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In this letter we construct a new time-periodic solution of the vacuum Einstein’s field equations
whose Riemann curvature norm takes the infinity at some points. We show that this solution
is intrinsically time-periodic and describes a time-periodic universe with the “black hole”. New
physical phenomena are investigated and new singularities are analyzed for this universal model.
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1. Introduction. The Einstein’s field equations are the
fundamental equations in general relativity and play an
essential role in cosmology. The exact solutions of the
Einstein’s field equations play a crucial role in the study
of general relativity and cosmology. Typical examples are
the Schwarzschild solution and Kerr solution (see [13] and
[7]). Although many interesting and important solutions
have been obtained (see, e.g., [1] and [14]), there are still
several fundamental open problems. One such problem is
if there exists a “time-periodic” solution, which contains
physical singularities such as black hole, to the Einstein’s
field equations. This letter aims to solves this problem.

For the evolutionary equations, time-periodic or sta-
tionary solutions correspond to the late time behavior
of solutions for a large class of initial data. In the gen-
eral theory of relativity, the time-periodic “black hole”
solutions (if they exist) seem to provide reasonable can-
didates for the final state of gravitational collapse. As
pointed out that in [3], such solutions can be defined as
those invariant with respect to an isometry of the do-
main of outer communications which takes every point
to its future, or more generally, such that points suf-
ficiently close to infinity are mapped to their future.
The study of the periodic solutions to the Einstein’s
field equations was initiated in Papapetrou [11]-[12]. See
also the important paper [6]. Dafermos [3] proved a
theorem about the non-existence of spherically symmet-
ric black-hole space-times with time-periodicity outside
the event horizon, other than Schwarzschild in the vac-
uum case and Reissner-Nordström in the case of electro-
magnetic fields and matter sources of a particular kind.
This important result generalizes the “no-hair” theorem
from the static to the time-periodic case. Up to now,
very few results on the well-posedness for the Einstein’s
field equations have been established. In their classical
monograph [2], Christodoulou and Klainerman proved

the global nonlinear stability of the Minkowski space for
the vacuum Einstein’s field equations, i.e., they showed
the global nonlinear stability of the trivial solution of the
vacuum Einstein’s field equations. Lindblad and Rodni-
anski [10] proved the global stability of the Minkowski
space for the vacuum Einstein’s field equations in wave
coordinate gauge for the set of restricted data coinciding
with the Schwarzschild solution in the neighborhood of
space-like infinity. This work provides a new and sim-
ple approach to the stability problem originally solved
by Christodoulou and Klainerman. In the Ph.D. the-
sis [16], Zipser generalized the result of Christodoulou
and Klainerman [2] to the Einstein-Maxwell equations.
In a series of interesting papers (see [4]-[5]), Finster,
Kamran, Smoller and Yau investigated the non-existence
of time-periodic solutions of the Dirac equation, the
Einstein-Dirac-Maxwell equations or the Einstein-Dirac-
Yang/Mills equations.

The first exact time-periodic solution of the vacuum
Einstein’s field equations was constructed by the authors
in [8]. The solution presented in [8] is time-periodic, and
describes a regular space-time, which has vanishing Rie-
mann curvature tensor but is inhomogenous, anisotropic
and not asymptotically flat. In our recent work [9], we
construct several kinds of new time-periodic solutions of
the vacuum Einstein’s field equations whose Riemann
curvature tensors vanish, keep finite or take the infinity
at some points in these space-times, respectively. How-
ever the norm of Riemann curvature tensors of all these
solutions vanishes. This implies that these solutions es-
sentially describe regular time-periodic space-times.

In this letter, we construct a new time-periodic solu-
tion of the vacuum Einstein’s field equations. For this so-
lution, not only its Riemann curvature tensor takes the
infinity at some points, but also the norm of the Rie-
mann curvature tensor also go to the infinity at these
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points. Therefore, this solution possesses some physical
singularities. We also show that this solution is intrin-
sically time-periodic and then can be used to describe a
time-periodic universe with the “black hole”. New physi-
cal phenomena are investigated and new singularities are
analyzed for this universal model. This gives a positive
answer of the above open problem.

2. Time-periodic solution. Consider the following vac-
uum Einstein’s field equations

Gµν
4
= Rµν − 1

2
gµνR = 0, (1)

or equivalently,

Rµν = 0, (2)

where gµν (µ, ν = 0, 1, 2, 3) is the unknown Lorentzian
metric, Rµν is the Ricci curvature tensor, R is the scalar
curvature and Gµν is the Einstein tensor.

Take (t, r, θ, ϕ) as the spherical coordinates with t ∈
R, r ∈ [0,∞), θ ∈ [0, 2π), ϕ ∈ [−π/2, π/2] and let
x0 = t, x1 = r, x2 = θ, x3 = ϕ. In the coordinates
(t, r, θ, ϕ), we consider the metric of the form

ds2 = gµν = u2dt2 + 2qdtdr + 2vdtdϕ− a2b2dr2 − a2dθ2,

(3)
where u, v, a are smooth functions of t, r, and b, q

are smooth functions of t. It is easy to verify that the
determinant of (gµν) is given by

g
4
= det(gµν) = −a4b2v2. (4)

For the metric (3), a direct calculation gives

R02, R12, R13, R23, R33 = 0. (5)

On the other hand,

R03 = − vrr

2a2b2
. (6)

Noting (2), we have

R03 = 0, i.e.,
vrr

2a2b2
= 0. (7)

Solving (7) leads to

v = cr + d, (8)

where c = c(t) and d = d(t) are integral functions de-
pending on t. For simplicity, let d = 0. Then (8) becomes

v = cr. (9)

Substituting (9) into (3) and computing R11, R22 yields

R11 = −a2 + 2raar − 2r2aarr + 2r2a2
r

2r2a2
(10)

and

R22 =
aar + raarr − ra2

r

ra2b2
. (11)

Noting (2), we have R22 = 0. Solving it gives

a = frg, (12)

where f, g are two integral functions depending on t.
Noting (2) again yields R11 = 0 and substituting (12)
into the equation R11 = 0 leads to

g = −1
4
. (13)

Thus, (12) becomes

a = fr−
1
4 . (14)

Substituting (9) and (14) into (3) and computing R01,
we have

R01 = −4bft + fbt

rfb
. (15)

Noting (2), we have R01 = 0, i.e.,

4bft + fbt

rfb
= 0.

Solving this equation gives

b =
n

f4
, (16)

where n is integral constant. Without loss of generality,
we may assume n = 1. Then (16) becomes

b =
1
f4

. (17)

We now calculate the term R00.
Substituting (9), (14) and (17) into (3), by a direct

calculation we obtain

R00 = − A

2r3cf2
, (18)

where

A = r
3
2 f8cu2 − 2r

5
2 f8cuur + 2r

7
2 f8cu2

r+

2r
7
2 f8cuurr + 4r3ffttc− 4r3fftct − 24r3f2

t c.
(19)
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Noting (2) again, we have R00 = 0. Solving this equation
gives

u2 = 4Hr
3
2 + H0r ln r + H1r, (20)

where H0 and H1 are two integral functions depending
on t, and H is given by

H =
24cf2

t + 4ctfft − 4cfftt

f8c
. (21)

Summarizing the above discussion, we can obtain the
following theorem.
Theorem 1 The vacuum Einstein’s filed equations (1)
have the following solutions in the coordinates (t, r, θ, ϕ)

ds2 = (dt, dr, dθ, dϕ)(gµν)(dt, dr, dθ, dϕ)T , (22)

where

(gµν) =




4Hr
3
2 + H0r ln r + H1r q 0 cr

q − 1
f6
√

r
0 0

0 0 − f2
√

r
0

cr 0 0 0


 ,

(23)
in which H0, H1, c, q and f are arbitrary functions of t,
and H is defined by (21). ¥

In particular, taking

H0 = H1 = 0, c = b =
1
f4

(24)

and

f = 1 + sin t, q = 0, (25)

we have
Theorem 2 The vacuum Einstein’s filed equations (1)
have the following time-periodic solution in the coordi-
nates (t, r, θ, ϕ)

ds2 = (dt, dr, dθ, dϕ)(ηµν)(dt, dr, dθ, dϕ)T , (26)

where




η00 =
16r

3
2 (1 + sin t + cos2 t)

(1 + sin t)8
,

η03 =
r

(1 + sin t)4
,

η11 = − 1√
r(1 + sin t)6

,

η22 = − (1 + sin t)2√
r

,

η01 = η02 = η12 = η13 = η23 = η33 = 0.

¥ (27)

Proof. By Theorem 1, it is obvious that the metric (26)
is a solution of the vacuum Einstein’s filed equations (1).
It suffices to prove the solution (26) is time-periodic. To
do so, we prove that the variable t is a time coordinate.

It is easy to verify that the determinant of (ηµν) is
given by

η
4
= det(ηµν) = − r

(1 + sin t)12
. (28)

Obviously, t = 2kπ − π/2 (k ∈ Z) and r = 0 are the
singularities of the space-time described by (26). A de-
tailed analysis on these singularities will be given in next
section.

When t 6= 2kπ − π/2 (k ∈ Z) and r 6= 0, it holds that

η00 =
16r

3
2 (1 + sin t + cos2 t)

(1 + sin t)8
> 0,

∣∣∣∣
η00 η01

η01 η11

∣∣∣∣ = −16r(1 + sin t + cos2 t)
(1 + sin t)14

< 0,

∣∣∣∣∣∣
η00 η01 η02

η01 η11 η12

η20 η21 η22

∣∣∣∣∣∣
=

16
√

r(1 + sin t + cos2 t)
(1 + sin t)12

> 0

and
∣∣∣∣∣∣∣

η00 η01 η02 η03

η10 η11 η12 η13

η20 η21 η22 η23

η30 η31 η32 η33

∣∣∣∣∣∣∣
= − r

(1 + sin t)12
< 0.

This implies that the variable t is a time coordinate.
Therefore, (26) is indeed a time-periodic solution of the
vacuum Einstein’s field equations (1). Thus, the proof of
Theorem 2 is completed. ¤

3. Singularities. This section is devoted to the analysis
of singularities of the time-periodic solution (26) of the
vacuum Einstein’s field equations.

By direct calculations, the Riemann curvature tensor
of (26) reads

R2121 =
(1 + sin t)2

4r
5
2

, (29)

R0101 =
2(1 + sin t) sin t− 2 cos2 t√

r(1 + sin t)8
, (30)

R0221 =
3(1 + sin t) cos t

2r
3
2

, (31)
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R0301 =
3 cos t

2(1 + sin t)5
, (32)

R0303 = −
√

r

4(1 + sin t)2
, (33)

R0232 =
(1 + sin t)4

8r
, (34)

R0202 =
2(1 + sin t) sin t + 10 cos2 t√

r
, (35)

R0131 =
1

8r(1 + sin t)4
, (36)

and the other Rαβµν = 0. Moreover,

R , RαβγδRαβγδ =
3(1 + sin t)12

4r3
. (37)

Therefore, when t 6= 2kπ − π/2 (k ∈ Z) and r → 0+, it
holds that

R −→ +∞. (38)

Thus, we have
Proposition 1 r = 0 is an essential singular point.
Thus, the solution (26) describes a time-periodic space-
time with a “black hole”. ¥

In particular, when t = 2kπ − π/2 (k ∈ Z), we have
R = 0. This implies that the “black hole” disappears at
these points.

According to the definition of the event horizon (see
[15]), the hypersurfaces t = 2kπ − π/2 (k ∈ Z) are
the event horizons of the space-time described by (26).
Therefore we have
Proposition 2 The solution (26) also contains non-
essential singularities which consist of the hypersurfaces
t = 2kπ − π/2 (k ∈ Z). These hypersurfaces correspond
to the event horizons.
Remark 1 Notice that the curvature tensors are intrin-
sic and independent of the choice of the coordinates. It
follows from (29)-(37) that the Lorentzian metric (26) is
NOT the Minkowski metric written in some periodic co-
ordinate system. On the other hand, it is well known that,
by taking a static or stationary vacuum metric and per-
forming a nontrivial periodic coordinate transformation
one could produce many apparently periodic solutions -
but which are not intrinsically periodic; however the met-
ric (26) is NOT this case because of (29)-(37). In other
words, our solution (26) is intrinsically time-periodic.

We now investigate the behavior of the null curves and
light-cones in the space-time (26).

Fixing θ and ϕ, we get the induced metric

ds2 = η00dt2 + η11dr2.

Consider the null curves in the (t, r)-plan, which are de-
fined by

η00dt2 + η11dr2 = 0.

Noting (27) gives

dt

dr
= ±

√
1 + sin t

4r
√

2− sin t
.

Thus, the null curves and light-cones are shown in Figure
1.

6

-

3π
2

t

r
−π

2

FIG. 1: Null curves and light-cones in the domains −π/2 <
t < 3π/2.

We next study the geometric behavior of the t-slices.
For any fixed t ∈ R, it follows from (26) that the in-

duced metric of the t-slice reads

ds2 = − 1√
r(1 + sin t)2

[dr2 + (1 + sin t)8dθ2]. (39)

As mentioned before, the hypersurfaces t = 2kπ −
π/2 (k ∈ Z) are singularities of the space-time described
by (26), while, when t 6= 2kπ − π/2 (k ∈ Z), the t-
slice is a three-dimensional cone-like manifold centered
at r = ∞.

4. Summary and discussion. In our previous works [8]-
[9], we have constructed three kinds of new time-periodic
solutions of the vacuum Einstein’s field equations: the
regular time-periodic solution with vanishing Riemann
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curvature tensor, the regular time-periodic solution with
finite Riemann curvature tensor and the time-periodic so-
lution with physical singularities. However, the norm of
the Riemann curvature tensors of all these solutions van-
ishes, therefore these solutions essentially describe some
regular time-periodic space-times, these space-times con-
tain some non-physical singularities, but no physical sin-
gularity.

In this letter we construct a new time-periodic solution
(26) of the vacuum Einstein’s field equations. The norm
of the Riemann curvature tensor of the metric (26) goes
to the infinity when r tends to zero. Therefore r = 0 is a
physical singularity of the space-time described by (26),
which is named as “black hole” in this letter. This solu-
tion also contains some non-essential singularities which
consist of the hypersurfaces t = 2kπ − π/2 (k ∈ Z).
In particular, by (29)-(37) we observe that the metric
(26) is impossible to be the Minkowski metric written in

some periodic coordinate system; on the other hand, by
taking a static or stationary vacuum metric and perform-
ing a nontrivial periodic coordinate transformation one
could NOT produce the metric (26), this is to say, the
solution (26) is intrinsically time-periodic. As a corol-
lary, we would like to point out that the space-time (26)
has a time-periodic time-like Killing vector field. More-
over, new physical phenomena have been investigated for
the time-periodic universal model characterized by (26).
Consequently, the solution (26) solves the long-time open
problem mentioned at the first paragraph in Section 1,
and more applications of this new space-time in modern
cosmology and general relativity can be expected.
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