤t≤t2

f ′(H(x, t)), and 4 = inf
∫ ∣∣∣∣dYdt

∣∣∣∣2
M

dt

is the infimum over all paths Y (t) remaining on the surface at time t with Y = Y1 at t = t1

and Y = Y2 at t = t2, dY
dt is the velocity vector of the path, and

∣∣dY
dt

∣∣
M

is the length of its

component tangent to the surface M. In particular, if f(0) > 0, then 4 ≤ d(Y1,Ŷ2,t1)
2

t2−t1
, where

d(Y1, Ŷ2, t1)is the distance along the surface at time t1 between Y1 and Ŷ2, such that Ŷ2 evolves
normally to Y2 at t2.

We say a solution is eternal if it is defined for −∞ < t < +∞. Eternal solutions arise as
limits of dilations (in space-time) of slowly forming singularities. One interesting class of eternal
solutions is the translation solitons. These are surfaces which evolve by translating in space
with a constant velocity T = V + f−→ν . So the Harnack inequality is also held on translation
solitons. For any strictly convex eternal solutions to mean curvature flow and Hk-flow, we have
known they must be translation solitons when the mean curvature attains its maximum value
at a point in space-time. For the f -flow, we have the similar result in the following.

Theorem 1.2. If f satisfies the assumptions of Theorem 1.1 and a+ 2 > 0, then any strictly
convex eternal solution under the condition (?) to the f -flow where the mean curvature attains
its maximum value at a point in space-time, it must be a translation soliton.
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Translation solitons are steady solitons, which exist for −∞ < t < +∞. There are also
homothetically expanding solitons and shrinking solitons. In fact, the homothetic solution is
closely related to the Harnack inequality, because it becomes an equality in this case. In [10], for
a homothetic solution we have DaṼb = fhab +cgab. For c > 0, the solution is expanding soliton,
and for c < 0, it is shrinking. B.L.Chen proved the type III singularity of mean curvature flow
must be the expanding gradient soliton in [4]. Similarly we have the following result for f -flow.
Theorem 1.3. If f satisfies the assumptions of Theorem 1.1 and a+ 2 > 0, then any strictly
convex solution under the condition (?) to the f -flow which exists for 0 < t < +∞, where
(d+(a+2)t)Ha+2 attains its maximum value at a point in space-time, it must be an expanding
soliton.

§2 Notations and evolution equations

Suppose M is an n-dimensional manifold without boundary immersed in Euclidean space
Rn+1, it is parametrized locally by X = {xi} in Rn, where i = 1, ..., n. On M a point
Y = {yα}α=1,...,n+1 in Rn+1 is given locally by yα = Fα(xi). Then the tangent vectors on M

in Rn+1 is denoted by DiY = ∂Y
∂xi . The Euclidean metric is I = {Iαβ}, then the induced metric

G = {gij} on M is
gij = I(DiY,DjY ) = IαβDiy

αDjy
β .

The unit normal −→ν = {Nα} is defined by

IαβN
αNβ = 1 and IαβN

αDiy
β = 0.

On the convex surfaces we choose −→ν to be inward. The metric G = {gij} induces a Levi-Civita
connection Γ = {Γi

jk} on M . So we can take covariant derivatives D = {Di} of tensors on M .
The covariant derivative of 1-form Djy

α is

DiDjy
α = hijN

α

where A = {hij} be the second fundamental form of M . Its trace H = gijhij is the mean
curvature.

By assumption we have
∂

∂t
F (·, t) = f−→ν ,

As [10] we formally derive the evolution equations for various geometric objects on M , these
are:

∂gij

∂t
= −2fhij ,

∂hij

∂t
= f ′∆hij + f ′′DiHDjH − (f + f ′H)hikh

k
j + f ′|A|2hij .

We have to calculate many evolution equations. To avoid too complicated formulas it is
most convenient to work with coordinates associated to a moving frame. We use similar moving
orthonormal frame coordinates as [10].

Let {Ea}, (a = 1, ..., n) be an orthonormal frame locally, where Ea = Ei
a

∂
∂xi is tangent to

M . To keep the vectors orthonormal and tangent to Mt under the flow, we let
∂

∂t
Ei

a = fgijhjlE
l
a.
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We can write the components of tensors in terms of the frame, for example hab = A(Ea, Eb)
or in local coordinates, hab = hijE

i
aE

j
b . We always denote indices a, b, c . . . under orthonormal

frame, and i, j, k . . . under local coordinates.
Now we take covariant derivatives under moving orthonormal frame, for example DaVb =

Ei
aE

j
bDiVj . Then the Laplacian is ∆ =

∑
aDaDa. We define the operator � + f ′∆.

In addition, we also define the time like vector field Dt on the frame bundle as [10], which
differentiates in the direction of the moving frame. In local coordinates

DtVa = { ∂
∂t
Vk + fgijhjkVi}Ek

a

=
∂

∂t
Va + fhi

aVi =
∂

∂t
Va + fhacVc.

By direct computations, we have

Dtgab = 0;

Dthab = Dt(Ei
aE

j
bhij) = f ′∆hab + f ′′DaHDbH

+(f − f ′H)hachcb + f ′|A|2hab;

Dtf = f ′(∆f + f |A|2).
We can also calculate some formulas of the commutator of derivations, which are useful for

the computation of Section 3.
Formula 2.1. If V = {Va} is a covector on M , then

DtDaVb −DaDtVb = fhacDcVb + (hacDbf − habDcf)Vc.

Formula 2.2. If g is a smooth function on M , then we have commutator relations,

(1).(Dt −�)Dag −Da(Dt −�)g = f ′′DaH∆g + f ′hadhdcDcg

+(f − f ′H)hacDcg;

(2).(Dt −�)�g −�(Dt −�)g = f ′′∆f∆g + ff ′′|A|2∆g

+2ff ′hacDaDcg + 2f ′hacDafDcg

+(f − f ′H)DafDag.

Formula 2.3.
DaDbf = Dthab − fhachbc.

The proofs of these formulas are similar in [7,8,11]. We leave the details as an exercise.

§3 The computation

In this section we can get the evolution equation of the basic Harnack expression under the
f -flow. To this end we define the following basic quantities, which all vanish on a translation
soliton.
Definition 3.1. We let

Xa = Daf + habVb, Yab = DaVb − fhab,

Z = Dtf + 2VaDaf + habVaVb, Wab = Dthab + VcDchab,

W = Dtf + VcDcf, P = DtH + VcDcH,
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Ua = (Dt −�)Va + f ′habDbf.

Then now we can take the computation.
Theorem 3.1. For any solution to f -flow and any vector field V , we have:

(Dt −�)Z = f ′|A|2Z + 2XaUa − 2f ′hbcYabYac − 4f ′WabYab + f ′′P 2

+(f − f ′H)|X|2.
Proof. The computation is very tedious but direct,

(Dt − f ′∆)Z = (Dt − f ′∆)(Dtf + 2VaDaf + habVaVb)

= {f ′Dtf |A|2 + 2f ′VaDaf |A|2 + f ′|A|2habVaVb}

+{2f ′hacDafDcf + 2Daf(Dt − f ′∆)Va

+2f ′hadhdcVaDcf + 2habVa(Dt − f ′∆)Vb}

+{−2f2f ′hachabhbc + 4ff ′DbVahachbc − 2f ′habDcVaDcVb}

+{4ff ′habDthab + 4ff ′VahcdDahcd − 4f ′DbVaDthab

−4f ′DchabVaDcVb}

+{f ′′DtHDtH + 2f ′′VaDaHDtH + f ′′DaHDbHVaVb}

+{(f − f ′H)DcfDcf + 2Va(f − f ′H)hacDcf + (f − f ′H)hachbcVaVb}

= f ′|A|2Z + 2XaUa − 2f ′hbcYabYac − 4f ′WabYab + f ′′P 2

+(f − f ′H)|X|2. ]

Now we make a little change of these quantities by adding the factors of 1
t . We can refer to

K. Smocyzk’s paper [10] and make the following definition.
Definition 3.2. Again we let

X̃a = Xa, Ỹab = Yab − cgab, Z̃ = Z + cf ′H, W̃ab = Wab + chab,

W̃ = W + cf ′H, P̃ = P + cH, Ũa = Ua −
∂

∂t
(ln c)Va,

where c is given in Theorem 1.1.
Here we denote that f ′P̃ = W̃ = Z̃−X̃aVa. By direct computation, we can get the evolution

equation of cf ′H.

(Dt −�)(cf ′H) =
∂

∂t
(ln c)cf ′H + cf(f ′′H + f ′)|A|2 − c(

f ′′

f ′
H)′|Df |2.

Combining it with Theorem 3.1, we obtain:
Corollary 3.1. For any solution to f -flow and for any vector field V we have

(Dt −�)Z̃ = (f ′|A|2 − 2(c
f ′′

f ′
H + 2c))Z̃ + 2X̃aŨa − 2f ′hbdỸabỸad − 4f ′W̃abỸab + f ′′P̃ 2

+(f − f ′H)|X̃|2 + 2(c
f ′′

f ′
H +

∂

∂t
(ln c) + 2c)X̃aVa − c(

f ′′

f ′
H)′|Df |2

+cf ′H(c
f ′′

f ′
H +

∂

∂t
(ln c) + 2c) + c(ff ′′H + ff ′ − (f ′)2H)|A|2.

The evolution of Z̃ is identical with the result in [10].

§4 Proof of Theorem 1.1
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Under the condition (?), we have |A| ≤ B0(T0), |DA| ≤ B1(T0), |D2A| ≤ B2(T0) on closed
interval [0, T0], where T0 < T . Here B0(T0), B1(T0), B2(T0) are positive constants depending
on T0, and | · | is the norm for tensors with respect to {gij(t)}. We give the following lemma
first.

Lemma 4.1. If f : [0,+∞) → R is a smooth function, there exists a function ϕ(x, t) > 0, s.t.
ϕ(x, t) →∞ as x→∞, and (Dt − f ′(H)∆g(t))ϕ ≥ Cϕ on M × [0, T0] for any C > 0.

Proof. As [11], we set ϕ(x, t) = εeBtg0(x) for ε > 0 and B will be chosen later, where g0(x) ∈
C∞(M) such that g0(x) ≥ 1 everywhere and g0(x) →∞, as x→∞, and |∆g(t)g0(x)| ≤ C0 for
a positive constant C0 depending on n,B0, B1, T0, for t ∈ [0, T0].

We get |f ′∆g(t)g0(x)| ≤ C1g0(x), since f is smooth function andH is bounded onM×[0, T0].
Therefore

(Dt − f ′∆g(t))ϕ ≥ (B − C1)ϕ ≥ Cϕ,

if B ≥ C1 + C. ]

Now we prove Theorem 1.1.

Proof. For the compact case, K.Smoczyk had proven the estimate in [10]. For the complete
case under the condition (?), we will show the inequality holding on any closed interval [0, T0],
where T0 ≤ T and on which d+ (a+ 2)t > 0 holds.

Let ϕ(x, t) = ε1e
Btg0(x) be the function defined in Lemma 4.1, and ψ(t) = ε2e

Lt a function
depending only on t, where ε1, ε2 > 0 are small constants, and B, L will be chosen later. Set
Ẑ = Z̃ + ϕ+ ψ|V |2,

Dtf = (f ′)2∆H + f ′f ′′|DH|2 + ff ′|A|2 ≥ −C,
|Daf | = |fDaH| ≤ C,

where we use the facts that f is a smooth function and |H|, |∆H| and |DH| are bounded on
M × [0, T0]. And

hab + ψgab ≥ ε2gab > 0,
so Z̃ + ψ|V |2 has lower bound on M × [0, T0] for any V .

From those above, we can choose d sufficiently small such that Ẑ > δ > 0 for t = 0 and for
all tangent vectors V or where it is out of a compact set Ω ⊂M . We assume if Ẑ first attains
zero at (x0, t0) ∈ Ω× [0, T0], with the direction V . Then

0 =
∂Ẑ(V + sW )

∂s
|s=0(x0, t0) = 2Wa(X̃a + ψVa),

for any W , so we get X̃a = −ψVa. We extend V to a vector field in space-time such that
Ỹab = 0, Ũa = 0, then at the point we have

0 ≥ (Dt −�)Ẑ ≥ (f ′|A|2 − 2(c
f ′′

f ′
H + 2c))Z̃ + 2X̃aŨa − 2f ′hbcỸabỸac − 4f ′W̃abỸab

+
f ′′

(f ′)2
(Z̃ − X̃aVa)2 + (f − f ′H)|X̃|2 + 2(c

f ′′

f ′
H +

∂

∂t
(ln c) + 2c)X̃aVa + (Dt −�)ϕ

+(Dtψ)|V |2

≥ (f ′|A|2 − 2(c
f ′′

f ′
H + 2c))(−ϕ− ψ|V |2) +

f ′′

(f ′)2
ϕ2 − 2(c

f ′′

f ′
H +

∂

∂t
(ln c) + 2c)ψ|V |2
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+(f − f ′H)ψ2|V |2 + Cϕ+ Lψ|V |2

= (C − f ′|A|2 + 2(c
f ′′

f ′
H + 2c) +

f ′′

(f ′)2
ϕ)ϕ

+(L− f ′|A|2 − 2
∂

∂t
(ln c) + (f − f ′H)ψ)ψ|V |2 > 0.

The second inequality is because f satisfies the conditions of the theorem and c > 0. The last
inequality is because f smoothly depends on H and |A| is bounded on M × [0, T0], and we
choose ε1 and ε2 sufficiently small and B and L large enough. So it is the contradiction. We
get Ẑ > 0 on M × [0, T0]. We take ε1, ε2 → 0, then Z̃ ≥ 0. ]

Example 1. For the Hk-flow we have f(H) = Hk, a ≤ k− 1, and hence we choose a = k− 1,
the Harnack estimate becomes

∂Hk

∂t
+ 2DHk(V ) +A(V, V ) +

kHk

(k + 1)t+ d
≥ 0.

It has been obtained by Wang Jie[11]. When k = 1, it has been obtained by Hamilton[8].
Example 2. When f(H) =

√
1 +H2 and we choose a = 0, the function f satisfies the

conditions of Theorem 1.1. The Harnack estimate of the f -flow is
∂H

∂t
+ 2DH(V ) +

f

H
A(V, V ) +

H

2t+ d
≥ 0.

§5 Some corollaries

We first give the proof of Corollary 1.1.
Proof. Along any path Y (t) = F (X(t), t), we have

df

dt
= f ′(

∂H

∂t
+DH(

dX

dt
)),

and hence from the Harnack estimate we obtain, by taking V = 1
2

dX
dt

df

dt
≥ −1

4
A(
dX

dt
,
dX

dt
)− cf ′H.

Because f ′ > 0 and A(dX
dt ,

dX
dt ) ≤ H|dX

dt |
2 for a convex surface, we arrive at the inequality

d

dt
lnH ≥ − 1

4f ′

∣∣∣∣dXdt
∣∣∣∣2 − c.

Note that dX
dt is the tangential component of dY

dt , so that

ln
H(Y2, t2)
H(Y1, t1)

≥ − 1
a+ 2

ln
d+ (a+ 2)t2
d+ (a+ 2)t1

− 4
4D

where

D = inf
x∈M

t1≤t≤t2

f ′(H(x, t)), and 4 = inf
∫ ∣∣∣∣dYdt

∣∣∣∣2
M

dt.

The result follows by exponentiating.
In particular, if f(0) ≥ 0, then f ≥ 0 for all convex solution since f ′ > 0. Moreover, ∂gij

∂t =

−2fhij and hij ≥ 0, the metric gij will be weakly shrinking. Hence,
∣∣dY

dt

∣∣
M
≤ d(Y1,Ỹ2,t1)

t2−t1
. ]

Corollary 5.1(Nondecreasing of tH). Under the assumption of Theorem 1.1, if a+2 ≥ 1, then
for any two times 0 < t1 ≤ t2 < T and ∀ x ∈M at t2, we have:

H(x, t2) ≥
t1
t2
H(x̃, t1)
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which x̃ at t1 evolves normally to x at t2.
Proof. Take V = 0. We have

0 ≤ Dtf + cf ′H = f ′(
∂H

∂t
+ cH) =

f ′

t
(t
∂H

∂t
+

t

d+ (a+ 2)t
H) ≤ f ′

t
(t
∂H

∂t
+H).

So ∂(tH)
∂t ≥ 0. ]

Corollary 5.2. Under the assumption of Theorem 1.1, if a strictly convex solution to f -flow
exists in (−∞, 0] under the condition (?) and a+ 2 > 0, then

∂H

∂t
≥ 0.

Proof. For any α > 0, the solution exists on [−α, 0], and H > 0, then we have

f ′(
∂H

∂t
+

H

(a+ 2)(t+ α)
) ≥ f ′(

∂H

∂t
+

H

d+ (a+ 2)(t+ α)
) ≥ 0.

We take limit as α→ +∞. ]

§6 Translation soliton

In this section and next we suppose that f satisfies the assumption of Theorem 1.1 and
a + 2 > 0. If the solution under the condition (?) is strictly convex and eternal, then it exists
on any closed interval [−C,C], C > 0, so

Z̃ = Z +
f ′H

d+ (a+ 2)(t+ C)
≥ 0.

As C →∞, we have Z ≥ 0, for all V .
Lemma 6.1. Under the condition (?), if F ≥ 0 is a weakly positive function on M , such that
(Dt −�)F = 0, and if Z ≥ F at t = 0 for all V , then Z ≥ F at all subsequent times for all V .
Proof. For the compact case, we set Z̃ = Z − F + εeBt; for the complete case, set Z̃ =
Z − F + ϕ + ψ|V |2, where ϕ,ψ are the functions mentioned in Section 4. Now we may prove
Z̃ ≥ 0 as in the proof of Theorem 1.1. ]

Lemma 6.2. If (Dt − �)F = 0, and F (x0, 0) > 0, x0 ∈ M, then F > 0, for t > 0 and
everywhere on M .
Proof. Because H > 0 everywhere and f ′ > 0, so � is a strictly elliptic operator. Therefore
the strong maximum principle holds. ]

From the above lemmas, we get, if there is a point where Z > 0 for all V at t = t0, then
Z > 0 every where on M , for t > t0 and for all V .

We assume H attains its maximum at (x0, t0), then at this point
∂f

∂t
= 0, Daf = 0.

So Z(x0, t0) = ∂f
∂t + 2VaDaf + habVaVb = 0 when V = 0. The strong maximum principle

(Lemma 6.2) implies that prior to that time Z has a zero vector V at each point in space-time.
Since Z ≥ 0 and hab > 0, the zero vector V is unique and varies smoothly. By the first variation
of Z, we can obtain the zero vector Va = −h−1

ab Dbf .
Additionally, We can extend V to be a vector field in space-time satisfying

Yab = −Wadh
−1
bd .
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Note Xa = 0 at that point, and 0 = Z = VaXa + f ′P , so we also have P = 0 at that point.
Then we have

0 ≥ (Dt −�)Z = 2f ′h−1
bd WabWad ≥ 0,

then Wab = 0. So we get a vector field V on Mt such that on each point Xa = 0,Wab = 0 with
V .

We will get Theorem 1.2 from the following theorem.
Theorem 6.1. If on a strictly convex solution to f -flow, a vector field satisfies

Daf + habVb = 0, (6.1)

and
Dthab + VcDchab = 0, (6.2)

then the solution must be a translation soliton.
Proof. Differentiate (6.1), it is

DaDbf + VcDahbc + hbcDaVc = 0. (6.3)

By the Formula 2.3
DaDbf = Dthab − fhachbc. (6.4)

From (6.2),(6.3) and (6.4), we have fhachbc = hbcDaVc. Since hab > 0, it means {hab} is
invertible, we get

fhac = DaVc. (6.5)
We consider the vector field T = V +f−→ν , where −→ν is the unit inward normal. Differentiating

it, we have

DiT = (DiV
j − fhj

i )
∂X

∂xj
+ (V jhij +Dif)−→ν = 0,

the last equality is because (6.1) and (6.5). So T is a constant vector and the solution is a
translation soliton. ]

§7 Expanding soliton

If the solution under the condition (?) is strictly convex and exists for 0 < t < +∞, then
by Theorem 1.1 we have Z̃ ≥ 0, for all V .

We assume (d + (a + 2)t)Ha+2 attains its maximum at (x0, t0), then at this point Z̃ = 0
when V = 0. By Corollary 3.1, the strong maximum principle also holds in this case. It implies
there must be a zero vector V such that Z̃ = 0 at each point (x, t), for t < t0. Since Z̃ ≥ 0 and
hab > 0, we can obtain the zero vector Va = −h−1

ab Dbf by using the first variation of Z̃.
Similarly, We extend V to be a vector field in space-time satisfying

Ỹab = −W̃adh
−1
bd .

Note X̃a = 0 at that point, and 0 = Z̃ = VaX̃a + f ′P̃ , so we also have P̃ = 0 at that point.
Then we have

0 ≥ (Dt −�)Z̃ ≥ 2f ′h−1
bd W̃abW̃ad ≥ 0,

then W̃ab = 0. So we get a vector field V on Mt such that on each point X̃a = 0, W̃ab = 0 with
V .

We will get Theorem 1.3 from the following theorem.
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Theorem 7.1. If on a strictly convex solution to f -flow, a vector field satisfies

Daf + habVb = 0, (7.1)

and
Dthab + VdDdhab + chab = 0, (7.2)

where c > 0, then the solution must be an expanding soliton.
Proof. Differentiate (7.1), it is

DaDbf + VdDahbd + hbdDaVd = 0. (7.3)

By the Formula 2.3
DaDbf = Dthab − fhadhbd. (7.4)

From (7.2),(7.3) and (7.4), we have

fhadhbd + chab = hbdDaVd.

Since hab > 0, we obtain fhad + cgad = DaVd. So the solution is an expanding soliton. ]
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