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1 Introduction

In this paper we briefly survey our recent results about the Mumford goodness of several
canonical metrics on the moduli spaces of Riemann surfaces. We will also prove the dual
Nakano negativity of the Weil-Petersson metric. As applications of these results we will deduce
certain important results about the L2-cohomology groups of the logarithmic tangent bundle
over the compactified moduli spaces.

It is well known that, for an Hermitian vector bundle (E, h) over a closed manifold X , the
Chern forms of h represent the Chern classes of E. However, this is no longer true if the base
manifold is open. Mumford defined the goodness condition to study the currents of Chern
forms of a singular Hermitian metric on a holomorphic bundle over a quasi-projective manifold
in [1]. The goodness consists of growth conditions of the Hermitian metric, its connection form
and curvature near the compactification divisor of the base manifold. The major property of a
good metric is that the currents of its Chern forms define the Chern classes of this bundle. For
details, please see Section 2.

In this note, we briefly describe our proof of the goodness of the Weil-Petersson metric, which
was a long standing open problem. In fact we will present proofs of the goodness of the metrics
induced by the Weil-Petersson metric, the Ricci and perturbed Ricci metrics on the logarith-
mic cotangent bundle over the Deligne-Mumford compactification of moduli space of Riemann
surfaces (the DM moduli spaces). These works depend on our very accurate estimates of the
asymptotics of the curvature and connection forms of these metrics in [2] and [3] together with
the estimates of derivatives of the hyperbolic metric on Riemann surfaces. The computations
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and proofs are quite involved and very subtle. We will also present our proof of the dual Nakano
negativity of the Weil-Petersson metric. In [4] Schumacher proved the strong negativity of the
Weil-Petersson metric in the sense of Siu. Dual Nakano negativity is stronger than the strong
negativity and several interesting consequences will follow. For example the goodness, together
with the dual Nakano negativity of the Weil-Petersson metric, gives rise to interesting geometric
consequences such as infinitesimal rigidity of the complex structure of the moduli spaces. We
feel that our results open a new way to study the intersection theory on the moduli spaces
by using differential geometric techniques, and also to apply index theory to the study of the
geometry and topology of the moduli spaces and Teichmüller spaces.

We now describe the organization of this article. In Section 2 we recall some known works
on the geometry of moduli spaces which include the degeneration of Riemann surfaces and
hyperbolic metrics, the Ricci, perturbed Ricci and Kähler-Einstein metrics as well as their
curvature properties, the asymptotic of Weil-Petersson metric, the Ricci and perturbed Ricci
metrics as established in [2] and [3]. We also review Mumford’s definition of good metrics.

In Section 3 we describe the main ideas of proving the goodness of the Weil-Petersson metric
as well as the Ricci and the perturbed Ricci metrics. In Section 4 we describe the proof of
the dual Nakano negativity of the Weil-Petersson metric. Finally, in Section 5 we apply these
results to derive the vanishing theorem about certain cohomology groups and the infinitesimal
rigidity of the moduli spaces. Our definition of the L2-cohomology generalizes the usual one
with trivial bundle coefficients. Here we have used both the Weil-Petersson metric and the
Ricci metric and their goodness.

We remark that our previous results about the asymptotic behavior of the Kähler-Einstein
metrics on the moduli spaces already imply an orbifold Chern number inequality for the log-
arithmic cotangent bundle which should give new information about positive divisors on the
DM moduli spaces. In this paper, we will only give the main ideas and sketch the proofs of the
results presented. For details and precise estimates, we refer the reader to [5] and [6].

This note is based on the first author’s lecture at the International Conference in Honor
of Professor Qi-Keng LU’s Eightieth Birthday in June, 2006. Similar results have also been
presented by the third author on the occasion of Professor Hironaka’s eightieth birthday. The
first author would like to thank Professor Qi-Keng LU for his guidance and help during the
early stage of his research career.

We would like to thank professors H.-D. Cao, R. Schoen and E. Viehweg for their help and
encouragement.

2 Curvature Formulae and Asymptotics

We first recall the deformation theory of Riemann surfaces as well as canonical metrics on the
moduli spaces. Most of the results can be found in [2], [3], [7] and [1].

Let Mg,k be the moduli space of Riemann surfaces of genus g with k punctures such that
2g − 2 + k > 0. We know there is a unique Kähler-Einstein metric on such a Riemann surface.
To clearly present the main ideas and to simplify the notation, throughout this paper, we will
assume k = 0 and g � 2 and work on Mg. Most of the results can be trivially generalized to
Mg,k.

By the Riemann-Roch theorem, we know that the complex dimension of the moduli space is
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n = dimC Mg = 3g− 3. Given a Riemann surface X of genus g � 2, we denote by λ the unique
hyperbolic (Kähler-Einstein) metric on X . Let z be local holomorphic coordinate on X . We
normalize λ such that

∂z∂z log λ = λ. (2.1)

Let (s1, . . . , sn) be local holomorphic coordinates on Mg near a point p and let Xs be the
corresponding Riemann surfaces. Let ρ : TsMg → H1(Xs, TXs) ∼= H0,1(Xs, TXs) be the
Kodaira-Spencer map. Then the harmonic representative of ρ( ∂

∂si
) is given by

ρ

(
∂

∂si

)
= ∂z

(
−λ−1∂si∂z log λ

) ∂

∂z
⊗ dz = Bi. (2.2)

By the Serre duality, we know
T ∗

s Mg
∼= H0(Xs, K

2
Xs

)

where KXs is the canonical bundle of Xs. If we let ai = −λ−1∂si∂z log λ and let Ai = ∂zai,
then the harmonic lift vi of ∂

∂si
is given by

vi =
∂

∂si
+ ai

∂

∂z
. (2.3)

The well-known Weil-Petersson metric ω
WP

=
√−1

2 hijdsi ∧ dsj on Mg is defined to be

hij(s) =
∫

Xs

AiAj dv (2.4)

where dv =
√−1

2 λdz ∧ dz is the volume form on Xs. Correspondingly, the dual metric of the
WP metric is given by

hij(s) =
∫

Xs

ϕiϕj

λ

where ϕi ∈ H0(Xs, K
2
Xs

) is the holomorphic quadratic differential corresponding to the cotan-
gent vector dsi.

It was proved by Ahlfors that the Ricci curvature of the Weil-Petersson metric is negative.
The upper bound of the Ricci curvature of the Weil-Petersson metric was conjectured by Royden
and was proved by Wolpert [8].

In our work [2] we defined the Ricci metric ωτ :

ωτ = −Ric (ω
WP

) (2.5)

and the perturbed Ricci metric ω
�τ :

ω
�τ = ωτ + Cω

WP
(2.6)

where C is a positive constant. These new Kähler metrics have good curvature and asymptotic
properties and play important roles in out study.

Now we describe the curvature formulas of these metrics derived in [2] and [3]. We denote
by fij = AiAj where Ai is the harmonic Beltrami differential corresponding to the local holo-
morphic vector field ∂

∂si
. It is clear that fij is a function on X . We let � = −λ−1∂z∂z be the
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Laplace operator, let T = (� + 1)−1 be the Green operator and let eij = T (fij). The functions
eij and fij are building blocks of these curvature formulae.

The curvature formula of the Weil-Petersson metric was given by

Rijkl = −
∫

Xs

(eijfkl + eilfkj) dv. (2.7)

This formula was first established by Wolpert [8] and was generalized by Siu [9] and Schumacher
[10] to higher dimensions. A short proof can be found in [2].

To describe the curvature formulae of the Ricci and perturbed Ricci metrics, we need to
introduce several operators. These operators are compositions of the Maass operators. We
recall the definitions here. Let X be a Riemann surface and let κ be its canonical bundle. For
any integer p, let S(p) be the space of smooth sections of (κ ⊗ κ−1)

p
2 . Fix a conformal metric

ds2 = ρ2(z)|dz|2.
Definition 2.1. The Maass operators Kp and Lp are the metric derivatives Kp : S(p) →
S(p + 1) and Lp : S(p) → S(p − 1) given by

Kp(σ) = ρp−1∂z(ρ−pσ)

and
Lp(σ) = ρ−p−1∂z(ρpσ)

where σ ∈ S(p).

In the following, we will always use the Kähler-Einstein metric λ on X unless otherwise
stated. We define the operator ξk : C∞(Xs) → C∞(Xs) by

ξk(f) = ∂
∗
(i(Bk)∂f) = −λ−1∂z(Ak∂zf) = −AkK1K0(f) (2.8)

where K0, K1 are the Maass operators defined above.
It was proved in [2] that ξk is the commutator of the Laplace operator and the Lie derivative

in the direction vk:

(� + 1)vk − vk(� + 1) = �vk − vk� = ξk. (2.9)

We also need the commutator of the operator vk and vl. In [2] we defined the operator Qkl :
C∞(Xs) → C∞(Xs) by

Qkl(f) = [vl, ξk](f) = P (ekl)P (f) − 2fkl�f + λ−1∂zfkl∂zf (2.10)

where P : C∞(Xs) → Γ(Λ1,0(T 0,1Xs)) is the operator defined by

P (f) = ∂z(λ−1∂zf) = K1K0(f).

The terms appeared in the curvature formulae of the Ricci and perturbed Ricci metrics are
formally symmetric with respect to indices. For convenience, we recall the symmetrization
operator defined in [2].

Definition 2.2. Let U be any quantity which depends on indices i, k, α, j, l, β. The sym-
metrization operator σ1 is defined by taking the summation of all orders of the triple (i, k, α).
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Similarly, σ2 is the symmetrization operator of j and β and σ̃1 is the symmetrization operator
of j, l and β.

Let R̃ijkl and Pijkl be the curvature tensors of the Ricci and perturbed Ricci metrics respec-
tively. In [6] we established the following curvature formulae of these metrics:

R̃ijkl = −hαβ

{
σ1σ2

∫
Xs

{
(T (ξk(eij))ξl(eαβ) + T (ξk(eij))ξβ(eαl)

}
dv

}
− hαβ

{
σ1

∫
Xs

Qkl(eij)eαβ dv

}
+ τpqhαβhγδ

{
σ1

∫
Xs

ξk(eiq)eαβ dv

}{
σ̃1

∫
Xs

ξl(epj)eγδ) dv

}
+ τpjh

pqRiqkl

(2.11)

and

Pijkl = −hαβ

{
σ1σ2

∫
Xs

{
T (ξk(eij))ξl(eαβ) + T (ξk(eij))ξβ(eαl)

}
dv

}
− hαβ

{
σ1

∫
Xs

Qkl(eij)eαβ dv

}
+ τ̃pqhαβhγδ

{
σ1

∫
Xs

ξk(eiq)eαβ dv

}{
σ̃1

∫
Xs

ξl(epj)eγδ) dv

}
+ τpjh

pqRiqkl + CRijkl.

(2.12)

From the curvature formula (2.7), it is easy to get information of the sign of the curvature of
the Weil-Petersson metric by using integration by part and maximum principle. However, the
curvature formulae of the Ricci and perturbed Ricci metrics are too complicated to use directly.
Thus we need to look at the asymptotic behavior of these metrics.

We now recall geometric construction of the DM moduli space which is due to Earle-Marden
and the degeneration of hyperbolic metrics. Please see [2] and [8] for details.

Let Mg be the Deligne-Mumford compactification of Mg and let D = Mg \ Mg. It was
shown in [11] that D is a divisor with only normal crossings. A point y ∈ D corresponds to
a stable nodal surface Xy. A point p ∈ Xy is a node if there is a neighborhood of p which is
isometric to the germ {(u, v) | uv = 0, |u|, |v| < 1} ⊂ C2. Let p1, . . . , pm ∈ Xy be the nodes.
Xy is stable if each connected component of Xy \{p1, . . . , pm} has negative Euler characteristic.

Fix a point y ∈ D, we assume the corresponding Riemann surface Xy has m nodes. Now
for any point s ∈ Mg lying in a neighborhood of y, the corresponding Riemann surface Xs

can be decomposed into the thin part which is a disjoint union of m collars and the thick part
where the injectivity radius with respect to the Kähler-Einstein metric is uniformly bounded
from below.

There are two kinds of local holomorphic coordinate on a collar or near a node. We first
recall the rs-coordinate defined by Wolpert in [7]. In the node case, given a nodal surface X

with a node p ∈ X , we let a, b be two punctures which are glued together to form p.

Definition 2.3. A local coordinate chart (U, u) near a is called rs-coordinate if u(a) = 0
where u maps U to the punctured disc 0 < |u| < c with c > 0, and the restriction to U of the
Kähler-Einstein metric on X can be written as 1

2|u|2(log |u|)2 |du|2. The rs-coordinate (V, v) near
b is defined in a similar way.
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In the collar case, given a closed surface X , we assume there is a closed geodesic γ ⊂ X such
that its length l = l(γ) < c∗ where c∗ is the collar constant.

Definition 2.4. A local coordinate chart (U, z) is called rs-coordinate at γ if γ ⊂ U where
z maps U to the annulus c−1|t| 12 < |z| < c|t| 12 , and the Kähler-Einstein metric on X can be
written as 1

2 ( π
log |t|

1
|z| csc π log |z|

log |t| )2|dz|2.
The existence of collar was due to Keen [12]. We formulate this theorem in the following:

Lemma 2.1. Let X be a closed surface and let γ be a closed geodesic on X such that the
length l of γ satisfies l < c∗. Then there is a collar Ω on X with holomorphic coordinate z

defined on Ω such that
(1) z maps Ω to the annulus { 1

ce−
2π2

l < |z| < c} for c > 0;
(2) the Kähler-Einstein metric on X restricted to Ω is given by(

1
2
u2r−2 csc2 τ

)
|dz|2 (2.13)

where u = l
2π , r = |z| and τ = u log r;

(3) the geodesic γ is given by the equation |z| = e−
π2
l ;

(4) the constant c has a lower bound such that the area of Ω is bounded from below by a
universal constant.

We call such a collar Ω a genuine collar.

Now we describe the pinching coordinate chart of Mg near the divisor D [7]. Let X0 be
a nodal surface corresponding to a codimension m boundary point and let p1, . . . , pm be the
nodes of X0. Then X̃0 = X0 \ {p1, . . . , pm} is a union of punctured Riemann surfaces. Fix
rs-coordinate charts (Ui, ηi) and (Vi, ζi) at pi for i = 1, . . . , m such that all the Ui and Vi are
mutually disjoint. Now pick an open set U0 ⊂ X̃0 such that the intersection of each connected
component of X̃0 and U0 is a nonempty relatively compact set and the intersection U0∩(Ui∪Vi)
is empty for all i. Now pick Beltrami differentials νm+1, . . . , νn which are supported in U0 and
span the tangent space at X̃0 of the deformation space of X̃0. Let Δn−m

ε ⊂ Cn−m be the
polydisc of radius ε. For t′′ = (tm+1, . . . , tn) ∈ Δn−m

ε , let ν(t′′) =
∑n

i=m+1 tiνi. We assume
|t′′| = (

∑n
i=m+1 |ti|2)

1
2 small enough such that |ν(t′′)| < 1. The nodal surface X0,t′′ is obtained

by solving the Beltrami equation ∂w = ν(t′′)∂w. Since ν(t′′) is supported in U0, (Ui, ηi) and
(Vi, ζi) are still holomorphic coordinates on X0,t′′ . By the theory of Ahlfors and Bers [3] and
Wolpert [7] we can assume that there are constants δ, c > 0 such that when |t′′| < δ, ηi

and ζi are holomorphic coordinates on X0,t′′ with 0 < |ηi| < c and 0 < |ζi| < c. Now we
assume t′ = (t1, . . . , tm) has small norm. We do the plumbing construction on X0,t′′ to obtain
Xt = Xt′,t′′ . For each i = 1, . . . , m, we remove the discs {0 < |ηi| � |ti|

c } and {0 < |ζi| � |ti|
c }

from X0,t′′ and identify { |ti|
c < |ηi| < c} with { |ti|

c < |ζi| < c} by the rule ηiζi = ti. This
defines the surface Xt. The tuple t = (t′, t′′) = (t1, . . . , tm, tm+1, . . . , tn) are the local pinching
coordinates for the manifold cover of Mg. We call the coordinates ηi (or ζi) the plumbing
coordinates on Xt,s and the collar { |ti|

c < |ηi| < c} the plumbing collar.

Remark 2.1. From the estimate of Wolpert [14], [7] on the length of short geodesic, we have
ui = li

2π ∼ − π
log |ti| .

In [2] we first proved the equivalence of canonical metrics on Mg:
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Theorem 2.1. All the canonical metrics on the moduli space Mg : the Teichmüller-Kobayashi
metric, the Carathéodory metric, the induced Bergman metric, the asymptotic Poincaré metric,
the McMullen metric, the Ricci metric, the perturbed Ricci metric and the Kähler-Einstein
metric are equivalent.

The new metrics we defined have nice curvature properties which can be used to control the
Kähler-Einstein metric. In [2] and [3] we proved

Theorem 2.2. The Ricci and perturbed Ricci metrics are complete Kähler metrics with
Poincaré growth. These metrics and the Kähler-Einstein metric have bounded geometry on the
Teichmüller space Tg. Furthermore, all the covariant derivatives of the curvature of the Kähler-
Einstein metric are bounded. The Ricci and holomorphic sectional curvatures of the perturbed
Ricci metric are bounded from above and below by negative constants.

We also derived in [2] and [3] the precise asymptotic of the Weil-Petersson, Ricci and per-
turbed Ricci metrics and there curvature. This is one of the key components in the proof of
the goodness of these metrics. For the Weil-Petersson and Ricci metrics we have

Theorem 2.3. Let (t, s) = (t1, . . . , tm, sm+1, . . . , sn) be the pinching coordinates near a codi-
mension m boundary point in Mg. Let h and τ be the Weil-Petersson and Ricci metrics
respectively. Then the Weil-Petersson metric has the asymptotic:

(1) hii = 2u−3
i |ti|2(1 + O(u0)) and hii = 1

2
u3

i

|ti|2 (1 + O(u0)) for 1 � i � m;

(2) hij = O(|titj |) and hij = O
( u3

i u3
j

|titj |
)
, if 1 � i, j � m and i 
= j;

(3) hij = O(1) and hij = O(1), if m + 1 � i, j � n;

(4) hij = O(|ti|) and hij = O
( u3

i

|ti|
)

if i � m < j;

(5) hij = O(|tj |) and hij = O
( u3

j

|tj |
)

if j � m < i

where u0 =
∑m

j=1 uj +
∑n

j=m+1 |sj |. The Ricci metric has the asymptotic:

(1) τii = 3
4π2

u2
i

|ti|2 (1 + O(u0)) and τ ii = 4π2

3
|ti|2
u2

i
(1 + O(u0)), if i � m;

(2) τij = O
( u2

i u2
j

|titj |(ui + uj)
)

and τ ij = O(|titj |), if i, j � m and i 
= j;

(3) τij = O
( u2

i

|ti|
)

and τ ij = O(|ti|), if i � m and j � m + 1;
(4) τij = O(1), if i, j � m + 1.

The holomorphic sectional curvature of the Ricci metric has the asymptotic:
(1) R̃iiii = − 3u4

i

8π4|ti|4 (1 + O(u0)) if i � m;

(2) R̃iiii = O(1) if i > m.

We also have a weak curvature estimate of the Ricci metric. Let

Λi =

{ ui

|ti|
if i � m

1 if i > m.

Then
(1) R̃ijkl = O(1) if i, j, k, l > m;
(2) R̃ijkl = O(ΛiΛjΛkΛl)O(u0) if at least one of these indices i, j, k, l is less than or equal to

m and they are not all equal to each other.

The asymptotic of the perturbed Ricci metric and its curvature can be found in [2] and [3].
Also, precise estimates of the full curvature tensor of the Weil-Petersson, Ricci and perturbed
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Ricci metrics, which will be used in the proof of their goodness, can be found in [5] and [6].
Stronger estimates of the asymptotics of these metrics lead to the Mumford’s goodness con-

dition of a singular Hermitian metrics on vector bundles over quasi-projective manifolds. We
recall the definition and basic properties of good metrics from [1].

Let X be a quasi-projective variety of dimC X = k obtained by removing a divisor D of
normal crossings from a closed smooth projective variety X. Let E be a holomorphic vector
bundle of rank n over X and E = E |X . Let h be a Hermitian metric on E which may be
singular near D.

We cover a neighborhood of D ⊂ X by finitely many polydiscs{
Uα =

(
Δk, (z1, . . . , zk)

)}
α∈A

such that Vα = Uα \ D = (Δ∗)m × Δk−m. Namely, Uα ∩ D = {z1 · · · zm = 0}. We let
U =

⋃
α∈A Uα and V =

⋃
α∈A Vα. On each Vα we have the local Poincaré metric

ωP,α =
√
−1
2

( m∑
i=1

1
2|zi|2 (log |zi|)2

dzi ∧ dzi +
k∑

i=m+1

dzi ∧ dzi

)
.

Definition 2.5. Let η be a smooth local p-form defined on Vα.

• We say η has Poincaré growth if there is a constant Cα > 0 depending on η such that

|η(t1, . . . , tp)|2 � Cα

p∏
i=1

‖ti‖2
ω

P,α

for any point z ∈ Vα and t1, . . . , tp ∈ TzX.
• We say η is good if both η and dη have Poincaré growth.

Definition 2.6. An Hermitian metric h on E is good if for all z ∈ V , assuming z ∈ Vα, and
for all basis (e1, . . . , en) of E over Uα, if we let hij = h(ei, ej), then

• |hij |, (det h)−1 � C (
∑m

i=1 log |zi|)2n for some C > 0 and n � 1.
• The local 1-forms (∂h · h−1)αγ are good on Vα. Namely the local connection and curvature

forms of h have Poincaré growth.

It is easy to see the following basic properties of good metrics:
• The definition of Poincaré growth is independent of the choice of Uα or local coordinates

on it.
• A form η ∈ Ap(X) with Poincaré growth defines a p-current [η] on X. In fact we have∫

X

|η ∧ ξ| < ∞

for any ξ ∈ Ak−p(X).
• If both η ∈ Ap(X) and ξ ∈ Aq(X) have Poincaré growth, then η ∧ ξ has Poincaré growth.
• For a good form η ∈ Ap(X), we have d[η] = [dη].
The importance of a good metric on E is that we can compute the Chern classes of E via

the Chern forms of h as currents. Namely, with the growth assumptions on the metric and
its derivatives, we can integrate by part, so Chern-Weil theory still holds. In [1] Mumford has
proved:



New Results on the Geometry of the Moduli Space of Riemann Surfaces 9

Theorem 2.4. Given an Hermitian metric h on E, there is at most one extension E of E

to X such that h is good.

Theorem 2.5. If h is a good metric on E, the Chern forms ci(E, h) are good forms. Fur-
thermore, as currents, they represent the corresponding Chern classes ci(E) ∈ H2i(X, C).

In the following sections, we will discuss the goodness of the above metrics and their appli-
cations.

3 Goodness of Canonical Metrics

In this section we describe the main ideas of proving the goodness of the Weil-Petersson, Ricci
and perturbed Ricci metrics. From Theorem 2.3, it is very natural to consider the metrics
induced by these metrics and the Kähler-Einstein metric on the logarithmic extension E =
T ∗
Mg

(log D) of the cotangent bundle T ∗
Mg

to the DM moduli space Mg.

We first give a general discussion of the goodness condition of the metric on E induced by a
Kähler metric g on Mg. Let D = Mg \Mg be the compactification divisor and let p ∈ D be
a codimension m boundary point in Mg with the corresponding stable nodal surface X0,0. Let
n = 3g − 3 be the dimension of Mg. Let (t1, . . . , tn) be the pinching coordinates near p where
(t1, . . . , tm) corresponding to the degeneration directions.

For any Kähler metric g on Mg, let g∗ be the induced metric on E. We know that(
dt1
t1

, . . . ,
dtm
tm

, dtm+1, . . . , dtn

)
(3.1)

is a local holomorphic frame of E. Under this frame, the metric g∗ and its inverse are given by

g∗
ij

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
titj

gij i, j � m

1
ti

gij i � m < j

1
tj

gij j � m < i

gij i, j > m

(3.2)

and

(g∗)ij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
titjgij i, j � m

tigij i � m < j

tjgij j � m < i

gij i, j > m

. (3.3)

Now we define two quantities. Let

Dk
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

tk
ti

i, k � m

tk k � m < i
1
ti

i � m < k

1 i, k > m

. (3.4)
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Let vi = − π
log |ti| for i � m and let ui = li

2π where li is the length of the geodesic loop on the
i-th collar of X = Xt. We have that

ui = vi(1 + O(vi)).

Now we let

Λi =

{ ui

|ti|
i � m

1 i > m
. (3.5)

Let A = (Ak
i ) be the connection form of g∗ where i is the row index and k is the column

index. We have

Ak
i =

∑
p

( ∑
j

(
∂pg

∗
ij

)
(g∗)kj

)
dtp. (3.6)

By (3.2), (3.3) and (3.4), we have

Ak
i = −

∑
p

(
Dk

i

∑
j

(
∂pgkj

)
gij

)
dtp (3.7)

if i 
= k or i = k > m. We also have

Ai
i = −

∑
p�=i

( ∑
j

(
∂pgij

)
gij

)
dtp −

(
1
ti

+
∑

j

(
∂igij

)
gij

)
dti (3.8)

if i = k � m.
To prove the goodness of g∗, the first order estimates are reduced to∣∣∣∣Dk

i

∑
j

(
∂pgkj

)
gij

∣∣∣∣ = O(Λp) (3.9)

if i 
= k or i = k > m or p 
= i = k � m and∣∣∣∣ 1
ti

+
∑

j

(
∂igij

)
gij

∣∣∣∣ = O(Λi) (3.10)

if i = k = p � m.
For the estimates on the g∗ itself, we need to show that

∣∣g∗
ij

∣∣, (det g∗)−1 � C

( m∑
i=1

log |ti|
)2n

. (3.11)

By (3.2) we have (det g∗)−1 = |t1 · · · tm|2(det g), inequality (3.11) is equivalent to

∣∣g∗
ij

∣∣, |t1 · · · tm|2(det g) � C

( m∑
i=1

log |ti|
)2n

. (3.12)

The second order estimates are reduced to show that dAk
i has Poincaré growth for any choice

of i, k. Since
dA = ∂A + ∂A = ∂A − A ∧ A,
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if each entry of A has Poincaré growth, then each entry of A ∧ A has Poincaré growth. Thus
we need to show that each entry of ∂A has Poincaré growth.

By (3.7) and (3.8), since Di
i = 1, we have

∂Ak
i = Dk

i ∂q

( ∑
j

(
∂pgkj

)
gij

)
dtp ∧ dtq = −Dk

i gijRkjpqdtp ∧ dtq (3.13)

where Rkjpq is the curvature of g. Thus we need to show that∣∣Dk
i gijRkjpq

∣∣ = O(ΛpΛq). (3.14)

By collecting the above argument, we have

Lemma 3.1. The metric g∗ on T ∗
Mg

(log D) induced by a Kähler metric g on Mg is good if
and only if the estimates (3.9), (3.10), (3.12) and (3.14) hold.

Now We are ready to discuss the goodness of canonical metrics. The first theorem is

Theorem 3.1. The metric h∗ on the logarithm cotangent bundle E over the DM moduli
space induced by the WP metric is good in the sense of Mumford. Thus the Chern forms of h∗,
as currents, are equal to the Chern classes of E.

We now sketch the proof of this theorem in three steps: the zero-th order, first order and
second order estimates. The details are in [5]. In the following, we take the metric gij to be
the Weil-Petersson metric hij . We use the same notation as in our paper [2].

We first consider the zero-th order estimate. This follows directly from Theorem 2.3.

Lemma 3.2. The inequality (3.12) hold, for the Weil-Petersson metric h.

Proof. By Theorem 2.3, (3.2) and (3.3), we have

h∗
ij

=

{
2u−3

i (1 + O(u0)) i = j � m

O(1) otherwise

and

|t1 · · · tm|2(det h) � C

( m∏
i=1

ui

)3

.

It is easy to see that (3.12) holds.
Now we prove the first order estimates. In order to compute the connection of the induced

metric h∗, it is easier to prove the formula (3.6) directly with the metric h. We use the estimate
of Masur [15] and refine the estimates of Schumacher [4] and Trapani [16].

By the work of [2] we know that

hij =
∫

X

ϕiϕj

λ2
dv (3.15)

where ϕi is the holomorphic quadratic differential corresponding to dti and λ is the KE metric
on X . In order to compute the connection forms of the WP metric, we need to estimate the
derivatives of each ϕi and λ.

Unlike the approach in [2], here we take plumbing coordinate and plumbing collar rather
than rs-coordinate and genuine collar because we need the trivialization of the collars. It is



12 LIU Kefeng et al.

easier to compute the derivative of the hyperbolic metric by using the plumbing coordinate on
the degeneration collars.

We first change coordinate on the collars. Let (t1, . . . , tn) be the pinching coordinates near a
codimension m boundary point p in the DM moduli. Let zi and wi be the plumbing coordinates
on the i-th collar of Xt with i � m. Let ri = |zi|, θi = arg zi, r̃i = |wi| and θ̃i = arg wi. We
know that ziwi = ti. Let Ωi

c be the i-th plumbing collar of size c with a fixed 0 < c < 1.
Namely,

Ωi
c = {zi | c−1|ti| � ri � c} = {wi | c−1|ti| � r̃i � c}.

We denote by Ωc the union of all collars: Ωc =
⋃m

i=1 Ωi
c. We also define the half collars Ωi+

c

and Ωi−
c by

Ωi+
c = {zi | |ti|

1
2 � ri � c}

and

Ωi−
c = {zi | c−1|ti| � ri � |ti|

1
2 } = {wi | |ti|

1
2 � r̃i � c}.

To compute the derivative of ϕ, by our works in [2] and the work of Masur [15], we have the
expansion of ϕi on the plumbing collars. Let Δn

δ be the closed polydisc in Cn such that the
radius of each disk is δ > 0. We assume the pinching coordinates t = (t1, . . . , tn) is defined for
t ∈ Δn

δ . By shrinking δ we have

Lemma 3.3. Let k � m and let zk and wk be the plumbing coordinates on the k-th collar
Ωk

c0
with c < c0 < 1 fixed. Then on Ωk

c0
we have

(1) ϕi = − ti

π
1
z2

k
(pk

i (zk) + qk
i (zk)) if i � m and i 
= k;

(2) ϕi = 1
z2

k
(pk

i (zk) + qk
i (zk)) if i > m;

(3) ϕk = − tk

π
1
z2

k
(1 + pk

k(zk) + qk
k(zk)).

There is a constant M > 0 such that in the above formulae, the functions pk
i , qk

i satisfy
(1) pk

i =
∑∞

s=1 ak
is(t)z

s
k such that each ak

is(t) is a holomorphic function of the multi-variable
t and

∑∞
s=1 |ak

is(t)|cs
0 � M for t ∈ Δn

δ ;

(2) qk
i =

∑
s�−1 ak

is(t)t
−s
k zs

k such that ak
is(t) is holomorphic in t and

∑
s�−1 |ak

is(t)|c−s
0 � M

for t ∈ Δn
δ .

There are similar expansions by using the wk coordinates. Furthermore, on X \ Ωc we have

‖ϕi‖ =

{
O(|ti|) i � m

O(1) i > m
.

For the proof of this lemma, please see [15]. We also have the estimates of the derivatives of
pk

i and qk
i :

Lemma 3.4. Let 0 < c < c0 be a fixed constant. On the collar Ωk
c we have

(1) ∂pk
i

∂tj
=

∑∞
s=1

∂ak
is(t)

∂tj
zs

k such that
∑∞

s=1

∣∣∂ak
is(t)
∂tj

∣∣cs � M1 for t ∈ Δn
δ
2
;

(2) ∂qk
i

∂tj
=

∑
s�−1

∂ak
is(t)

∂tj
t−s
k zs

k such that
∑

s�−1

∣∣∂ak
is(t)
∂tj

∣∣c−s � M1 for t ∈ Δn
δ
2

and j 
= k;

(3) ∂qk
i

∂tk
= 1

tk

∑
s�−1 bk

is(t)t
−s
k zs

k where bk
is(t) = tk

∂ak
is(t)

∂tk
−sak

is(t) and
∑

s�−1 |bk
is(t)|c−s � M1.

Here M1 is a constant depending on M, c, c0, δ, n.
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By combining the above two lemmas, we can get desired estimates of the derivatives of each
quadratic differential ϕi.

We then estimate the KE metric λ and its derivatives on each Riemann surface. The following
estimate of λ is due to Masur [15]. The following lemma, although is not sharp, will be enough
for our purpose.

Lemma 3.5. For each 1 � i � m, there is a constant α > 0 such that, on Ωi+
c , we have

1
α

1
r2
i (log ri)2

� λ � α
1

r2
i (log ri)2

and on Ωi−
c , we have

1
α

1
r̃2
i (log r̃i)2

� λ � α
1

r̃2
i (log r̃i)2

.

The estimate the derivative of λ is more subtle. We have

Lemma 3.6. Let λ be the KE metric on the Riemann surface X = Xt. On each collar Ωk
c ,

λ has a unique representation in term of the plumbing coordinate zk. Then∣∣∣∣ ∂

∂ti
(log λ |Ωc)

∣∣∣∣ = O(Λi).

Some ideas of the proof of this lemma was drawn from the work of Schumacher in [4]. We
briefly describe the proof here by using the compound graft metric constructed by Wolpert in
[7].

Let X be the total space and let π : X → Mg be the projection. In [2], we established the
curvature formulae of the WP metric and the Ricci metric by using the harmonic lift which
directly gives the harmonic representatives of the Kodaira-Spencer classes. In this case, we need
to use a different lift. For each i, let vi be the harmonic lift of ∂

∂ti
. Let ṽi be a lift of ∂

∂ti
such

that ṽi |π−1(Ωc)=
∂

∂ti
. This can be done since we have a trivialization of π−1(Ωc) by using the

plumbing coordinates on the collars. ṽi can be obtained by gluing fiberwisely an appropriately
chosen lift of ∂

∂ti
on X \ Ωc and the vector field ∂

∂ti
on Ωc using a graft function.

Now let λ̃ be the compound graft metric on X . A direct computation shows that∣∣∣∣L�vi
λ̃

λ̃
− L

�vi
λ

λ

∣∣∣∣ = O(Λi)

and ∣∣∣∣L�vi
λ̃

λ̃

∣∣∣∣ = O(Λi).

The above two formulae imply ∣∣∣∣L�vi
λ

λ

∣∣∣∣ = O(Λi)

which is the conclusion since ṽi |π−1(Ωc)= ∂
∂ti

.

The estimates on ϕi, λ and their derivatives give the estimates on the derivatives of the dual
metric of the WP metric:
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Lemma 3.7. Let t = (t1, . . . , tn) be the local pinching coordinates with t ∈ Δn
δ . Assume δ is

small enough. If p > m, then

∣∣∣∂ph
ij

∣∣∣ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

O(|ti|2u−3
i ) i = j � m

O(|titj |) i, j � m, i 
= j

O(|ti|) i � m < j

O(|tj |) j � m < i

O(1) i, j > m

. (3.16)

If p � m and p 
= i, then

∣∣∣∂ph
ij

∣∣∣ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

O(|ti|2u−3
i Λp) i = j � m

O(|titj |Λp) i, j � m, i 
= j

O(|ti|Λp) i � m < j

O(|tj |Λp) j � m < i

O(Λp) i, j > m

. (3.17)

If p = i � m then

∣∣∣∣∂i

(
1
ti

hij

)∣∣∣∣ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O(u−2

i ) i = j � m

O

(∣∣∣∣ tjti
∣∣∣∣u−2

i

)
j � m, i 
= j

O(|ti|−1u−2
i ) j > m

. (3.18)

We omit the proof of this lemma since it consists of very technique estimates. Please see [5]
for details. Now the first order estimate follows from the above lemma, Theorem 2.3 and direct
computations:

Lemma 3.8. Let h∗ be the metric on E induced by the WP metric. Then∣∣∣∣ ∑
j

∂p

(
h∗

ij

)(
h∗

)kj∣∣∣∣ = O(Λp)

for any i and k.

Remark 3.1. Let Γk
ij be the Christoffell symbol of the WP metric under the pinching coor-

dinates. By (3.9) and (3.10), Lemma 3.8 is equivalent to
(1)

∣∣Γi
ii + 1

ti

∣∣ = O(Λi) if p = i = k � m;
(2)

∣∣Dk
i Γi

kp

∣∣ = O(Λp) otherwise.
Finally we briefly discuss the second order estimate. We only give the main steps and omit

the details. On one hand, since we need to estimate the curvature tensor of the Weil-Petersson
metric, we can use the techniques in [2]. On the other hand, we need precise estimates which
require us to repeat the work in [2] in an optimal way.

First of all, by Theorem 2.3, formula (3.14) is equivalent to the following two formulae:

|Rkjpq| =

⎧⎨⎩O
(
ΛpΛq

u3
j

|tj |
)

j � m

O (ΛpΛq) j > m

(3.19)
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if k > m and

|Rkjpq| =

⎧⎪⎨⎪⎩
O

(
ΛpΛq

u3
j

|tjtk|

)
j � m

O

(
ΛpΛq

1
|tk|

)
j > m

(3.20)

if k � m.
To check these two formulae, we use the curvature formula of the Weil-Petersson metric:

Rkjpq = −
∫

X

(ekjfpq + ekqfpj) dv. (3.21)

In this case, we will use rs-coordinates on the genuine collars. We let X = Xt and let Ωi
c be

the i-th genuine collar in X of size c. Let zi be a rs-coordinate on Ωi
c with ri = |zi| and let

ρi = e
− 2π2

li . By [2] we know that

Ωi
c = {zi | c−1ρi � ri � c}.

We define the half collars
Ωi+

c = {zi | ρ
1
2
i � ri � c}

and
Ωi−

c = {zi | c−1ρi � ri � ρ
1
2
i }.

For 0 < c1 < c, we define Ωj
c \ Ωj

c1
= Γj

1 ∪ Γj
2 where

Γj
1 = {c1 < rj � c}

and
Γj

2 = {c−1ρj � rj < c−1
1 ρj}.

Let the functions ẽij be defined as in [6]. The following technical lemma, as an optimal
version of the proof of Corollary 4.2 of [2], is one of the key ingredient of the second order
estimate.

Lemma 3.9. Let j � m. Then
∫
Ωj

c1
ẽjjfkk dv � 0 and

∫
Ωj

c1

ẽjjfkk dv =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

O

(
u4

j

|tj |2

)
k > m

O

(
u4

j

|tj |2
u6

k

|tk|2

)
k � m, k 
= j

O

(
u5

j

|tj |4

)
k = m

. (3.22)

By using this lemma, we have the second order estimate:

Lemma 3.10. The formulae (3.19) and (3.20) hold.

The proof of this part follows from Lemma 3.9 and a detailed case by case check. See [5].
Now we are ready to prove the main theorem 3.1.

Proof. By Lemma 3.2, 3.8 and 3.10 we already checked the goodness condition of the metric
h∗ by using the frame (3.1). If we choose another local holomorphic frame of E, it is clear that
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the change matrix is holomorphic and its determinant is non-zero and bounded. Thus the zero
order, first order and second order estimates of using the new frame differ from the estimates
of using the frame (3.1) by bounded terms. We finish the proof.

Based on the goodness of the Weil-Petersson metric, we can prove the goodness of the metrics
on T ∗

Mg
(log D) induced by the Ricci and perturbed Ricci metrics. These results here are more

difficult than the goodness of the Weil-Petersson metric. Our second theorem of this section is

Theorem 3.2. The metrics τ∗ and τ̃∗ on T ∗
Mg

(log D) induced by the Ricci and perturbed
Ricci metrics are good in the sense of Mumford.

By Lemma 3.1, we need to show the estimates (3.9), (3.10), (3.12) and (3.14) hold when the
metric g is the Ricci metric τ or the perturbed Ricci metric τ̃ .

Here we only describe the proof of the estimates of the goodness of the Ricci metric τ . Please
see [5] for the perturbed Ricci metric.

In this case, the zero-th order estimate follows from Theorem 2.3 directly.
Now we consider the first order estimate. We let Γ̃k

ij be the Christoffell symbol of the Ricci
metric under the pinching coordinates. To show the first order estimate, we need to check that
Γ̃k

ij satisfy the inequalities (3.9) and (3.10). By Theorem 3.2 of [2] we have

Γ̃i
kp = τ ijhαβ

(
σ1

∫
X

ξp(ekj)eαβ dv

)
+ Γi

kp (3.23)

where Γi
kp is the Christoffell symbol of the WP metric. In order to prove the first order estimate

for the Ricci metric, by Remark 3.1 and Lemma 3.8, we only need to estimate the tensor part.
Thus the first order estimate is equivalent to

Lemma 3.11. For any i, k and p, we have∣∣∣∣τ ijhαβ

(
σ1

∫
X

ξp(ekj)eαβ dv

)∣∣∣∣ = O(Λp).

The central part of the proof of this lemma is following estimates which is the optimal version
of the results in [2]:

Lemma 3.12.

∣∣∣∣P(
ẽij

)∣∣∣∣
L1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O

(
u3

i

|ti|2

)
i = j � m

O

(
u3

i u
3
j

|titj |

)
i, j � m, i 
= j

O

(
u3

i

|ti|

)
i � m < j

O

(
u3

j

|tj |

)
j � m < i

O(1) i, j > m

.

Similarly, the second order estimate follows from sharpening the estimates in [2]. Please see
[5] for details.

It is well known that the line bundle KMg
+ [D], which is the determinant bundle of

T ∗
Mg

(log D), is positive. In [3] we proved
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Theorem 3.3. The logarithmic cotangent bundle E = T ∗
Mg

(log D) is stable with respect to
its first Chern class.

Since E is stable, by the works of Donaldson-Uhlenbeck-Yau [17], [18] there is a Hermitian-
Einstein metric on E with respect to any metric in the class c1(E) which gives an orbifold
Chern number inequality. However, the metric induced by the Kähler-Einstein metric, if it is
good, will give a stronger Chern number inequality. Thus a more interesting question is whether
the metric on T ∗

Mg
(log D) induced by the Kähler-Einstein metric on Mg is good or not. The

difficulty arises from that it is vary hard to control the off-diagonal terms in the local expression
of the Kähler-Einstein metric with respect to the pinching coordinates. We believe that this
difficulty can be solved by studying the Kähler-Ricci flow on Mg with the Ricci metric as the
initial metric and showing that the goodness is preserved under the flow.

4 Dual Nakano Negativity of the Weil-Petersson metric

The Weil-Petersson metric has many negative curvature properties. Ahlfors showed that its
Riemannian sectional curvature is negative. Later, Schumacher showed in [4] that the curvature
of the WP metric is strongly negative in the sense of Siu. In this section, we prove that WP
metric is dual Nakano negative from which we will derive Nakano-type vanishing theorems in
next section.

We first recall the concept of dual Nakano negativity. Let (Em, h) be a holomorphic vector
bundle with a Hermitian metric over a complex manifold Mn. The curvature of E is given by

Pijαβ = −∂α∂βhij + hpq∂αhiq∂βhpj .

(E, h) is Nakano semi-positive if the curvature P defines a semi-positive form on the bundle
E ⊗ TM . Namely,

PijαβCiαCjβ � 0 (4.1)

for all m × n complex matrix C. The metric h is Nakano positive if (4.1) is a strict inequality
whenever C 
= 0. E is dual Nakano (semi) negative if the dual bundle with the induced metric
(E∗, h∗) is Nakano (semi) positive.

Our main result in this section is

Theorem 4.1. Let Mg be the moduli space of Riemann surfaces of genus g � 2. Then
(TMg , ω

WP
) is semi-Nakano negative.

To prove that the WP metric h on the tangent bundle of Mg is dual Nakano negative, we
only need to show that (T ∗Mg, h

∗) is Nakano positive. Let Rijkl be the curvature of Mg and
Pijkl be the curvature of the cotangent bundle. We first have

Pmnkl = −hinhmjRijkl.

Thus if we let akj =
∑

m hmjCmk, we have

PmnklC
mkCnl = −

∑
i,j,k,l

Rijklakjali = −
∑

i,j,k,l

Rkjilakjali = −
∑

i,j,k,l

Rijklaijalk.



18 LIU Kefeng et al.

Recall that at X ∈ Mg we have

Rijkl = −
∫

X

(
eijfkl + eilfkj

)
dv.

By combining the above two formulae, to prove that the WP metric is dual Nakano negative is
equivalent to show that ∫

X

(
eijfkl + eilfkj

)
aijalk dv � 0 (4.2)

and the left hand side of the above formula is strictly positive if A = [aij ] 
= 0.
We now describe the proof with the assumption that the matrix [aij ] is invertible. The

general case can be found in [5] which follows from the same idea.
Recall that if we let � = −λ−1∂z∂z be the Laplace operator with respect to the KE metric

λ on X and let T = (� + 1)−1, then eij = T (fij) where fij = AiAj and Ai is the harmonic
representative of the Kodaira-Spencer class of ∂

∂ti
where (t1, . . . , tn) are local coordinates on

Mg and z is the local coordinate on Xt.
Let Bj =

∑n
i=1 aijAi. Then the inequality (4.2) is equivalent to

−
∑
j,k

R(Bj , Bk, Ak, Aj) =
∑
j,k

∫
X

(T (BjAj)AkBk + T (BjBk)AkAj)dv � 0. (4.3)

Since {Ak} is a basis of the space H0,1(X, TX) and the matrix [aij ] is an arbitrary invertible
matrix, we need to show that the inequality (4.3) holds for any two bases {Ai} and {Bi}. Of
course we can choose one basis, say {Ai}, and let the other basis vary freely.

Now we prove the inequality (4.3). Let μ =
∑

j BjAj ∈ C∞(X). Then the first term in (4.3)
is ∑

j,k

∫
X

T (BjAj)AkBk dv =
∫

X

T (μ)μ dv =
∫

X

T (μ)(� + 1)(T (μ)) dv

=
∫

X

(|T (μ)|2 + |∇(T (μ))|2) dv � 0

where |∇(T (μ))|2 = λ−1∂(T (μ))∂(T (μ)).
To check the second term, we let G(z, w) be the Green’s function of the operator T . Namely,

for any function f ∈ C∞(X), we have T (f) =
∫

X G(z, w)f(w) dv(w). Now we let

H(z, w) =
∑

j

Aj(z)Bj(w).

We know the second term of (4.3) is∑
j,k

∫
X

T (BjBk)AkAj dv =
∑
j,k

∫
X×X

G(z, w)Bj(w)Bk(w)Ak(z)Aj(z) dv(w)dv(z)

=
∫

X×X

G(z, w)H(z, w)H(z, w)dv(w)dv(z) � 0

(4.4)

where the last inequality follows from the fact that the Green’s function G is non-negative
which is proved by Wolpert in [8], page 136.
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Here we note that, although H(z, w) is not a global function, the quantity

H(z, w)H(z, w) = (Bj(w)Bk(w))(Ak(z)Aj(z)) ∈ C∞(X × X)

is a well-defined function. Also, it is clear that this function is non-negative and thus inequality
(4.4) hold naturally.

Remark 4.1. It is possible to show that the singular metric on TMg
(− log D) induced by

the Weil-Petersson metric is also dual Nakano negative. This follows from the dual Nakano
negativity of the WP metric and simple linear algebra.

5 Applications: L2-Cohomology and Vanishing Theorems

The dual Nakano negativity of a Hermitian metric on a bundle over a compact manifold gives
strong vanishing theorems by using Bochner techniques. However, in our case the base va-
riety Mg is only quasi-projective. Thus we can only describe vanishing theorems of the L2-
cohomology.

In [19], Saper showed that the L2-cohomology of the moduli space equipped with the Weil-
Petersson metric can be identified with the ordinary cohomology of the DM moduli space. Our
situation is more subtle since the natural object to be considered in our case is the tangent
bundle valued L2-cohomology. Generalizing Saper’s work, we proved in [5]

Theorem 5.1. We have the following natural isomorphism:

H∗
(2)((Mg, ωτ ), (TMg , ω

WP
)) ∼= H∗(Mg, TMg

(− log D)) (5.1)

where ωτ is the Ricci metric on Mg.

We first explain this theorem. To define the L2-cohomology of a vector bundle over a man-
ifold, we need metrics on both the bundle and the manifold. Here we view TMg purely as a
bundle over the moduli space Mg. We use the WP metric as the bundle metric and we put the
Ricci metric on the base variety Mg. We do this because of the technique difficulty that the
WP metric is incomplete and thus there is trouble in defining the adjoint operator ∂

∗
. After

setting up the section spaces appropriately, the proof of this theorem is a direct application of
the goodness of these metrics and can be found in [5].

Now we combine the above result with the dual Nakano negativity of the Weil-Petersson
metric. In [5] we proved the following Nakano-type vanishing theorem

Theorem 5.2. The L2-cohomology group vanish:

H0,q
(2) ((Mg, ωτ ), (TMg , ω

WP
)) = 0 (5.2)

unless q = 3g − 3.
The proof is similar to proof of Nakano vanishing theorem in the case when the base manifold

is closed. It depends on the Kodaira-Nakano identity

�∂ = �∇ +
√
−1[∇2, Λ].

We then apply the dual Nakano negativity of the WP metric to get the vanishing theorem by
using the goodness to deal with integration by part to show that there is no boundary term.
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We note here that, in the proof of Nakano vanishing theorem, we only need the negativity of
the curvature of the bundle metric.

The above two theorems imply a result of Hacking [20]

Corollary 5.1. The pair (Mg, D) is infinitesimally rigid.
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