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d-dimensional unitarity cut method

Charalampos Anastasiou a,∗, Ruth Britto b, Bo Feng c,d, Zoltan Kunszt a, Pierpaolo Mastrolia e

a Institute of Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland
b Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

c Blackett Laboratory and The Institute for Mathematical Sciences, Imperial College, London SW7 2AZ, UK
d Center of Mathematical Science, Zhejiang University, Hangzhou, China

e Institute for Theoretical Physics, University of Zurich, 8057 Zurich, Switzerland

Received 12 December 2006; accepted 12 December 2006

Available online 19 December 2006

Editor: N. Glover

Abstract

We develop a unitarity method to compute one-loop amplitudes with massless propagators in d = 4 − 2ε dimensions. We compute double
cuts of the loop amplitudes via a decomposition into a four-dimensional and a −2ε-dimensional integration. The four-dimensional integration is
performed using spinor integration or other efficient techniques. The remaining integral in −2ε dimensions is cast in terms of bubble, triangle,
box, and pentagon master integrals using dimensional shift identities. The method yields results valid for arbitrary values of ε.
© 2006 Published by Elsevier B.V.
1. Introduction

In modern collider experiments complex events with multi-
jets, vector bosons and jets, top quarks and jets, etc. are fre-
quently produced. Their quantitative theoretical description re-
quires cross-sections calculated at the one-loop level and even
beyond. There exist mature techniques solving all conceptual
problems which arise in one-loop computations. However, cal-
culating one-loop multi-leg amplitudes with standard methods
is tedious, due to the large number of Feynman diagrams and
the algebraic complexity of tensor reduction. In recent years,
new attempts are being made to replace or improve traditional
approaches with more efficient and better automated methods.
Significant progress can be expected with the advent of new
powerful techniques.

Unitarity cuts of loop amplitudes have been introduced as
an efficient tool to calculate QCD amplitudes [1]. A new four-
dimensional unitarity method was developed recently [2,3],
building on techniques inspired by twistor space geometry
[4–11]. The phase-space integration is carried out explicitly in
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terms of spinors. The result is easily mapped to bubble, trian-
gle, and box master integrals using analyticity properties. Many,
mostly supersymmetric, amplitudes can be reconstructed fully
with this technique [2,3,12] and other unitarity methods in four
dimensions. However, the mapping to master integrals is in gen-
eral incomplete, since rational contributions arising from multi-
plying 1/ε poles of master integrals with O(ε) coefficients are
not accounted for.

New methods to compute the rational parts separately were
introduced recently. They compute these terms by either devel-
oping [13–17] recursion relations for amplitudes [18,19], or by
using specialized diagrammatic reductions [20–23]. As a result,
for example, short analytic formulas are now available for all
the one-loop six gluon QCD helicity amplitudes.

It was recognized long ago [24] that one can reconstruct the
full amplitudes from unitarity cuts in d = 4 − 2ε dimensions.
A complete method for one-loop calculations was developed in
the pioneering work of Bern et al. [25–27], and it was recently
re-examined in [28]. However, the calculation of general uni-
tarity cuts remains formidable. While it is simpler than a direct
Feynman graph evaluation, eventually, one resorts to traditional
reduction methods to complete their computation.

In this Letter, we develop an efficient d-dimensional uni-
tary cut method, reducing one-loop amplitudes to master inte-
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grals for arbitrary values of the dimension parameter. We can
read out the coefficient of the master integrals without fully
carrying out the d-dimensional phase space integrals. Only a
four-dimensional integration is explicitly required; we show
how to perform this using spinor integration for light-like mo-
menta [2,3,10,11]. A remaining integral, which gives rise to
the ε-dependence of the cut-amplitude, is mapped to phase-
space integrals in 4 + 2n− 2ε dimensions, where n is a positive
integer. With recursive dimensional shift identities, similar to
the ones in loop integration, we reduce the cut-amplitude in
terms of bubble, triangle, box and pentagon cut master inte-
grals in 4 − 2ε dimensions. The reduction is valid for an ar-
bitrary number of dimensions. Expanding in ε, we can obtain
both the (poly)logarithmic and rational part of the amplitude
at O(ε0) and higher; these contributions are required in cross-
sections beyond the next-to-leading order in the relevant cou-
pling strength.

The core part of our method is the four-dimensional inte-
gration, where we have primarily used spinor integration. In
[3,12] it was demonstrated that this method is very efficient and
yields compact results for the cut-constructible part of multi-leg
QCD amplitudes. In our d-dimensional unitarity case the four-
dimensional integrand depends on an additional mass parame-
ter. While the size of expressions is larger, spinor integration
works efficiently by preserving gauge invariance at intermedi-
ate stages of the computation. The final results remain compact.

2. Reduction to master integrals

We consider one-loop amplitudes with massless internal
propagators in the four-dimensional helicity (FDH) scheme; all
external momenta are in four dimensions and the loop momen-
tum in d = 4−2ε. We shall reduce double cuts of the amplitude
to master integrals, for arbitrary values of ε.

The basic quantity that we require is a generic double cut of
the amplitude in 4 − 2ε dimensions:

(1)M=
∫

d4−2εp δ
(
p2)δ((K − p)2)AL(p)AR(p),

where AL,R are tree amplitudes, and K is the sum of the
momenta of the cut propagators. Since external momenta are
in four dimensions, we can decompose the loop momentum
as p = �̃ + �μ, where �̃ is 4-dimensional and �μ is (−2ε)-
dimensional [25–27]. One can immediately perform the angular
integrations for �μ, yielding:

M= π−ε

�(−ε)

∫
dμ2 (

μ2)−1−ε

×
∫

d4�̃ δ
(
�̃2 − μ2)δ((K − �̃)2 − μ2)

(2)×AL(�̃ + �μ)AR(�̃ + �μ).

The unitarity cut integral of massless particles living in d di-
mensions is decomposed into a unitary cut integral of massive
particles in four dimensions, and an integral over the mass pa-
rameter regularized with ε.

We now perform the integration over �̃. Given the virtues of
spinor integration, it is desirable to employ it here. However, the
method is formulated for phase-space integrations of light-like
particles and, at first sight, is not applicable to our case. We can
find a generalization to the phase-space of massive particles,
if we decompose the momentum �̃ into a linear combination
of a light-like vector and the time-like cut-momentum K: �̃ =
� + zK , with �2 = 0. The massive phase space integral turns
into massless:∫

d4�̃ δ
(
�̃2 − μ2)δ((�̃ − K)2 − μ2)

→
∫

dz (1 − 2z)K2δ
(
z(1 − z)K2 − μ2)

(3)×
∫

d4� δ+(
�2)δ((1 − 2z)K2 − 2K · �).

The last line is the familiar phase space integration for two
massless cut propagators; the only difference is the factor
(1−2z) appearing in the second delta function. The z-integral is
trivially performed using the delta-function that is independent
of �. Thus we get z = (1 − √

1 − u )/2, where u = 4μ2/K2 ∈
[0,1].

Following [3,5,10] we transform into spinor variables, so
that �aȧ = tλaλ̃ȧ . The phase-space measure, up to an overall
normalization factor, becomes:∫

duu−1−ε

∫
〈λdλ〉[λdλ],

(4)

∞∫
0

t dt δ
(√

1 − uK2 + t〈λ|K|λ]).

The spinor integration can be carried out easily. The basic steps
involve the application of Schouten identities in order to elim-
inate λ̃ȧ from the numerator of the integrand, and to locate
holomorphic anomalies, reading out the result of the integra-
tion as a finite sum of residues. We refer the reader to [3,12] for
a detailed description of the technique.

After spinor integration, we are left with a single integral
over u,

(5)M=
1∫

0

duu−1−ε
∑

i

fi(u)Li (u),

where the coefficients fi(u) are rational functions of u. The
functions Li are combinations of logarithmic and square root
functions with characteristic analyticity properties; they corre-
spond to the analytic expressions of massive cut master inte-
grals (bubbles, triangles, and boxes) in four dimensions.

We can express the cut amplitude M in terms of master
integrals in 4 − 2ε dimensions without explicitly performing
the integration in Eq. (5). Many coefficients fi(u) are simple
polynomials in u. All such terms are easily identified as one-
loop master integrals in dimensions shifted by an even number
2n. Schematically, bubble, triangle, and box master integrals
emerge in the form:

(6)Bub(n) =
1∫
duu−1−εun

√
1 − u,
0
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(7)Tri(n) =
1∫

0

duu−1−εun ln

(
Z + √

1 − u

Z − √
1 − u

)
,

(8)

Box(n) =
1∫

0

duu−1−ε un

√
B − Au

× ln

(
D − Cu − √

1 − u
√

B − Au

D − Cu + √
1 − u

√
B − Au

)
,

where Z2, A, B , C, D are rational functions of kinematical
invariants of the external momenta. Details of the exact ex-
pressions will be given in a forthcoming publication. While
mapping to ε-dependent master integrals, a term of the form
un is always absorbed into the measure factor u−1−ε , produc-
ing a dimensional shift.

After partial fractioning and identifying all (4 − 2ε + 2n)-
dimensional bubble, triangle, and box master integrals, a few
coefficients fi are yet not mapped to any master integral. These
coefficients have a u-dependent monomial in the denominator,
and multiply logarithms originating from box master integrals
in four dimensions. They are related to the pentagon scalar in-
tegral, which can be expressed as a sum of box integrals in four
dimensions plus some term in higher order of ε. However, it is
a master in arbitrary dimensions. Upon integrating over u, the
remaining terms combine to give rise to pentagon master inte-
grals in 4 − 2ε dimensions.

As a last step, we reduce the master integrals in 4 − 2ε + 2n

dimensions, to master integrals in 4 − 2ε dimensions. We can
derive compact dimensional shift identities for the phase-space
master integrals from the representations in Eqs. (6)–(8) using
integration by parts. These identities are equivalent to dimen-
sional shift identities for loop integrals [36–38]. We will give
their explicit analytic form and a simple derivation in a forth-
coming publication. Here we just present the results.

Bub(n) = F
(n)
2→2Bub(0),

Tri(n)(Z) = F
(n)
3→3(Z)Tri(0)(Z) + F

(n)
3→2(Z)Bub(0),

Box(n) = F
(n)
4→4Box(0) + {

F
(n)
4→3(Z1)Tri(0)(Z1)

+ F
(n)
4→2(Z1)Bub(0) + (Z1 ↔ Z2)

}
,

F
(n)
2→2 = (−ε)3/2

(n − ε)3/2
, F

(n)
3→3 = −ε

n − ε

(
1 − Z2)n

,

F
(n)
4→4 = (−ε)1/2

(n − ε)1/2

(
B

A

)n

,

F
(n)
3→2 = (−ε)3/2

n − ε

n∑
k=1

2Z(1 − Z2)n−k

(k − ε)1/2
,

(9)F
(n)
4→j = D + (Z2 − 1)C

(n − ε)1/2ZA

n∑
k=1

(
B

A

)n−k F
(k−1)
3→j

(k − 1/2 − ε)1/2
.

Here (x)n = �(x + n)/�(x), and j = 2,3. Z1, Z2 correspond
to the two possible cut-triangles obtained by pinching the uncut
propagators of the box.

In this Letter, we have limited our work to one-loop ampli-
tudes with massless internal propagators. However, the method
can be extended to the massive case. The spinor integration
method is already adapted to massive phase-space. The only
remaining issue is to find the reduction coefficient of master
integrals with only one loop propagator; these vanish when a
two-particle phase-space is considered. However, such terms
are significantly constrained and often fully determined from
the known ultraviolet and infrared behavior of one-loop am-
plitudes [25]. We will investigate this issue further in a future
publication.

3. Alternatives to spinor integration

We have seen that our calculations can be divided into two
steps: the four-dimensional-massive cut-integration and the di-
mensional shift. We have the flexibility of using alternative
methods for the four-dimensional integration to compute the
coefficients fi(u) in Eq. (5). Following a more traditional ap-
proach, we could apply the phase-space reduction methods of
[29]. The integrals we consider here are free from both infrared
and ultraviolet singularities, and no dimensional regulator is re-
quired. In precisely four dimensions, the reduction is much less
tedious than in arbitrary dimensions. In many complicated cases
it can be performed analytically, and in all cases of practical
interest it can also be executed numerically [30–34]. This tech-
nique provides a valuable cross-check on our results with spinor
integration.

Another appealing idea has appeared recently in the lit-
erature. Ossola, Papadopoulos and Pittau (OPP) introduced a
purely algebraic procedure to compute master integral coef-
ficients at the integrand level [35]. One can adapt the same
technique for the four-dimensional phase-space integration over
cut amplitudes. As an ingredient of the d-dimensional unitarity
method, it should be a very efficient tool to analytically com-
pute one-loop amplitudes in arbitrary dimensions.

OPP investigated the most general analytic form of one-loop
amplitudes in four dimensions. The integrands of one-loop am-
plitudes are decomposed as:

(10)A(�̃) =
∑

i

(
ci +

∑
j

Sij (�̃)bij

)
Ii(�̃),

where Ii are products of propagators corresponding to scalar
master integrals, and ci, bij are constant coefficients. The uni-
versal terms Sij (�̃) are “spurious” and yield a zero contribution
to the amplitude after integration

∫
d4�̃ Sij (�̃)Ii(�̃) = 0; they are

known explicitly for all master integrals [35].
With the analytic form of Eq. (10) at hand, the coefficients

ci , bij can be evaluated by computing the integrand alge-
braically at sufficiently many values of the loop momentum and
forming a linear system of equations. The method is optimized
by choosing values of the loop momenta that correspond to cuts
of the loop amplitude, setting denominators in the master in-
tegrals to zero. In this way, the system is divided into closed
subsystems for the integrals which survive any specific cut and
can be solved easily.
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In sum, we can apply any efficient method, for example the
method of [35], to find the coefficients fi(u) in Eq. (5).1 Note
that, in this way, we can also compute the contributions to one-
propagator master integrals which appear in amplitudes with
massive propagators.

4. Summary

In this Letter, we have presented a new unitarity method for
the reduction of one-loop amplitudes to master integrals in arbi-
trary dimensions. We have generalized the method of spinor in-
tegration via the holomorphic anomaly to massive phase-space
integrals. The method consists of an explicit four-dimensional
integration over the phase-space of double-cut amplitudes, and
a remaining integration over a mass parameter.

As a cross-check of the four-dimensional integration, one
may employ traditional, numerical and analytic phase-space
reductions. Recently, an elegant proposal to compute the re-
duction coefficients of one-loop amplitudes has appeared in the
literature [35]. This proposal may also be adopted within our
method in order to perform the four-dimensional integration.

The final integration over a mass parameter is mapped di-
rectly to phase-space master integrals with shifted dimensions.
A full reduction to master integrals in 4 − 2ε is achieved with
compact dimensional shift identities.

We anticipate our method to be useful for a wide spectrum
of processes at colliders.
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