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Abstract In this paper, we construct several kinds of new time-periodic solutions of the vacuum
Einstein’s field equations whose Riemann curvature tensors vanish, keep finite or take the infinity at
some points in these space-times, respectively. The singularities of these new time-periodic solutions
are investigated and some new physical phenomena are discovered.
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1 Introduction

This work is a continuation of our previous work [3] “Time-Periodic Solutions of the Einstein’s
Field Equations I: General Framework”. As in [3], we still consider the time-periodic solutions
of the following vacuum Einstein’s field equations
A 1
G;w = Ruv - ig;wR =0, (1)
or equivalently,

Ruu =0, (2)

where g,,,, (1,v =0, 1,2, 3) is the unknown Lorentzian metric, R, is the Ricci curvature tensor,
R is the scalar curvature and G, is the Einstein tensor.

It is well known that the exact solutions of the Einstein’s field equations play a crucial role
in general relativity and cosmology. Typical examples are the Schwarzschild solution and Kerr
solution. Although many interesting and important solutions have been obtained (see, e.g., [1]
and [5]), there are still many fundamental open problems. One such problem is if there exists a
“time-periodic” solution, which contains physical singularities such as black hole, to the vacuum
Einstein’s field equations. This paper continues the discussion of this problem.
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The first time-periodic solution of the vacuum Einstein’s field equations was constructed
by the first two authors in [3]. The solution presented in [3] is time-periodic, and describes
a regular space-time, which has vanishing Riemann curvature tensor but is inhomogenous,
anisotropic and not asymptotically flat. In particular, this space-time does not contain any
essential singularity, but contains some non-essential singularities which correspond to steady
event horizons, time-periodic event horizon and has some interesting new physical phenomena.

In this paper, we focus on finding the time-periodic solutions, which contain geometric
singularities (see Definition 1 below) to the vacuum Einstein’s field equations (1). We shall
construct three kinds of new time-periodic solutions of the vacuum Einstein’s field equations (1)
whose Riemann curvature tensors vanish, keep finite or go to the infinity at some points in these
space-times respectively. The singularities of these new time-periodic solutions are investigated
and new physical phenomena are found. Moreover, the applications of these solutions in modern
cosmology and general relativity may be expected. In the forthcoming paper [4], we shall
construct a time-periodic solution of the Einstein’s field equations with physical singularities
(see also Definition 1 below), which describes a time-periodic universe with many new and
interesting physical phenomena.

The paper is organized as follows. In §2 we present our procedure of finding new solutions
of the vacuum Einstein’s field equations and introduce the concepts of “geometric singularity”
and “physical singularity”. In §3 we construct three kinds of new time-periodic solutions of the
vacuum FEinstein’s field equations whose Riemann curvature tensors vanish, keep finite or take
the infinity at some points in these space-times, respectively. In this section, the singularities
of these new time-periodic solutions are also investigated and some new physical phenomena
are found and discussed. A summary and some discussions are given in §4.

2 Procedure of finding new solutions

We consider the metric of the following form

u v p 0
v 0 0 O
v) = 5 3
) b 0 f 0 (3)
0 0 0 h

where u,v,p, f and h are smooth functions of the coordinates (¢,x,y,z). It is easy to verify
that the determinant of (g, ) is given by

g £ det(g,) = —*fh. (4)
Throughout this paper, we assume that
g <0. (H)
Without loss of generality, we may suppose that f and g keep the same sign, for example,

f<0 (resp. f >0) and h <0 (resp.g>0). (5)
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In what follows, we solve the Einstein’s field equations (2) under the framework of the
Lorentzian metric of the form (3).

By a direct calculation, we have the Ricci tensor

meg{E (5B (D) -G o

It follows from (2) that
vz [ fx hy 1 Ja ? hy 2 Jrz hys o
(Few) s |(F) *(h”‘(f i) =o g

This is an ordinary differential equation of first order on the unknown function v. Solving (7)

gives

v = V(t,y,2)exp { / @(t,x,y,z)dm} , (8)

foo  hew 1 [(f\° 1 [(Ra\?| fh
R _2<f> _2(h> (Fh),’

and V =V (t,y, z) is an integral function depending on ¢, y and z. Here we assume that

where

@:

(Fh)a # 0. 9)
In particular, taking the ansatz
f=-K(t2)* h=N(ty 2)K(tz)? (10)
and substituting it into (8) yields
v=VK,. (11)
By the assumptions (H) and (9), we have
V#0, K#0, K,#0. (12)

Noting (10) and (11), by a direct calculation we obtain

VK,
Ry ek (13)
It follows from (2) that
Ri3=0.
Combining (12) and (13) gives
V. =0. (14)

This implies that the function V' depends only on ¢, y but is independent of x and z. Noting
(10)-(11) and using (14), we calculate

Ryp = _L (p:cx Koops 2pK, + 2K£Vy> .

K, K2 K? K

(15)
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Solving p from the equation Ri5 = 0 yields

B
p=AK>+V,K +

where A and B are integral functions depending on ¢, y and z. Noting (10)-(11) and using (14)
and (16), we observe that the equation Ra3 = 0 is equivalent to

B, —2K3A, =0. (17)

Since K is a function depending only on ¢, x, and A, B are functions depending on ¢, y and z,
we can obtain that
B =2K3A+C(t,z,y), (18)

where C' is an integral function depending on ¢, x and y. For simplicity, we take
A=B=C=0. (19)

Thus, (16) simplifies to
p=V,K. (20)

From now on, we assume that the function N only depends on y, that is to say,
N = N(y). (21)
Substituting (10)-(11), (14) and (20)-(21) into the equation Roz = 0 yields
ugVy + V(uye — AV, Kyy) = 0. (22)
Solving w from the equation (22) leads to
u=2K;V. (23)
Noting (10)-(11), (14), (20)-(21) and (23), by a direct calculation we obtain
Roz =0, (24)
Ry = (4N?V2)~1[2NV2N,, — 4N?VV,, +4N2V2 — 2NVN,V, — V2N2],

R33

—(ANV?2)~L 2NV2N,, — AN?VV,, + AN?V2 — 2NV N,V, — V2NZ]

and

Roo = (2KNV?)7' [ANV,V,? + 2NV?Vyy,, — 2NV ViV, — ANVV,V,y, — VN, ViV, + V>N, Vi, | .

(26)
Therefore, under the assumptions mentioned above, the Einstein’s field equations (2) are re-
duced to ) )
Nyy 1[Ny Vi - NyVy vy
—tww oy C(Zv) golw —2(2) =0 27
N + 2 <N ) + Vv + NV Vv (27)
and )
VV,ViN, VZ2V,.N,
AVEV, +2V2V, — 2VV,, Vi — AV, V,, — — L0 4 — VW — (28)

N N
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On the other hand, (27) can be rewritten as
v, V,N, (N, 1 (N,\?
9Ly vy (v )y 22y ) 2
(@), o (3),2(5) =0 ®

and (28) is equivalent to
Vi V,\ N,
2( 2 <) =Z=o. 30
(), (¥).5 )

Noting (21) and differentiating (29) with respect to t gives (30) directly. This shows that (29)
implies (30). Hence in the present situation, the Einstein’s field equations (2) are essentially
(29). Solving V from the equation (29) yields

V = w(t)|N(y)|'? exp{Q(t)/N(y)l‘l/Qdy} (31)

where w = w(t) and ¢ = ¢(t) are two integral functions only depending on ¢t. Thus, we
can obtain the following solution of the vacuum Einstein’s field equations in the coordinates

(t,z,y,2)
ds® = (dt,dz, dy, dz)(g,,)(dt, dz,dy, dz)", (32)

where

2K,V K,V KV, 0

K,V 0 0 0

KV, 0 —-K? 0
0 0 0 NK?

(Gu) = : (33)

in which N = N(y) is an arbitrary function of y, K = K (¢, ) is an arbitrary function of ¢, x,
and V' is given by (31).

By calculations, the Riemann curvature tensor reads

Ropguw =0, Vafur #0202 or 0303, (34)
while
Ro202 = quq’|N|_1/2 exp {q/ N|_1/2dy} (35)
and
Ro303 Zquq/N|1/29XP{Q/|N|1/2dy}- (36)

In order to analyze the singularities of the space-time (32), we introduce

Definition 1 A point P in the space-time is called a geometric singular point, if there are some
indezes g, Bo, o, vo € {0,1,2,3} such that

RO&(],B(),U,()VO = :l:oo but ‘R| é |Ra676Ra[‘3'y5| < (0] at P,
P is called a physical singular point, if it holds that

R=4c atP.

A low-dimensional sub-manifold ¥ is called a geometric (resp. physical) singularity, if every
point (t,x,y,z) € ¥ is geometric (resp. physical) singular point. W
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In Definition 1, the low-dimensional sub-manifold ¥ might be a point, curve or surface in
the space-time. On the other hand, physicists usually call “geometric singularities” defined in
Definition 1 the coordinate singularities.

According to Definition 1, it is easy to check that, in the Schwarzschild space-time, the event
horizon r = 2M is geometric singularity, while the black hole » = 0 is physical singularity.

3 Time-periodic solutions

This section is devoted to constructing some new time-periodic solutions of the vacuum Ein-
stein’s field equations.

3.1 Regular time-periodic space-times with vanishing Riemann cur-
vature tensor

Take g = constant and let V = p(t)k(y), where « is defined by

") = |Nexp{C2 / |N|-1/2dy}, (37)

in which ¢; and co are two integrable constants. In this case, the solution to the vacuum
Einstein’s filed equations in the coordinates (t,x,y, z) reads

ds* = (dt,dz, dy, dz)(g,.)(dt, dz, dy, dz)", (38)
where
2060 K  prO,K pKOyk 0
PO K 0 0 0
pKOyk 0 —K? 0
0 0 0 NK?

(guv) = (39)

Theorem 1 The vacuum FEinstein’s filed equations (2) have a solution described by (38) and
(39), and the Riemann curvature tensor of this solution vanishes. M

As an example, let
w(t) = cost,

(40)
K(t,z) = e®sint,

N(y) = —(2 +siny)>.

In the present situation, we obtain the following solution of the vacuum Einstein’s filed equations
(2)

Moo Mor Moz 0

M1 0 0 0
(T] 1/) = ) (41)
! N2 0 7o O

0 0 0 7133
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where
nNoo = 2€*(2 + siny) cos? ¢,
1
No1 = 569”(2 + siny) sin(2t),
1
Noz = 5696 cos ysin(2t), (42)
oo = —[e® sint]?,
N33 = —[€*(2 + siny) sin t]?.
By (4), 1
n 2 det(nu,) = *Zeﬁm (2 + sin y)4 sin® ¢ sin® (2t). (43)

Property 1 The solution (41) of the vacuum Einstein’s filed equations (2) is time-periodic. W

Proof. In fact, the first equality in (42) implies that
oo >0 for t #km+7/2 (k€ N) and x # —o0.

On the other hand, by direct calculations,

1
oo Tox ——e¥(2 + siny)? sin?(2t) < 0,
1 0 4
Moo  7o1  Mo2
i 0 0 | =-—ngme2 >0
no2 0 722

and
Moo TMor Moz 0
nt 0 0 0
N2 0 ma 0
0 0 0 mss

= —ng 722133 < 0

for t # km, kmr +7/2 (k € N) and © # —oc.

In Property 3 below, we will show that ¢ = kn, kn + 7/2 (k € N) are the singularities
of the space-time described by (41), but they are neither geometric singularities nor physical
singularities, these non-essential singularities correspond to the event horizons of the space-time
described by (41) with (42); while, when = —oo, the space-time (41) degenerates to a point.

The above discussion implies that the variable ¢ is a time coordinate. Therefore, it follows
from (42) that the Lorentzian metric

s° = (dt, dz, dy, dz)(nu, ) (dt, dz, dy, dz
ds? = (dt,dz, dy, dz)(n,,)(dt, dz,dy,dz)" 44

is indeed a time-periodic solution of the vacuum Einstein’s field equations (2), where (1,,) is
given by (41). This proves Property 1. d

Noting (34)-(36) and the second equality in (40) gives
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Property 2 The Lorentzian metric (44) (in which (7, ) is given by (41) and (42)) describes
a regular space-time, this space-time is Riemannian flat, that is to say, its Riemann curvature
tensor vanishes. W

Remark 1 The first time-periodic solution to the vacuum FEinstein’s field equations was con-
structed by Kong and Liu [3]. The time-periodic solution presented in [3] also has the vanishing
Riemann curvature tensor.

It follows from (43) that the hypersurfaces ¢ = km, kx + 7/2 (k € N) and =z = £oo
are singularities of the space-time (44) (in which (7,,) is given by (41) and (42)), however,
by Property 2, these singularities are neither geometric singularities nor physical singularities.
According to the definition of event horizon (see e.g., Wald [6]), it is easy to show that the
hypersurfaces t = kmw, kn +7/2 (k € N) and & = 400 are the event horizons of the space-time
(44) (in which () is given by (41) and (42)). Therefore, we have

Property 3 The Lorentzian metric (44) (in which (7,,) is given by (41) and (42)) contains
neither geometric nor physical singularities. These non-essential singularities consist of the
hypersurfaces t = kn, kn+7/2 (k € N) and x = +o00. The singularities t = kw, kn+n/2 (k €
N) and = +oo correspond to the event horizons, while, when = —o0, the space-time (44)
degenerates to a point. W

We now investigate the physical behavior of the space-time (44).

Fixing y and z, we get the induced metric
ds® = noodt? + 2nodtdz. (45)

Consider the null curves in the (¢, z)-plan, which are defined by

7700dt2 + 2no1dtdx = 0. (46)
Noting (42) gives
dt
dt =0 and i tant. (47)

Thus, the null curves and light-cones are shown in Figure 1.
We next study the geometric behavior of the t-slices.
For any fixed ¢ € R, it follows from (44) that the induced metric of the t-slice reads
ds® = moody® 4 n33dz® = —e*@ sin® t[dy® + (2 + siny)?dz?). (48)
When t = k7 (k € N), the metric (48) becomes
ds®> = 0.

This implies that the t-slice reduces to a point. On the other hand, in the present situation,
the metric (44) becomes

ds® = 2e®(2 + siny)dt>.

When ¢ # kn (k € N), (48) shows that the ¢-slice is a three-dimensional cone-like manifold
centered at x = —o0.
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Figure 1: Null curves and light-cones in the domains 0 < t < 7/2 and 7/2 < t < 7.

3.2 Regular time-periodic space-times with non-vanishing Riemann
curvature tensor

We next construct the regular time-periodic space-times with non-vanishing Riemann curvature

tensor.
To do so, let
w(t) = cost,
q(t) = sint,
, (49)
K(z,t) = e®sint,
- 1
 (24siny)?’

Then, by (31),

Vo costexp {(2y — cosy) sint}

2 +siny

Thus, in the present situation, we have the following solution of the vacuum Einstein’s field
equations (2)

Moo TMor Toz O

~ o1 O 0 0

Nuv = - - ) (50)
M2 0 722 O

0 0 0 7s3
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where
_ 2e® cos? t exp {(2y — cosy) sint}
Too = . )
2+siny
. esin(2t)exp{(2y — cosy)sint}
flor = 2(2 +siny) ’
~ : t
fop = evt(u-cosy)sint {Smtcost B % } sint, (51)
Tpo = —€2* sin?t,
_ _ e?* sin® ¢
BT T o T sing)?
By (4),
6z+2(2y—cosy)sint o; 2(2t> : 4t
_A _ 9~ ~ e sin sin
= det(T,) = —(7o1)* =— 52
n = det(7u) = —(Mo1) 722733 10 1 omy) (52)
Introduce
A(t,x,y) = 6z + 2(2y — cosy) sint.
Thus, it follows from (52) that
<0 (53)

for t # km, k7 +7/2 (k € N) and A # —oo. It is obvious that the hypersurfaces ¢ =
km, kmr +m/2 (k € N) and A = £o0o are the singularities of the space-time described by (50)
with (51). As in Subsection 3.1, we can prove that the hypersurfaces t = kw, kr +7/2 (k € N)
are neither geometric singularities nor physical singularities, these non-essential singularities
correspond to the event horizons of the space-time described by (50) with (51).

Similar to Property 1, we have

Property 4 The solution (50) (in which (7., ) is given by (51)) of the vacuum Einstein’s filed
equations (2) is time-periodic. W

Similar to Property 2, we have

Property 5 The Lorentzian metric (50) (in which (7,,,) is given by (51)) describes a regular
space-time, this space-time has a non-vanishing Riemann curvature tensor. W

Proof.  In the present situation, by (34)

Roguy =0, Vafur #0202 or 0303, (54)
while
Rosgy = e*H(2y—cosy) Sin75(2 + siny) cos? tsin? ¢ (55)
and ) )
e” cos“tsin”texp{(2y —cosy)sint
+smy
Property 5 follows from (54)-(56) directly. Thus the proof is completed. O
In particular, when ¢t # km, kr + /2 (k € N), it follows from (55) and (56) that
Ro202, Rozos3 — 00 as x4+ (2y — cosy)sint — co. (57)

10
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However, a direct calculation gives

R 2 R*PPR, 5.5 = 0. (58)
Thus, we obtain

Property 6 The Lorentzian metric (50) (in which (7, ) is given by (51)) contains neither geo-
metric nor physical singularities. These non-essential singularities consist of the hypersurfaces
t=km, kn+x/2 (k€ N)and A = +oo, in which the hypersurfaces t = kr, kr+7/2 (k € N)
are the event horizons. Moreover, the Riemann curvature tensor satisfies the properties (57)
and (58). W

We next analyze the singularity behavior of A = to0.

Case 1: Fixing y € R, we observe that
A — £00 <= x — +o0.

This situation is similar to the case *+ — +oo discussed in Subsection 3.1. That is to say,
x = 400 corresponds to the event horizon, while, when © — —oo, the space-time (50) with (51)
degenerates to a point.

Case 2: Fixing x € R, we observe that
A — +00 <=y — £o0.
In the present situation, it holds that
t#kr (keN).
Without loss of generality, we may assume that
sint > 0.
For the case that sint < 0, we have a similar discussion. Thus, noting (57), we have
Ro202, Rozo3 — o0 as y — oo.

Moreover, by the definition of the event horizon we can show that y = +o0o0 is not a event
horizon. On the other hand, when y — —oo, the space-time (50) with (51) degenerates to a
point.

Case 3: For the situation that © — +oo and y — Z£oo simultaneously, we have a similar
discussion, here we omit the details.

For the space-time (50) with (51), the null curves and light-cones are shown just as in Figure
1. On the other hand, for any fixed ¢t € R, the induced metric of the ¢-slice reads

ds® = Tiody® 4 Ti33dz® = —e*® sin? t{dy? + (2 + siny) ~2dz?]. (59)

Obviously, in the present situation, the ¢-slice possesses similar properties shown in the last
paragraph in Subsection 3.1.

In particular, if we take (¢,z,y,z) as the spherical coordinates (t,7,0,¢) with t € R, r €
[0,00), O € [0,27), ¢ € [-7/2,7/2], then the metric (50) with (51) describes a regular time-
periodic space-time with non-vanishing Riemann curvature tensor. This space-time does not

11
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contain any essential singularity, these non-essential singularities consist of the hypersurfaces
t = km, kmr+7/2 (k € N) which are the event horizons. The Riemann curvature tensor satisfies
(58) and

Ro202, Ro3p3 — 00 as r — o0.

Moreover, when t # k7 (k € N), the ¢-slice is a three dimensional bugle-like manifold with the
base at x = 0; while, when ¢t = k7 (k € N), the ¢-slice reduces to a point.

3.3 Time-periodic space-times with geometric singularities

This subsection is devoted to constructing the time-periodic space-times with physical singu-

larities.
To do so, let
w(t) = cost,
q(t) = sint,
sint (60)
K(ﬁ[;, t) = ?,
1
N=——-——.
(24 cosy)?

Then, by (31) we have

Vo costexp {(2y +siny)sint)}
N 2+ cosy '

Thus, in the present situation, the solution of the vacuum Einstein’s field equations (2) in the
coordinates (t,x,y, z) reads

ds* = (dt,dz, dy, dz) () (dt, dz, dy, dz)", (61)
where
Moo 7To1 Tz 0
. 1 0 0 0
(mw) = . R ) (62)
oz 0 72 O
0 0 0 13
in which
. 2cos’texp{(siny + 2y) sint}
o= (2 + cosy)x? ’
. B sin(2t) exp {(siny + 2y) sint}
for = (2 + cosy)z3 ’
~ sint [ costsiny sin(2t) . .
2 = —5 { @+ cosy)? 5 exp {(siny + 2y) sint}, (63)
. sin” ¢
M2 = A
R _ sin’t
s = (2 + cosy)2xt’

12
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By (4), we have

62(2y+sin y)sint Sin2 (Qt) sin4 ¢

x14(2 4 cosy)*

>

0= det (i) = —(flo1)*oaflas = — (64)
It follows from (63) that

n<0 (65)
fort # km, kn+n/2 (k € N)and « # 0. Obviously, the hypersurfaces t = kn, kn+7/2 (k € N)
and z = 0 are the singularities of the space-time described by (61) with (62)-(63). As before,
we can prove that the hypersurfaces ¢ = km, km + 7/2 (k € N) are not essential (or, say,
physical) singularities, and these non-essential singularities correspond to the event horizons of
the space-time described by (61) with (62)-(63), however x = 0 is an essential (or, say, physical)
singularity (see Property 8 below).

Similar to Property 1, we have

Property 7 The solution (61) (in which (7, ) is given by (62) and (63)) of the vacuum Einstein’s
field equations (2) is time-periodic. W

Proof. In fact, the first equality in (63) implies that
floo >0 for t #kr+7/2 (keN) and = #0. (66)

On the other hand, by direct calculations we have

Moo Tot A
. = —ijo, <0, (67)
o1 0O
Moo Tor Moz
for 0 0 |=—igihe2 >0 (68)
oz 0 Tz
and
floo o1 foz 0O
lor 0 0 O I
= —751 722733 < 0 (69)

oz 0 72 0
0 0 0 7
for t # km, kn +7/2 (k € N) and = # 0.

The above discussion implies that the variable ¢ is a time coordinate. Therefore, it follows
from (63) that the Lorentzian metric (61) is indeed a time-periodic solution of the vacuum
Einstein’s field equations (2), where (7j,,) is given by (63). This proves Property 7. O

Property 8 When t # km, kx4 7/2 (k € N), for any fixed y € R it holds that
Rg202 — +00 and  Rgzp3 — +00, as z — 0. (70)
]

Proof. By direct calculations, we obtain from (35) and (36) that

(2 + cosy) sin?(2t) exp {(siny + 2y) sint}

42 (71)

Roop2 =

13
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and
sin?(2t) exp {(sin(y) + 2y) sint}
R = . 72
0303 422(2 4 cosy) (72)
(70) follows from (71) and (72) directly. The proof is finished. O
On the other hand, a direct calculation yields
R 2 R*PPR, 5.5 = 0. (73)

Therefore, we have

Property 9 The Lorentzian metric (61) describes a time-periodic space-time, this space-time
contains two kinds of singularities: the hypersurfaces t = km, kr + 7/2 (k € N), which are
neither geometric singularities nor physical singularities and correspond to the event horizons,
and x = 0, which is a geometric singularity. W

We now analyze the behavior of the singularities of the space-time characterized by (61)
with (63).

By (64), we shall investigate the following cases: (a) t = km, kn + n/2 (k € N); (b)
y — £o0; (¢) & — Fo0; (d) z — 0.
Case a: t = km, kn +7/2 (k € N). According to the definition of the event horizon, the
hypersurfaces t = km, km + 7/2 (k € N) are the event horizons of the space-time described by

(61) with (63). On the other hand, by Definition 1, they are neither geometric singularities nor
physical singularities.

Case b: y — +oo. Noting (64), in this case we may assume that ¢ # kn (k € N) (if ¢ = km,
then the situation becomes trivial). Without loss of generality, we may assume that sint > 0.
Therefore, it follows from (71) and (72) that, for any fixed x # 0 it holds that

Ro202, Rozos — o0 as y — +00 (74)
and

Ro202, Rozos — 0 as y — —o0. (75)
(74) implies that y = +o0 is also a geometric singularity, while y = —oo is not because of (75).

Case c: © — *oo. By (63), in this case the space-time characterized by (61) reduces to a
point.

Case d: © — 0. Property 8 shows that £ = 0 is a geometric singularity. This is the biggest
difference between the space-times presented in Subsections 3.1-3.2 and the one given this
subsection. In order to illustrate its physical meaning, we take (¢,z,y,z) as the spherical
coordinates (t,7,0,¢) with t € R, r € [0,00), 0 € [0,27), ¢ € [-7/2,7/2]. In the coordinates
(t,r,0,p), the metric (61) with (63) describe a time-periodic space-time which possesses three
kind of singularities:

(i) ¢ = knm, kn +7/2 (k € N): they are the event horizons, but neither geometric
singularities nor physical singularities;

(ii) r — 4o0: the space-time degenerates to a point;
(iii) 7 — 0: it is a geometric singularity.

14



Time-Periodic Solutions of the Einstein’s Field Equations I1
For the case (iii), in fact Property 8 shows that every point in the set
A
Gp={(t,r0,p)|r=0,t#knr, kn+n/2 (k€ N)}

is a singular point. Noting (34) and (70), we name the set of singular points G5 as a geo-
metric black hole. Property 8 also shows that the space-time (61) is not homogenous and not
asymptotically flat. This space-time perhaps has some new applications in cosmology due to
the recent WMAP data, since the recent WMAP data show that our Universe exists anisotropy
(see [2]). This inhomogenous property of the new space-time (61) may provide a way to give
an explanation of this phenomena.

We next investigate the physical behavior of the space-time (61).

Fixing y and z, we get the induced metric

ds® = foodt? + 2fjp1 dtdz. (76)
Consider the null curves in the (¢, z)-plan defined by
foodt? + 27y dtdx = 0. (77)
Noting (63) leads to
dt 2tant
dt =0 d —=- . 78
e I x (78)
Let
p=2ln|x|. (79)
Then the second equation in (78) becomes
dt

Thus, in the (¢, p)-plan the null curves and light-cones are shown in Figure 1 in which z should
be replaced by p.

We now study the geometric behavior of the ¢-slices.

For any fixed ¢ € R, the induced metric of the t-slice reads

.2
sin” ¢ _
ds® = — o [dy? + (2 + cosy) 2d2?]. (81)
When t = k7 (k € N), the metric (81) becomes
ds* = 0.

This implies that the t-slice reduces to a point. On the other hand, in this case the metric (61)

becomes
2 2

(2 + cosy)x?

When ¢ # kr (k € N), (81) shows that the ¢-slice is a three-dimensional manifold with cone-like
singularities at * = oo and & = —oo, respectively. In particular, if we take (¢,z,y,z) as the
spherical coordinates (t,r,6,¢), then the induced metric (81) becomes

ds® =

sin?t

ds® = — 7
r

[d6* + (2 + cos 0) ~2dp?]. (82)
In this case the t-slice is a three-dimensional cone-like manifold centered at r» = oo.

At the end of this subsection, we would like to emphasize that the space-time (61) possesses
a geometric singularity, i.e., x = 0 which is named as a geometric black hole in this paper.
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4 Summary and discussion

In this paper we describe a new method to find exact solutions of the vacuum Einstein’s field
equations (1). Using our method, we can construct many interesting exact solutions, in partic-
ular, the time-periodic solutions of the vacuum Einstein’s field equations. More precisely, we
have constructed three kinds of new time-periodic solutions of the vacuum Einstein’s field equa-
tions: the regular time-periodic solution with vanishing Riemann curvature tensor, the regular
time-periodic solution with finite Riemann curvature tensor and the time-periodic solution with
geometric singularities. We have also analyzed the singularities of these new time-periodic solu-
tions and investigate some new physical phenomena enjoyed by these new space-times. Here we
would like to point out that, in this paper, when we discuss the time-periodic solutions, we use
the time-coordinate ¢. In fact, we can also discuss the time-periodic solutions and singularities
by means of a coordinate invariant way, in this way (and only this way), we need not introduce
a special coordinate system.

In particular, in the spherical coordinates (¢,7,0,p) we construct a time-periodic space-
time with a geometric singularity. This space-time possesses an interesting and important
singularity which is named as the geometric black hole. This space-time is inhomogenous and
not asymptotically flat and can perhaps be used to explain the phenomenon that our Universe
exists anisotropy from the recent WMAP data (see [2]). We believe some applications of these
new space-times in modern cosmology and general relativity can be expected.
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