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Abstract. In this paper, we study several related computational prob-
lems for supersingular elliptic curves, their isogeny graphs, and their
endomorphism rings. We prove reductions between the problem of path
finding in the `-isogeny graph, computing maximal orders isomorphic
to the endomorphism ring of a supersingular elliptic curve, and com-
puting the endomorphism ring itself. We also give constructive versions
of Deuring’s correspondence, which associates to a maximal order in a
certain quaternion algebra an isomorphism class of supersingular elliptic
curves. The reductions are based on heuristics regarding the distribution
of norms of elements in quaternion algebras.
We show that conjugacy classes of maximal orders have a representa-
tive of polynomial size, and we define a way to represent endomorphism
ring generators in a way that allows for efficient evaluation at points
on the curve. We relate these problems to the security of the Charles-
Goren-Lauter hash function. We provide a collision attack for special
but natural parameters of the hash function and prove that for general
parameters its preimage and collision resistance are also equivalent to
the endomorphism ring computation problem.

1 Introduction

The recent search for new “post-quantum” cryptographic primitives and the
ongoing international PQC competition sponsored by NIST has motivated a
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new era of research in the mathematics of cryptography. Ideas for cryptographic
primitives based on hard mathematical problems are being actively proposed and
examined. This paper focuses on supersingular isogeny-based cryptography, and
in particular on the hardness of computing endomorphism rings of supersingular
elliptic curves and its possible applications in cryptography.

In 2006, Charles, Goren, and Lauter [CGL06,CGL09] introduced the hard-
ness of finding paths in Supersingular Isogeny Graphs into cryptography and
used it for constructing cryptographic hash functions. In the CGL hash func-
tion, preimage resistance relies on the hardness of computing certain `-power
isogenies (for ` a small prime) between supersingular elliptic curves. Since then,
this problem and related hard problems have been used as the basis for key ex-
change protocols [JDF11], signature schemes [YAJ+17,GPS17], and public key
encryption [DFJP14]. There is also a submission [ACC+17] to the PQC standard-
ization competition based on supersingular isogeny problems. While polynomial-
time quantum algorithms are known for attacking widely deployed public key
cryptosystems such as RSA and Elliptic Curve Cryptography (ECC), there are
currently no known subexponential quantum attacks against these supersingular
isogeny graph-based schemes.

In the supersingular case three problems have emerged as potential computa-
tional hardness assumptions related to the above systems. The first is computing
isogenies between supersingular elliptic curves, the second one is computing the
endomorphism ring of a supersingular elliptic curve, and the third is to com-
pute a maximal order isomorphic to the endomorphism ring of a supersingular
elliptic curve. In order to develop confidence that these new systems are secure
against quantum computers, it is important to understand these problems, their
relationships, and how they relate to the cryptosystems. The natural way to do
this is to give polynomial-time reductions between the problems when possible,
and there are heuristics for doing this [Koh96], [KLPT14]. However, one quickly
runs into problems when attempting to find efficient reductions. For example,
the main parameter for these problems is a large prime p, and it is not obvious
that the endomorphism ring of an elliptic curve even has a basis with a repre-
sentation size that is polynomial in log p. The same problem exists for maximal
orders.

The computational hardness assumption introduced in [CGL09] which un-
derlies the security of Supersingular Isogeny Graph-based cryptography can be
equivalently described as finding paths in the isogeny graph or as producing an
`-power isogeny (for ` a small prime) between two given supersingular elliptic
curves. However, there exists another language to describe this problem, thanks
to Deuring’s correspondence [Deu41], which establishes (non-constructively) a
one-to-one correspondence between supersingular j-invariants and maximal or-
ders in a quaternion algebra, up to some equivalence relations. Following this
correspondence, path-finding in the Supersingular Isogeny Graph can be trans-
lated, in theory, into a problem involving maximal orders in quaternion algebras
which was solved in [KLPT14]. So this motivates the problem of finding explicit
versions of Deuring’s correspondence, namely constructive, efficient algorithms



to translate j-invariants into maximal orders in the quaternion algebra and con-
versely.

1.1 Contributions

Section 2 introduces preliminary material on supersingular elliptic curves and
the arithmetic of quaternion algebras, and we recall some well-known facts from
[Mes86,Piz80,Wat69], with an emphasis on explicit computations and represen-
tations. Section 3 precisely states all the hard problems considered in this paper
and clearly explains the relationships between them. In Section 4, we show that
an isomorphism class of maximal orders in a quaternion algebra has at least one
representative of polynomial size. Since computing maximal orders is one of the
central problems we consider, such a theorem is necessary to have meaningful
polynomial-time reductions. The results in Section 4 are conditional on GRH
but do not use any heuristics.

Section 5 reduces three hard problems in supersingular graphs to each other:
a constructive version of Deuring’s correspondence from j-invariants to maxi-
mal orders in Bp,∞ (Problem 2); the endomorphism ring computation problem
(Problem 3); and the preimage and collision resistance of the Charles-Goren-
Lauter hash function, for a randomly chosen initial vertex. These reductions
rely on various heuristic assumptions underlying the quaternion `-isogeny algo-
rithm of [KLPT14] and its powersmooth version described explicitly in [GPS17],
along with new heuristics about using loops in the isogeny graph to generate
endomorphism rings.

Section 6 shows that constructing paths in the `-isogeny graph reduces to a
different type of endomorphism ring computation. However, instead of just re-
quiring an algorithm for computing the maximal order, one also needs to know
how the generators of the order act on the `-torsion of the curve. Thus this sec-
tion contains a reduction to a harder problem. On the other hand, this section
removes some of the heuristics used in Section 5. More precisely, the reductions
in Section 5 use both the quaternion `-isogeny algorithm and its powersmooth
version, whereas the reductions in Section 6 only use the quaternion `-isogeny
algorithm [KLPT14]. In Section 6.4, we construct the quaternion algebra ana-
logue of a factorization of an isogeny of `-power degree into degree ` isogenies.
The results in that subsection do not use any heuristics and are unconditional.
The construction of Section 6.4 is used in our reductions between algorithms
involving maximal orders and paths in the `-isogeny graph in Sections 5 and 6.

Intuitively these heuristics say that numbers generated by the norm form of a
quaternion algebra in the algorithm behave in the same way as random numbers
of the same size, with respect to their factorization patterns.

Section 7 provides a (heuristic) probabilistic polynomial-time algorithm for
computing the Deuring correspondence in one direction, and a partial attack on
a special case of the Charles-Goren-Lauter hash function. In Section 8, we start
by defining the notion of a compact representation of an endomorphism, which
has as a requirement that it has size polynomial in log p. We prove that every
endomorphism ring has a basis specified by compact representations, and that



we can evaluate the endomorphism at points using the representation. We then
show that the endomorphism problem reduces to computing a maximal order
and the Action-on-`-Torsion problem.

1.2 Related work

The endomorphism ring computation problem and constructive versions of Deur-
ing’s correspondence have been studied in the past independently of their crypto-
graphic applications, and all known algorithms for these problems have required
exponential time. Computing the endomorphism ring of a supersingular elliptic
curve was first studied by Kohel [Koh96, Theorem 75], who gave an approach
for finding four linearly independent endomorphisms, generating a finite-index
subring of End(E). The algorithm was based on finding loops in the `-isogeny
graph of supersingular elliptic curves, and the running time of the probabilistic
algorithm is O(p1+ε). Another problem that has been considered is to list all
isomorphism classes of supersingular elliptic curves together with a description
of the maximal order in a quaternion algebra that is isomorphic to End(E). This
was done in [Cer04,LM04] and improved in [CG14, Section 5.2]. However, this
approach is necessarily exponential in log p because there are roughly bp/12c
isomorphism classes of supersingular elliptic curves.

The problem of computing isogenies between supersingular elliptic curves
has also been studied, both in the classical setting [DG16, Section 4] where the
complexity of the algorithm is Õ(p1/2), and in the quantum setting [BJS14],
where the complexity is Õ(p1/4).

A signature scheme based on endomorphism ring computation is given in
[GPS17, Section 4], where the secret key is a maximal order isomorphic to the en-
domorphism ring of a supersingular elliptic curve. While the scheme in [DFJP14]
had to reveal auxiliary points, this is not necessary in this scheme.

Recently there have been several partial attacks on isogeny-based protocols
(see [GPST16,Ti17,GW17]). These attacks target the key exchange protocol of
Jao-De Feo [JDF11] in specific attack models, such as fault attacks, and are
complementary to our work.

2 Preliminaries

2.1 Background on elliptic curves

Elliptic curves and isogenies By an elliptic curve E over a field k of char-
acteristic p > 3 we mean a curve with equation E : y2 = x3 + Ax + B for
some A,B ∈ k satisfying 4A3 + 27B2 6= 0. The points of E are the points (x, y)
satisfying the curve equation, together with the point at infinity. These points
form an abelian group. The j-invariant of an elliptic curve given as above is

j(E) = 256·27·A3

4A3+27B2 . Two elliptic curves E,E′ defined over a field k have the same
j-invariant if and only if they are isomorphic over the algebraic closure of k. We



write j(E) for the j-invariant of E. Given a j-invariant j 6= 0, 1728, we write
E(j) for the curve defined by the equation

y2 + xy = x3 − 36

j − 1728
x− 1

j − 1728
.

Such a curve can be put into a short Weierstrass equation y2 = x3 + Ax + B.
We also write E(0) and E(1728) for the curves with equations y2 = x3 + 1 and
y2 = x3 + x respectively.

Let E1 and E2 be elliptic curves defined over a field k of positive characteristic
p. An isogeny ϕ : E1 → E2 defined over k is a non-constant rational map defined
over k which is also a group homomorphism from E1(k) to E2(k) [Sil09, III.4].
The degree of an isogeny is its degree as a rational map. When the degree d
of the isogeny ϕ is coprime to p, then ϕ is separable and the kernel of ϕ is a
subgroup of the points on E1 of size d. Every isogeny of degree n greater than
one can be factored into a composition of isogenies of prime degrees such that
the product of the degrees equals n. If ψ : E1 → E2 is an isogeny of degree d,
the dual isogeny of ψ is the unique isogeny ψ̂ : E2 → E1 satisfying ψψ̂ = [d],
where [d] : E1 → E1 is the multiplication-by-d map.

We can describe an isogeny via its kernel. Given an elliptic curve E and a
finite subgroup H of E, there is, up to isomorphism a unique isogeny ϕ : E → E′

having kernel H (see [Sil09, III.4.12]). Hence we can describe an isogeny of E to
some other elliptic curve by giving its kernel. We can compute equations for the
isogeny from its kernel by using Vélu’s formula [Vél71].

Endomorphisms and supersingular versus ordinary curves An isogeny
of an elliptic curve E to itself is called an endomorphism of E. If E is defined
over some finite field Fq, then an endomorphism of E will be defined over a
finite extension of Fq. The set of endomorphisms of E defined over Fq together
with the zero map form a ring under the operations addition and composition.
It is called the endomorphism ring of E, and is denoted by End(E). When E
is defined over a finite field, then End(E) is isomorphic either to an order in
a quadratic imaginary field or to an order in a quaternion algebra. In the first
case we call E an ordinary elliptic curve. An elliptic curve whose endomorphism
ring is isomorphic to an order in a quaternion algebra is called a supersingular
elliptic curve. Every supersingular elliptic curve over a field of characteristic p
has a model that is defined over Fp2 because the j-invariant of such a curve is
in Fp2 .

`-power isogenies between supersingular elliptic curves Let E,E′ be
two supersingular elliptic curves defined over Fp2 . It is a fact that for each prime
` 6= p, E and E′ are connected by a chain of isogenies of degree ` [Mes86].
By [Koh96, Theorem79], E and E′ can be connected by m isogenies of degree `,
where m = O(log p). So any two supersingular elliptic curves can be connected
by an isogeny of degree `m with m = O(log p). If ` = O(log p) is a fixed prime,



then any `-isogeny in the chain above can either be specified by rational maps or
by giving the kernel of the isogeny, and both of these representations will have
polynomial size in log p. By Vélu’s formula, and since ` = O(log p), there is an
efficient way to go back and forth between these two representations.

2.2 Quaternion algebras, Bp,∞ and the Deuring correspondence

Quaternion algebras For a, b ∈ Q×, let H(a, b) denote the quaternion algebra
over Q with basis 1, i, j, ij such that i2 = a, j2 = b and ij = −ji. That is,

H(a, b) = Q + Q i+ Q j + Q ij.

It is a fact that any quaternion algebra over Q can be written in this form.
Now let Bp,∞ be the unique quaternion algebra over Q that is ramified exactly
at p and ∞. Then Bp,∞ is a definite quaternion algebra, so Bp,∞ = H(a, b) for
some a, b ∈ Q×, and one can show a and b can be chosen to be negative integers.
For example, when p ≡ 3 (mod 4), then Bp,∞ = H(−p,−1).

There is a canonical involution on Bp,∞ which sends an element α = a1 +
a2i + a3j + a4ij to α := a1 − a2i − a3j − a4ij. Define the reduced trace of an
element α as above to be

Trd(α) = α+ α = 2a1,

and the reduced norm to be

Nrd(α) = αα = a21 − aa22 − ba23 + aba24.

We say that Λ is a lattice in Bp,∞ if Λ = Zx1 + · · · + Zx4 and the elements
x1, . . . , x4 are a vector space basis for Bp,∞.

If I ⊆ Bp,∞ is a lattice, the reduced norm of I, Nrd(I), is the positive gen-
erator of the fractional Z-ideal generated by {Nrd(α) : α ∈ I}. The quaternion
algebra Bp,∞ is an inner product space with respect to the bilinear form

〈x, y〉 =
Nrd(x+ y)−Nrd(x)−Nrd(y)

2
.

The basis {1, i, j, ij} is an orthogonal basis with respect to this inner product.

Orders in Bp,∞ and representation of elements in Bp,∞ An order O
of Bp,∞ is a subring of Bp,∞ which is also a lattice, and if O is not properly
contained in any other order, we call it a maximal order. For a lattice I ⊆ Bp,∞
we define

OR(I) := {x ∈ Bp,∞ : Ix ⊆ I}

to be the right order of the lattice I, and we similarly define its left order OL(I).
If O is a maximal order in Bp,∞ and I ⊆ O is a left ideal of O, then OR(I) is
also a maximal order. Given any two maximal orders O,O′, there is a lattice



I ⊆ Bp,∞ such that OL(I) = O and OR(I) = O′; we say that I connects O and
O′.

An element β ∈ Bp,∞ is represented as a coefficient vector (a1, a2, a3, a4) in
Q4 such that β = a1 +a2i+a3j+a4ij in terms of the basis {1, i, j, ij} for Bp,∞.
This will be used for specifying basis elements of maximal orders O and elements
of left ideals I of O.

The Deuring correspondence and describing isogenies via kernel ideals
For a detailed overview of the information in this section, see Chapter 42 in [Voi].
Let E be a supersingular elliptic curve defined over Fp2 . In [Deu41] Deuring
proved that the endomorphism ring of E is isomorphic to a maximal order in
Bp,∞. Under this isomorphism, degrees and traces of endomorphisms correspond
to norms and traces of quaternions. The correspondence between isomorphism
classes of supersingular elliptic curves and maximal orders is often referred to as
Deuring’s correspondence.

Fix E, a supersingular elliptic curve over Fp2 . We can associate to each
pair (E′, φ) with φ an isogeny E → E′ of degree n a left End(E)-ideal I =
Hom(E′, E)φ of norm n, and it was shown in [Koh96, Section 5.3] that every left
End(E)-ideal arises in this way. We now describe how to construct an isogeny
from a left End(E)-ideal.

Let I be a nonzero integral left ideal of End(E). Define E[I] to be the scheme-
theoretic intersection

E[I] =
⋂
α∈I

ker(α).

Thus to each left ideal I of End(E) there is an associated isogeny φI : E →
E/E[I]. If Nrd(I) is coprime to p, then

E[I] = {P ∈ E(Fp2) : α(P ) = 0 ∀α ∈ I}.

2.3 Supersingular isogeny graphs

For any prime ` 6= p, one can construct a so-called `-isogeny graph, where each
vertex is associated to a supersingular j-invariant, and an edge between two
vertices is associated to a degree ` isogeny between the corresponding curves.
Isogeny graphs are regular with regularity degree `+ 1; they are directed graphs
(unless p ≡ 1 (mod 12)). Isogeny graphs are Ramanujan, i.e. they are optimal
expander graphs, with the consequence that random walks on the graph quickly
reach the uniform distribution [HLW06].

2.4 The Charles-Goren-Lauter hash function

The first cryptographic construction based on supersingular isogeny problems is
a hash function proposed by Charles, Goren and Lauter [CGL09]. The security
of this construction relies on the hardness of computing some isogenies of special
degrees between two supersingular elliptic curves.



More precisely, consider an `-isogeny graph over Fp2 , where p is a “large”
prime and ` is a “small” prime. The authors suggest to take p ≡ 1 (mod 12)
to avoid some annoying backtracking issues. The message is first mapped into
{0, . . . , `− 1}∗, with some padding if necessary. At each vertex, a deterministic
ordering of the edges is fixed (this can be done by sorting the j-invariants of the
`+ 1 neighbors). An initial vertex j0 is also fixed, as well as an initial incoming
direction.

Given a message (m1,m2, . . . ,mN ) ∈ {0, . . . , ` − 1}∗, an edge adjacent to
j0 (excluding the incoming edge) is first chosen according to the value of m1,
and the corresponding neighbor E1 is computed. Then an edge of j1 (excluding
the edge between j0 and j1) is chosen according to the value of m2, and the
corresponding neighbor j2 is computed, etc. The final invariant jN reached by
this computation is mapped to {0, 1}n in some deterministic way (here n ≈ log p)
and the value obtained is returned as the output of the hash function.

Clearly the function is preimage resistant if and only if, given two supersin-
gular j-invariants j1 and j2, it is computationally hard to compute a positive
integer e and an isogeny ϕ : E(j1)→ E(j2) of degree `e.

In this paper we give two new results on the security of this construction. On
the one hand (Section 5.5), we show that for a randomly chosen starting point j0
the function is preimage and collision resistant if and only if the endomorphism
ring computation problem is hard: loosely speaking this means computing some
endomorphisms of E(j) but not necessarily of the correct norms. The interest of
this result lies in that computing endomorphisms of elliptic curves is a natural
problem to consider from an algorithmic number theory point of view, and it has
indeed been studied since Kohel’s thesis in 1996. On the other hand (Section 7.2),
we also show that the collision resistance problem is easy for some particular
starting points.

2.5 Isogeny-based cryptography

A few years after Charles, Goren and Lauter designed their hash function, Jao
and De Feo proposed a variant of the Diffie-Hellman protocol based on super-
singular isogeny problems, which is now known as the supersingular isogeny key
exchange protocol [JDF11]. We briefly describe it here in a way to encompass
both the original parameters and the generalization recently suggested by Pe-
tit [Pet17].

The parameters include a large prime p, a supersingular curve E, and two
coprime integers NA and NB . Alice and Bob select cyclic subgroups of E of order
NA and NB , respectively; they compute the corresponding isogenies and they
exchange the values of the end vertices, which are E/GA and E/GB , respectively.
The shared key is the value j(E/〈GA, GB〉). This shared key could a priori not
be computed by any party from E/GA, E/GB and their respective secret keys
only, so Alice (resp. Bob) additionally sends the images of a basis of E[NB ] by
φA (resp. a basis of E[NA] by φB).

Jao-De Feo suggested to use NA = 2eB ≈ p1/2 ≈ NB = 3eB such that
(p − 1)/NANB is a small integer for efficiency reasons; in [Pet17] Petit argued



that choosing NA ≈ NB ≈ p2 both powersmooth numbers is a priori better
from a security point of view while preserving polynomial-time complexity for
the protocol execution. It was shown by Gabraith-Petit-Shani-Ti [GPST16] that
computing the endomorphism ring of E and EA is sufficient to break the key
exchange for the parameters suggested by Jao-De Feo. The argument uses the
fact that isogenies generated for Jao-De Feo’s parameters are of relatively small
degree, and this does not seem to apply to Petit’s parameters.

The security of Jao-De Feo’s protocol relies on the hardness of computing
isogenies of a given degree between two given curves, when provided in addition
with the action of the isogeny on a large torsion group. This problem is not
known to be equivalent to the endomorphism ring computation problem. Recent
results by Petit [Pet17] show that revealing the action of isogenies on a torsion
group does make some isogeny problems easier to solve, though at the moment
his techniques do not apply to Jao-De Feo’s original parameters. We believe
that the security of the key exchange protocol lies between these hard and easy
problems, but leave its study to future work.

The interest in isogeny-based cryptography has recently increased in the
context of NIST’s call for post-quantum cryptography algorithms [NIS16], and
a submitted proposal was based on isogeny-based cryptography [ACC+17]. At
the moment the best algorithms to solve supersingular isogeny problems all
require exponential time in the security parameter, even when including quantum
algorithms. Besides the hash function and the key exchange protocols, there
are now constructions based on isogeny problems for public key encryption,
identification protocols and signatures [DFJP14,YAJ+17,GPS17]. Constructions
in the first two papers build on the key exchange protocol and rely on similar
assumptions. The second signature scheme in [GPS17], however, only relies on
the endomorphism computation problem.

3 Problem statements and heuristics

3.1 The Deuring Correspondence

The Deuring correspondence states that

{O ⊆ Bp,∞ maximal} /' ↔
{
j ∈ Fp2 : E(j) supersingular

}
/Gal(Fp2/Fp)

is a bijective correspondence, given by associating a supersingular j-invariant to
a maximal order in Bp,∞ isomorphic to End(E(j)).

In this paper we will be interested in constructing Deuring’s correspondence
for arbitrary maximal orders and supersingular j-invariants. This could a priori
have different meanings, given by Problems 1 and 2 below.

Problem 1 (Constructive Deuring Correspondence.) Given a maximal
order O ⊂ Bp,∞, return a supersingular j-invariant such that the endomorphism
ring of E(j) is isomorphic to O.



We refer to the problem of computing a maximal order isomorphic to
End(E(j)) for given a supersingular j-invariant as Problem MaxOrder or the
“Inverse Deuring Correspondence.”

Problem 2 (MaxOrder) Given p, the standard basis for Bp,∞, and a super-
singular elliptic curve E defined over Fp2 , output vectors β1, β2, β3, β4 ∈ Bp,∞
that form a Z-basis of a maximal order O in Bp,∞ such that End(E) ∼= O. In
addition, the output basis is required to have representation size polynomial in
log p.

The j-invariant is naturally represented as an element of Fp2 , and it is unique
up to Galois conjugation. The maximal order is unique up to conjugation by an
invertible quaternion element, and it can be described by a Z-basis, namely four
elements 1, ω2, ω3, ω4 ∈ Bp,∞ such that O = Z + ω2Z + ω3Z + ω4Z. Choosing a
Hermite basis makes this description unique.

In this paper we will provide a polynomial-time algorithm for Problem 1
(Section 7.1). We will also provide explicit connections between Problem 1 and
the endomorphism ring computation problem, where instead of a maximal order
in Bp,∞ one needs to output a basis for End(E(j)).

3.2 The endomorphism ring computation problem

Given an elliptic curve, it is natural to ask to compute its endomorphism ring.

Problem 3 (Endomorphism ring computation problem.) Given p and a
supersingular j-invariant j, compute the endomorphism ring of E(j).

The endomorphism ring can be returned as four rational maps that form a
Z-basis with respect to scalar multiplication (in fact 3 maps, since one of these
maps can always be chosen equal to the identity map). The maps themselves
can usually not be returned in their canonical expression as rational maps, as in
general this representation will require a space larger than the degree, and the
degrees can be as big as p.

Various representations of the maps are a priori possible. We believe that
any valid representation should be concise and useful, in the sense that it must
require a space polynomial in log p to store, and it must allow the evaluation of
the maps at arbitrary elliptic curve points in a time polynomial in both log p
and the space required to store those points. To the best of our knowledge these
two conditions are sufficient for all potential applications of Problem 3. When
its degree is a smooth number, an endomorphism can be efficiently represented
as a composition of small degree isogenies. In Section 5.1 we will consider a more
general representation.

A first approximation to a solution to Problem 3 was provided by Kohel in his
PhD thesis [Koh96], and later improved by Galbraith [Gal99] using a birthday
argument. The resulting algorithm explores a tree in an `-isogeny graph (for some
small integer `) until a collision is found, corresponding to an endomorphism. The



expected cost of this procedure is O(
√
p) times a polynomial in log p. Repeating

this procedure a few times, possibly with different values of `, we obtain a set
of endomorphisms which generate a subring of the whole endomorphism ring.
The endomorphism ring computation problem was also considered in [DG16]
for curves defined over Fp. The identification protocol and signature schemes
developed in [GPS17] explicitly rely on its potential hardness for security.

We observe that Problems 2 and 3 take the same input, and their outputs are
also “equal” in the sense they are isomorphic. For this reason the two problems
have sometimes been referred to interchangeably. In particular, a solution to
Problem 2 does not a priori provide a useful description of the endomorphism
ring so that one can evaluate endomorphisms at given points. Similarly, a solution
to Problem 3 does not a priori provide a Z-basis for an order in Bp,∞, and this
is necessary to apply the algorithms of [KLPT14].

It turns out that the two problems are equivalent: in Sections 5.1 and 5.4,
we provide efficient algorithms to go from a representation of the endomorphism
ring as a Z basis over Q to a representation as rational maps and conversely.

In Sections 6 and 8, our reductions will involve the following problem.

Problem 4 (Action-on-`-Torsion) Given p, a supersingular elliptic curve E
defined over Fp2 , and four elements {β1, β2, β3, β4} in a maximal order O of Bp,∞
such that there exists an isomorphism ι : End(E) → O, output eight pairs of
points on E, (P1, Q1r), (P2, Q2r) (r = 1, . . . , 4) such that P1, P2 form a basis for
the `-torsion E[`] of E, and such that Q1r = ι−1(βr)(P1) and Q2r = ι−1(βr)(P2)
for r = 1, . . . , 4.

The combination of this problem with Problem MaxOrder is, intuitively, to ask
for both the algebraic structure of End(E) (by asking for generators in Bp,∞
for a maximal order O ' End(E), along with a small amount of geometric
information, meaning asking for how those generators act as endomorphisms on
E[`].

Finally, we will be relating these various endomorphism ring problems to
pathfinding in the `-isogeny graph, which we often refer to as preimage resistance
for the Charles-Goren-Lauter hash function or Problem `-PowerIsogeny.

Problem 5 (`-PowerIsogeny) Given a prime p, along with two supersingular
elliptic curves E and E′ over Fp2 , output an isogeny from E to E′ represented
as a chain of k isogenies whose degrees are `.

Since E is given as y2 = x3 + ax + b with a, b ∈ Fp2 , the input size for this
problem is O(log p). By Section 2.1, the representation size of the output is also
polynomial in log p, if ` ∈ O(log p) and the isogenies are represented by rational
maps.

Below we map out the various reductions in this paper. An arrow represents
the reduction from one problem to another, and its label indicates the algorithm
or theorem giving that reduction.
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3.3 Heuristics

Our reductions require several heuristics related to the distribution of numbers
represented by certain quadratic forms and on isogeny graphs. When we refer to
plausible heuristic assumptions, we mean one or more of the following:

1. We assume the heuristics used in [KLPT14], which can be summarized as
saying that the distribution of outputs of quadratic forms arising from the
norm form of a maximal order in Bp,∞ is approximately like the uniform
distribution on numbers of the same size.

2. We also assume the heuristics used in [GPS17] on representing powersmooth
numbers by these quadratic forms.

3. We assume that the endomorphism ring of an elliptic curve can be generated
by endomorphisms arising from loops in the `-isogeny graph. In particular,
we assume that given a suborder O′ of a maximal order O such that O′ is
generated by loops in an `-isogeny graph, the probability that a randomly
generated loop in the graph is in O′ is inversely proportional to [O : O′].

4 Efficient computations with maximal orders and their
ideals

One of the main problems we consider in this paper is computing a maximal order
associated to an elliptic curve E. The following sections will show that computing
isogenies and computing endomorphisms reduces to computing maximal orders,
together with a problem about `-torsion action. In this section we show that
maximal orders have polynomial-representation size, so that the reductions are
meaningful. We will also show that the representation size of ideals inside these
orders is related to their norms. Maximal orders are inside the algebra Bp,∞, so
we start with that.

Let p be a prime. In Proposition 5.1 of [Piz80] it is shown that Bp,∞ =
H(−1,−1) if p = 2, Bp,∞ = H(−1,−p) if p ≡ 3 (mod 4), Bp,∞ = H(−2,−p) if
p ≡ 5 (mod 8), and Bp,∞ = H(−q,−p) if p ≡ 1 (mod 8), where q ≡ 3 (mod 4)
is prime and p is not a square modulo q.

So given p, we choose a and b as above (depending on the congruence class
of p) such that Bp,∞ = H(a, b). We obtain a basis 1, i, j, ij for Bp,∞ such that
i2 = a and j2 = b. We refer to this as the standard basis of Bp,∞. As stated in



Section 2.2, we represent elements of Bp,∞ as their coefficient vectors in Q4 with
respect to the standard basis.

To reduce problems to Problem MaxOrder in polynomial time, one require-
ment is that in every conjugacy class there is a maximal order that has a basis
with representation size that is polynomial in log p. Since a prime p is given, and
E is given as y2 = x3 + ax+ b with a, b ∈ Fp2 , the input size for this problem is
O(log p).

To show that there is a maximal order that has a polynomial representation
size, we first show this is true for a special maximal order O0 and then express
all other classes of maximal orders as right orders OR(I) for a left ideal I of O0.
Since every left ideal class of O0 contains an ideal whose reduced norm is O(p2),
it will follow that in each conjugacy class of maximal orders, there is one with
polynomial representation size.

As mentioned above, Pizer [Piz80] gave the following explicit description of
Bp,∞ for all p along with a basis for one maximal order.

Proposition 1. Let p > 2 be a prime. Then we can define Bp,∞ and a maximal
order O0 as follows:

p (a, b) O0

3 (mod 4) (−p,−1) 〈1, j, j+k2 , 1+i2 〉
5 (mod 8) (−p,−2) 〈1, j, 2−j+k4 , −1+i+j2 〉
1 (mod 8) (−p,−q) 〈 1+j2 , i+k2 , j+ckq , k〉

where in the last row q ≡ 3 (mod 4), (p/q) = −1 and c is some integer with
q|c2p+1. Assuming that the generalized Riemann hypothesis is true, there exists
q = O(log2 p) satisfying these conditions.

Proof. The information in the table follows from [Piz80, p 368–369]. The only
thing we need to prove is the statement that when p ≡ 1 (mod 8) there exists a

prime q ≡ 3 (mod 4) such that
(
p
q

)
= −1. Equivalently, we require that q be an

unramified prime which does not split in either K1 = Q(
√
p) or K2 = Q(

√
−1).

This is equivalent to the condition that the Frobenius of q in Gal(K1K2/Q)
is the unique automorphism which restricts to the nontrivial automorphisms of
Gal(K1/Q) and Gal(K2/Q). By [LO77], there is a prime q of size O((log |D|)2)
whose Frobenius is this element, where D is the absolute discriminant of the
compositum K1K2/Q. The absolute discriminant of K1/Q is p since p ≡ 1
(mod 4), and the absolute discriminant of K2/Q is −4. Because (4, p) = 1,
we have that OK1K2 = OK1OK2 , and using this, a computation shows that
D = Disc(K1K2/Q) = 42p2. Hence q = O(log2 p), as desired. ut

We stress that in all cases the maximal orders O0 given by Proposition 1 contain
〈1, i, j, k〉 as a small index subring.

For the remainder of this section, fix such an order O0 together with the
small basis {b1, . . . , b4} as in Proposition 1. We will now show that ideals of O0

of norm N have representations of size polynomial in log(N) in terms of the
basis {b1, . . . , b4}.



Lemma 1. Let I be a left ideal of O0. Then there is a Z-basis {α1, . . . , α4} of
I, consisting of elements αi ∈ O0, such that the coefficients of the αi expressed,
in terms of the basis {b1, b2, b3, b4} of O0, are bounded by Nrd(I)2.

Proof. Let {γ1, . . . , γ4} be a Z-basis of I and write γi as γi =
∑
j aijbj . Let

A = (aij) be the matrix whose rows are the coefficients of γi. Let H = UA
where H is the (row-)Hermite normal form of A and U ∈ SL4(Z). Then the rows
of H correspond to elements of O0 which generate I as a Z-basis. Additionally,
H is upper triangular, its diagonal elements satisfy 0 < hii, and hij < hjj for
i < j. We have Nrd(I)2 = det(A) =

∏
hii and hence all hij < Nrd(I)2. This

gives us the desired basis {α1, . . . , α4}. ut

We will now prove that every conjugacy class of maximal orders has a repre-
sentative whose basis has representation size O(log p) when written in terms of
the standard basis 1, i, j, ij for Bp,∞.

For this, we will show that the reduced norm Nrd is the Euclidean norm on
Bp,∞ = H(−q,−p) considered as a lattice in R4. (Here q = 1, 2 or a prime ≡ 3
(mod 4) that is not a square modulo p, depending on the congruence class of p.)
We can view orders O in Bp,∞ as lattices in R4, and we will relate the covolume
of a lattice to its discriminant. This is similar to the number field case. Together
with Minkowski’s Theorem, this will give us the desired result.

Note that Bp,∞⊗R is isomorphic to H, the Hamiltonians. Let 1, i′, j′, i′j′ be
the basis of H with i′2 = j′2 = −1. Let

f : Bp,∞ ⊗ R '→ H,

and let the isomorphism be given by i 7→ √qi′, j 7→ √pj′. Then the norm on H,
which is the (square of) the standard Euclidean norm on R4, is just the reduced
norm on the image of Bp,∞ in H under the isomorphism f . Let Λ ⊆ Rn be a

lattice. Define its covolume, denoted Covol(Λ), to be
√

det(LTL) for any matrix
L consisting of a basis for Λ. If O ⊆ Bp,∞ is a lattice, define its covolume to be
Covol(f(O)).

If a lattice O ⊆ Bp,∞ has generators β1, . . . , β4, its discriminant, denoted
Disc(O), is det((Trd(βiβj))). If a lattice O is a maximal order in Bp,∞, then
Disc(O) = p2.

Proposition 2. Let O be a lattice in Bp,∞. Then Covol(O)2 = 1
16 Disc(O).

Proof. This is Equation 2.2 of [CG14]. ut

We need the notion of a Minkowski-reduced basis. A basis {v1, . . . , vn} of a
lattice Λ ⊆ Rn is Minkowski-reduced if for 1 ≤ k ≤ n,

||vk||2 ≤

∣∣∣∣∣
n∑
i=1

xi||vi||2

∣∣∣∣∣ ,
whenever x1, . . . , xn are coprime integers. Here ||·||2 denotes the Euclidean norm.
Given a lattice Λ in Rn, define the ith successive minimum of Λ, λi(Λ), to be the



smallest nonnegative, real number r such that there are i linearly independent
lattice vectors of Λ contained in the closed ball of radius r centered at the origin.
So λ1(Λ) is the length of a shortest nonzero vector of Λ. For n ≤ 4, there is a basis
v1, . . . , vn of Λ such that ||vi||2 = λi(Λ); see [NS09]. Such a basis is Minkowski-
reduced. When we refer to a Minkowski-reduced basis, we will always assume
we choose such a basis.

Theorem 1 (Minkowski’s second theorem). Let V denote the volume of
the n-dimensional unit ball of Rn. Then

2n

n!

Covol(Λ)

V
≤

n∏
i=1

λi(Λ) ≤ 2n

V
Covol(Λ).

Corollary 1. Let p be a prime, and let O0 be the maximal order of Bp,∞ as
above. Let I ⊆ O0 be a left ideal and let O := OR(I). Let α1, . . . , α4 be a basis
of O such that ||αi||2 = λi(O) for i = 1, . . . , 4. Then

4∏
i=1

Nrd(αi) ≤ Disc(O) = p2.

Proof. We use Minkowski’s second theorem applied to O, and the fact that
by Proposition 2, Covol(O)2 = Disc(O)/16. These two facts, together with
Nrd(α) = ||f(α)||22 give us that∏

Nrd(αi) =
∏

λi(O)2 ≤ 16

π4/4
Disc(O) ≤ p2.

ut

Now we prove the main theorem on representation sizes of maximal orders:

Theorem 2. Every conjugacy class of maximal orders in Bp,∞ has a Z-basis
x1, . . . , x4 with Nrd(xi) ∈ O(p2). If we express xr (for 1 ≤ r ≤ 4) as a coefficient
vector in terms of 1, i, j, ij, then the rational numbers appearing have numerators
and denominators whose representation size are polynomial in log p.

Proof. The map [I] → [OR(I)] is a surjection from left ideal classes of O0 to
isomorphism classes of maximal orders of Bp,∞; see [Gro87], page 116. Every left
ideal class of O0 contains an ideal I with Nrd(I) ∈ O(p2); see [Vig80, Proposition
17.5.6]. Set O = OR(I) and let 〈1, x2, x3, x4〉 be a Minkowski-reduced Z-basis of
O. By Corollary 1, Nrd(xi) ≤ p2, since each xi is integral. Since O = OR(I),
it follows that xi Nrd(I) ∈ I. This implies that if we express xi as a Q-linear
combination of the elements 1, i, j, ij, then the denominators of the coefficients
are divisors of Nrd(I) · 4q where q = Nrd(j). The numerator of each coefficient
is then bounded by 8pqNrd(I): indeed, if a/b is a coefficient of xr, (1 ≤ r ≤ 4),
then (a/b)2 ≤ Nrd(xr) ≤ p2. Then

|a| ≤ pb ≤ 4pqNrd(I).

ut



5 Equivalent hard problems in supersingular isogeny
graphs

In this section we consider the following problems:

– A constructive version of Deuring’s correspondence, from j-invariants to
maximal orders in Bp,∞ (Problem 2).

– The endomorphism ring computation problem (Problem 3).
– The preimage and collision resistance of the Charles-Goren-Lauter hash func-

tion, for a randomly chosen initial vertex.

We show that all these problems are heuristically equivalent, in the sense
that there exist efficient reductions from one problem to another under plausible
heuristics assumptions.

The first two problems have the same inputs and in a sense their outputs are
also equal, so it is perhaps no surprise to the reader that they are equivalent.
However, the two problems differ in the way the output should be represented: as
a maximal order in Bp,∞ for Problem 2, and as four rational maps for Problem 3.
Sections 5.1 and 5.4 below clarify the steps from one representation to the other.

It should also be clear intuitively that (heuristically at least) an algorithm
to find preimages or collisions for the hash function can be used to compute
endomorphism rings. The other implication is perhaps not as intuitive, and our
solution crucially requires the tools developed in [KLPT14]. These reductions
are discussed in Section 5.5 below.

5.1 Endomorphism ring computation is not harder than Inverse
Deuring Correspondence

When p ≡ 3 (mod 4) the curve y2 = x3 + x is supersingular with invariant j =
1728. This curve corresponds to a maximal order O0 with Z-basis {1, i, 1+k2 , i+j2 }
under Deuring’s correspondence, and there is an isomorphism of quaternion
algebras θ : Bp,∞ → End(E0) ⊗ Q sending (1, i, j, k) to (1, φ, π, πφ) where
π : (x, y) → (xp, yp) is the Frobenius endomorphism, and φ : (x, y) → (−x, ιy)
with ι2 = −1. More generally, it is easy to compute j-invariants corresponding
to the maximal orders given by Proposition 1.

Proposition 3. There is a polynomial-time algorithm that given a prime p > 2,
computes a supersingular j-invariant j0 ∈ Fp such that End(E(j0)) ∼= O0 (where
O0 is as given by Proposition 1 together with a map φ ∈ End(E(j0))) such that
θ : Bp,∞ → End(E(j0)) ⊗ Q : (1, i, j, k) → (1, φ, π, πφ) is an isomorphism of
quaternion algebras.

Proof. Let q be chosen such that Bp,∞ = H(−q,−p) as in Proposition 1 and
let R be the ring of integers of Q(

√
−q). Consider Algorithm 3 below. Step 1

can be executed in time polynomial in log p using a modification of Bröker’s
Algorithm 2.4 in [Brö09]: the cardinality of J := {j ∈ Fp2 : R ⊆ End(E(j))} is
equal to the class number h−q of R, and this is bounded by q. To see this requires



a surjectivity and injectivity argument. Suppose j ∈ Fp2 is a supersingular j-
invariant such that R embeds into End(E(j)). Then if R = Z[α], by Deuring’s
Lifting Theorem [Lan87, Theorem 14, page 184] applied to E(j) and α, there is
an elliptic curve Ẽ/C such that End(Ẽ) ' R and a prime p of R dividing p such
that Ẽ (mod p) = E(j). Since Ẽ has complex multiplication by R, j(Ẽ) is a root
of the Hilbert class polynomial of Q(

√
−q). Because E(j) is supersingular, p is

inert in R and p = pR. We see that the map is injective because principal prime
ideals of R split completely in H, and so the Hilbert class polynomial will have
h−q distinct roots modulo p. To compute φ in Step 3 one can simply compute all
isogenies of degree q using Vélu’s formulae and identify the one corresponding
to an endomorphism. The map φ defines an isomorphism of quaternion algebras
θ : Bp,∞ → End(E(j0))⊗Q : (1, i, j, k)→ (1, φ, π, πφ). To perform the check in
Step 4, one applies θ to the numerators of O0 basis elements, and check whether
the resulting maps annihilate the D torsion, where D is the denominator. ut

Algorithm 3 Computing the Deuring correspondence for special orders
Input: A prime p.
Output: A supersingular j-invariant j0 ∈ Fp such that O0

∼= End(E(j0)), and
an endomorphism φ ∈ End(E(j0)) such that Nrd(φ) = q and Trd(φ) = 0.

1. Compute J , a set of supersingular j-invariants such that for j ∈ J , R−q
embeds into End(E(j)), where R−q is the integer ring of Q(

√
−q).

2. For j ∈ J :
(a) Compute φ, an endomorphism of degree q of E(j).
(b) If End(E(j)) ∼= O0:

i. Return j and φ.

5.2 Quaternion `-isogeny algorithm

The quaternion `-isogeny problem was introduced and solved in [KLPT14] as a
step forward in the cryptanalysis of the Charles-Goren-Lauter hash function.

We refer to [KLPT14,GPS17] for a full description of the algorithm and its
powersmooth version as well as their analysis. For our purposes the following
proposition will be sufficient.

Lemma 2. [KLPT14,GPS17] Under various heuristic assumptions, there exist
two polynomial-time algorithms that given I a left ideal of O0, returns J another
left ideal of O0 in the same class as I of norm N such that N ≈ p7/2. Moreover
for the first algorithm we have N =

∏
peii with peii < log p and for the second

algorithm we have N = `e for some integer e and some small prime `.

Interestingly, [GPS17] also proves that (after a minor tweak) the outputs of
these algorithms only depend on the ideal class of their inputs and not on the
particular ideal class representative.

Many of our algorithms and reductions below will use these algorithms as
black boxes. Their correctness will therefore rely on the same heuristics, and
possibly some more.



5.3 Translating O0-ideals to isogenies

Let O0 be the maximal order given by Proposition 1, let E0 be a correspond-
ing supersingular elliptic curve, and let I be a left O0-ideal of norm N such
that I is not contained in O0m for any m ∈ N. This ideal corresponds to an
isogeny φ : E0 → E1 of degree N . This isogeny is uniquely defined by its kernel,
which is a cyclic subgroup of order N in E0 by Proposition 10. Following Wa-
terhouse [Wat69] one can identify the correct subgroup by evaluating the maps
corresponding to an O0-basis at a generator of each subgroup. Moreover when
N is composite, the kernel can be represented more efficiently as a product of
cyclic subgroups whose orders are powers of primes, and similarly the isogenies
are represented more efficiently as a composition of prime degree isogenies. The
details of such an algorithm can be found in [GPS17], which also analyzes its
complexity. The following proposition will be sufficient for our purposes.

Proposition 4. There exists an algorithm which, given an O0 left ideal I of
norm N =

∏
i p
ei
i , returns an isogeny φ : E0 → E1 corresponding to this ideal

through Deuring’s correspondence. Moreover the complexity of this algorithm is
polynomial in maxi p

ei
i .

We stress that this translation algorithm requires us to know the endomorphism
ring of E0, and that it is only efficient when maxi p

ei
i is small.

Let us first assume that we have an efficient algorithm for Problem 2, return-
ing a Z basis for a maximal order as discussed above. Algorithm 4 below uses
this algorithm to solve Problem 3.

Algorithm 4 Reduction from Problem 3 to Problem 2
Input: A supersingular j-invariant j.
Output: Four maps that generate End(E(j)).

1. Use an algorithm for Problem 2 to obtain a maximal order O ' End(E(j)).
2. Compute an ideal I connecting O0 and O.
3. Compute an ideal J with powersmooth norm in the same class as I.
4. Translate the ideal J into an isogeny ϕ : E0 → E.
5. Let N be the norm of J .
6. Let 1, φ2, φ3, φ4 generate End(E(j0)).
7. Let 1, ω2, ω3, ω4 generate O, and let 1, ω2,0, ω3,0, ω4,0 ∈ O0 correspond to

1, φ2, φ3, φ4.

8. Find integers cij such that ωi =
∑

j cijωj,0

N .

9. Return N , ϕ, cij implicitly representing the maps
∑4

i=1 cij ϕ̂φiϕ

N for each i.

The maps returned by Algorithm 4 are of the form φ =
∑4

i=1 cij ϕ̂φiϕ

N where
N is a smooth number, cij ∈ Z, {φi}i=1,2,3,4 form a basis for the endomorphism
ring of a special curve E0, and ϕ : E0 → E(j) is an isogeny of degree N ,
given as a composition of isogenies of low degree. In Section 8 we define compact
representations of endomorphisms, and the data given by Algorithm 4 define four
compact representations. This is arguably not the most natural representation



of endomorphisms, but it still allows to efficiently evaluate them at arbitrary
points, as shown by Algorithm 5 and Lemma 3 below. See Section 8 for a detailed
definition of how to represent the output of this algorithm.

Algorithm 5 Endomorphism evaluation
Input: A curve E, an isogeny ϕ : E0 → E with powersmooth degree N , and

integers a, b, c, d defining an endomorphism φ = ϕ(a+bφ2+cφ3+dφ4)ϕ̂
N ∈ End(E).

Input: A point P ∈ E.
Output: φ(P ).

1. Let N =
∏
i pi

ei and let mi = N/peii .
2. For all i:

(a) Compute Qi such that peii Qi = P .
(b) Compute Si = ϕ(a+ bφ2 + cφ3 + dφ4)ϕ̂(Qi)

3. Compute S such that Si = miS for all i.
4. Return S.

Lemma 3. Let P ∈ E(K) with K an extension of Fp2 . Assume that logN and
maxi p

ei
i are polynomial in log p. Then Algorithm 5 computes φ(P ) and can be

implemented to run in time polynomial in log |K|.

Proof. We will first prove the correctness of the above algorithm. Let γ := ϕ(a+
bφ2 + cφ3 + dφ4)ϕ̂, so [N ] ◦ φ = γ. While the choice of Qi in Step 2a is not
unique, in Step 2b the point Si is independent of the choice of Qi, because of
the calculation

Si = γ(Qi) = ([N ] ◦ φ)(Qi) = ([mi] ◦ φ)(P ).

We now show that the S in Step 3 exists, is unique, and equals φ(P ). The
above calculation showed φ(P ) satisfies miφ(P ) = Si. On the other hand, the
point S also satisfies miS = Si for all i, so φ(P ) − S ∈ E[mi] for all i. Since

gcd({m1, . . . ,mk}) = 1, we have
⋂k
i=1E[mi] = {0}. This implies that S = φ(P ).

We can efficiently compute S in Step 3 as follows. Since the greatest common
divisor of {m1, . . . ,mk} is 1, there are integers a1, . . . , ak such that

∑k
j=1 ajmj =

1. These integers can be efficiently computed with the extended Euclidean al-
gorithm since k = O(log p). Define S :=

∑k
i=1 aiSi. Observe that for i 6= j, we

have

miSj =
N

peii p
ej
j

p
ej
j Sj =

N

peii p
ej
j

p
ej
j γ(Qj) =

N

peii p
ej
j

γ(P ) =
N

peii p
ej
j

γ(peii Qi) = mjS.

This implies that miSj = mjSi. Now we calculate

miS = mi

k∑
j=1

ajSj = Si −

∑
j 6=i

ajmjSi

+
∑
j 6=i

miajSj = Si.

Although Q may lie in a very large extension of Fp2 , each of the Qi lies
in a reasonably small extension, namely the extension degree is polynomial in



log p. Note that S lies in an extension of K of degree at most 6 by Theorem 4.1
of [Wat69], so Step 3 is efficient. Step 2a involves some univariate polynomial
factorization, a task that is polynomial in both the degree of the polynomial
and the logarithm of the field size. In Step 2b the isogeny ϕ and its dual can be
evaluated stepwise, and evaluating the map a+ bφ2 + cφ3 + dφ4 at an arbitrary
point involves 4 scalar multiplications, three additions and the evaluation of the
maps φi ∈ End(E(j0)) at certain points. ut

Proposition 5. Under plausible heuristic assumptions, the reduction in Algo-
rithm 4 from Problem 3 to Problem 2 can be implemented to run in time poly-
nomial in log p.

Proof. By Theorem 2, we may assume that the maximal order isomorphic to
End(E(j)) has size polynomial in log p. In Step 2, the ideal I can be computed
with Algorithm 3.5 of [KV10]. This can be done in time polynomial in log p since
O0 and O have size polynomial in log p. By Lemma 2 the output of Step 3 is
an ideal of norm N =

∏
peii such that S = maxi p

ei
i = O(log p). The translation

algorithm runs in a time polynomial in S, hence in log p. The other steps also
run in polynomial time. ut

5.4 Inverse Deuring Correspondence is not harder than
endomorphism ring computation

Let us now assume that we have an efficient algorithm for Problem 3, returning
four maps generating the endomorphism ring, in some format that allows efficient
evaluation of the maps at arbitrary points. Algorithm 6 below uses this algorithm
and then constructs a sequence of linear transformations that map 1, α, β, γ to
four orthogonal maps 1, ι, λ, ιλ corresponding to 1, i, j, k ∈ Bp,∞. Composing the
inverses of these maps then gives a Z-basis for O.

Algorithm 6 Reduction from Problem 2 to Problem 3
Input: A supersingular j-invariant j.
Output: A maximal order O ⊂ Bp,∞ such that End(E(j)) ' O.

1. Use an algorithm for Problem 3 to obtain four maps 1, α, β, γ which generate
End(E(j)), in a format that allows efficient evaluation at elliptic curve points.

2. Compute the Gram matrix associated to the sequence (1, α, β, γ).
3. Find a rational invertible linear transformation sending (1, α, β, γ) to some

(1, α′, β′, α′β′), where 1, α′, β′, α′β′ generate an orthogonal basis for Bp,∞
over Q.

4. If the numerators and denominators of Nrd(α′) and Nrd(β′) are not easy to
factor:
(a) Apply a random invertible linear transformation to (α, β, γ).
(b) Go to Step 3.

5. Find a, b, c ∈ Q such that Nrd(ι) = q, where ι = aα′ + bβ′ + cα′β′.
6. Find a rational invertible linear transformation sending (1, α′, β′, α′β′) to

(1, ι, δ, ιδ) for some δ ∈ Bp,∞ where 1, ι, δ, ιδ generate an orthogonal basis
for Bp,∞ over Q.



7. If the numerator and denominator of Nrd(δ) is not easy to factor:

(a) Apply a random invertible linear transformation to (α, β, γ).
(b) Go to Step 3.

8. Find a, b ∈ Q such that Nrd(δ)(a2 + b2q) = p. Let λ = aδ + bιδ.
9. Compute a rational invertible linear transformation sending (1, ι, δ, ιδ) to

(1, ι, λ, ιλ).
10. Invert and compose all linear transformations to express 1, α, β, γ in the basis

(1, ι, λ, ιλ), and deduce a basis of O in Bp,∞.
11. Return the basis of O.

Let B be a bound on the degrees of the maps α, β, γ returned in Step 1 of
Algorithm 6. We analyze the complexity of the algorithm through the following
lemmas and proposition.

Lemma 4. There exists an algorithm for Step 2 that runs in time polynomial
in log p and logB.

Proof. Given two endomorphisms α, β, one can compute their inner product
〈α, β〉 = αβ̄ + βᾱ ∈ Z by evaluating it on an appropriate set of torsion points of
small prime order, and then applying the Chinese Remainder Theorem, follow-
ing a strategy similar to Schoof’s point counting algorithm (see [Koh96, Theo-
rem 81]). Applying this algorithm to every pair of maps from (1, α, β, γ) gives
the result. ut

Lemma 5. There exists an algorithm for Steps 3 and 6 that runs in time poly-
nomial in log p and logB.

Proof. We focus on Step 3, and Step 6 is similar. Given the Gram matrix one
can apply the Gram-Schmidt orthogonalization process to obtain a new basis
(1, α′, β′, γ′). It remains to show that α′β′ is a scalar multiple of γ′ so that we
can normalize γ′ to obtain the result. It suffices to show that α′β′ is orthogonal
to 1, α′ and β′. Indeed we have 〈α′β′, 1〉 = α′β′ + β̄′ᾱ′ = 〈α′, β̄′〉 = −〈α′, β̄′〉 =
0; we have 〈α′β′, α′〉 = α′β′ᾱ′ + α′β̄′ᾱ′ = Nrd(α′) Trd(β′) = 0; and similarly
〈α′β′, β′〉 = α′β′β̄′ + β′β̄′ᾱ′ = Nrd(β′) Trd(α′) = 0. ut

Lemma 6. Given the factorizations of the numerators and denominators of both
Nrd(α′) and Nrd(β′), there exists an algorithm for Step 5 that runs in time
polynomial in log p and logB.

Proof. Finding such a, b, c ∈ Q satisfying the condition amounts to finding
a′, b′, c′, d ∈ Z such that a′2 Nrd(α′) + b′2 Nrd(β′) + c′2 Nrd(α′) Nrd(β′) = d2q.
According to Simon [Sim05, Section 8] there is an algorithm to solve this Dio-
phantine equation in polynomial time. ut

Lemma 7. Given the factorizations of the numerator and of the denominator
of Nrd(δ), there exists an algorithm for Step 8 that runs in time polynomial in
log p and logB.



Proof. Note that 〈δ, ιδ〉 is by construction the orthogonal space of 〈1, ι〉, and
this space must contain an element of norm p, so the equation has a solution.
Given factorizations for both the numerator and the denominator of δ one can
use Cornacchia’s algorithm [Cor08] to solve Step 8. ut

Proposition 6. Under plausible heuristic assumptions, the reduction provided
by Algorithm 6 can be implemented to run in polynomial time.

Proof. In Steps 4 and 7 the algorithm requires that some numbers are easy to
factor. In Step 4 we may expect these numbers to behave like random numbers of
the same sizes. In Step 7, p must divide the numerator of Nrd(δ). We may expect
that both the numerator and the denominator factor like random numbers of the
same size. One can require all those numbers to be large primes, or a product
of large primes and small cofactors, two properties that will be satisfied with
a probability inversely proportional to a polynomial function of log p. Steps 4a
and 7a randomize α, β, γ so that we expect the conditions to be satisfied after a
number of steps that is polynomial in log p. By the four lemmas before we then
expect that the whole reduction runs in a time polynomial in log p. ut

The reduction provided by Algorithm 6 and its runtime analysis relies on
several heuristics, namely the probability to obtain suitable norms in Steps 4
and 7 as discussed in the above proposition, and the runtime assumption of
Simon’s algorithm for Step 5.

5.5 Preimage and collision resistance of the CGL hash function

In this section we show that the hardness of the endomorphism ring computation
problem is equivalent to the security of the Charles-Goren-Lauter hash function.

Proposition 7. Assume there exists an efficient algorithm for the endomor-
phism ring computation problem. Then there is an efficient algorithm to solve
the preimage and collision problems for the Charles-Goren-Lauter hash function.

Proof. By standard arguments on hash functions it is enough to focus on preim-
age resistance. Our reduction of this problem to the endomorphism ring com-
putation problem is given in Algorithm 7. Besides two black box calls to an
algorithm for the endomorphism ring computation problem, it uses other effi-
cient algorithms described in this paper, including Algorithm 4 to translate a
description of an endomorphism ring as rational maps into a description of a
maximal order in Bp,∞, both the `-power and the powersmooth versions of the
quaternion isogeny algorithm, and the translation algorithm from ideals to iso-
genies. All these routines are efficient by the lemmas and propositions of this
paper. By the results in Section 6.4, the algorithm is correct. ut

Algorithm 7 Reduction from preimage resistance to endomorphism ring com-
putation
Input: Two supersingular j-invariants js, jt ∈ Fp2 .
Output: A sequence of j-invariants js = j0, j1, . . . , je = jt such that for any i
there exists an isogeny of degree ` from E(ji) to E(ji+1).



1. Compute End(E(js)) and End(E(jt)).
2. Compute Os ' End(E(js)) and Ot ' End(E(jt)) with Algorithm 4.
3. Compute ideals Is and It connecting O0 respectively to Os and Ot.
4. Compute ideals Js = Ooαs +O0`

es and Jt = O0αt +O0`
et with norm `es , `et

for some es, et, in the same classes as Is and It respectively.
5. For r = s, t and corresponding E = E(jr):

(a) Compute a sequence of ideals Jr,i = O0αr +O0`
i for i = 0, . . . , er

(b) For 0 ≤ i ≤ er:
(c) Compute Kr,i with powersmooth norm in the same class as Jr,i.
(d) Translate Kr,i into an isogeny ϕr,i : E0 → Er,i.
(e) Deduce a sequence (j0, j(Er,1), j(Er,2), . . . , j(Er,e) = j(E)).

6. Return (j(Es), . . . , j0, . . . , j(Et)) the concatenation of both paths.

The reverse direction may a priori look easier. By standard arguments on
hash functions it is sufficient to prove the claim with respect to a collision algo-
rithm. A collision for the Charles-Goren-Lauter hash function gives a non-scalar
endomorphism of the curve; four linearly independent endomorphisms give a
full rank subring of the endomorphism ring; and heuristically one expects that
a few such maps will be sufficient to generate the whole ring. To compute the
endomorphism ring one would therefore call the collision finding algorithms mul-
tiple times until the resulting maps generate the full endomorphism ring. This
strategy, however, has a potential caveat: the collision algorithm might be such
that it always returns the same endomorphism. In Algorithm 8 we get around
this problem by performing a random walk from the input invariant j, calling
the collision algorithm on the end-vertex of the random walk, and concatenating
paths to form endomorphisms of E(j).

Proposition 8. Assume there exists an efficient preimage or collision algorithm
for the Charles-Goren-Lauter hash function. Then under plausible heuristic as-
sumptions there is an efficient algorithm to solve the endomorphism ring com-
putation problem.

Proof. The reduction algorithm for collision resistance is given by Algorithm 8
below. Note that in Step 7 the discriminant can be computed from the Gram
matrix, which by Lemma 4 can be efficiently computed. Heuristically, one expects
that the loop will be executed at most O(log p) times. Indeed let us assume that
after adding some elements to the subring we have a subring of index N . Then
we can heuristically expect any new randomly generated endomorphism to lie
in this subring with probability only 1/N . Moreover when it does not lie in the
subring, the element will decrease the index by a non trivial integer factor of
N . ut

Algorithm 8 Reduction from endomorphism ring computation to collision re-
sistance
Input: A supersingular j-invariant j ∈ Fp2 .
Output: The endomorphism ring of E(j).



1. Let R = 〈1〉 ⊂ End(E(j)).
2. While disc(R) 6= 4p2:

(a) Perform a random walk in the graph, leading to a new vertex j′.
(b) Apply a collision finding algorithm on j′, leading to an endomorphism of

E(j′).
(c) Deduce an endomorphism φ of E(j) by concatenating paths.
(d) Set R ← 〈R, φ〉.
(e) Compute the discriminant of R.

3. Return a Z-basis for R.

6 `-PowerIsogeny Reduces to MaxOrder and
Action-on-`-Torsion

In this section we show that computing an `-isogeny between two supersingular
elliptic curves reduces to computing maximal orders of elliptic curves and solving
the Action-on-`-Torsion Problem.

6.1 Outline of reduction

Given two supersingular elliptic curves E,E′ over Fp2 , and oracles for the prob-
lems Action-on-`-Torsion and MaxOrder, we will construct an `-power isogeny
E → E′ by constructing a chain of `-isogenies through intermediate curves. First,
the oracle will give us two maximal orders O,O′ ⊆ Bp,∞ with O ' End(E) and
O′ ' End(E′). We then compute a connecting ideal, meaning a left ideal of
O, whose left order is O and right order is O′. Next we use the main algo-
rithm of [KLPT14] to compute an equivalent ideal I whose norm is `e for some
e = O(log p). The isogeny φI : E → E′ corresponding to I has degree `e, so the
representation size of the isogeny is exponential. To remedy this we will, given
I, compute a chain of `-isogenies ψ1, . . . , ψe such that φI = ψe ◦ · · · ◦ ψ1. Since
ψ1, . . . , ψe have degree `, they are of polynomial representation size as rational
maps. To obtain the ψi we will first show that there is a factorization of the ideal
I. The proper notion here is that of a filtration of ideals, namely a sequence

I = Ie ⊆ Ie−1 ⊆ · · · ⊆ I1 ⊆ I0 = O

such that the isogeny corresponding to Ik is a map φk from E to some interme-
diate curve Ek. The factorization of φI gives us a path starting at E and ending
at E′ of length e in the graph of isogenies of degree `, and the filtration of I
leads to a corresponding “path” between maximal orders in Bp,∞. The maximal
orders that appear in this path are OR(Ik) and the ideal connecting OR(Ik) to
OR(Ik+1) is Jk := I−1k−1Ik. These paths are given in the following diagrams:

E

E1 E2 · · · Ee = E′

φ1=ψ1
φ2

φ3

φe

ψ2 ψ3 ψe



O

OR(I1) OR(I2) · · · OR(Ie) = O′

I1=J1 I2
I3

Ie

J2 J3 Je

For each k, the isogeny φk : E0 → Ek has degree `k, and so corresponds to a
left O-ideal Ik of norm `k. We will show that Ik = I+O`k is the desired ideal. As
k grows, these ideals will have norms which are too big to find the corresponding
isogenies, so we will compute the maps ψk : Ek−1 → Ek which correspond to left
ideals Jk of OR(Ik−1) of norm `. Suppose we have computed ψk, the curve Ek,
and Jk+1 as above. We can use the oracle for MaxOrder to identify generators
of Jk+1 with endomorphisms of Ek. On the other hand, Jk+1 corresponds to the
isogeny ψk+1, whose kernel we compute using the information from the oracle
Action-on-`-Torsion. Using Vélu’s formula, we can compute ψk+1 from its kernel.
This procedure iteratively computes the desired maps ψ1, ψ2, . . . , ψe.

6.2 Reduction from `-PowerIsogeny to MaxOrder and
Action-on-`-Torsion

In this section, we give the reduction from `-Power Isogeny to the problems
MaxOrder and Action-on-`-Torsion.

Algorithm 9 Reduction from `-PowerIsogeny to MaxOrder and Action-on-`-
Torsion
Input: E,E′ supersingular elliptic curves over Fp2 , a prime ` 6= p.
Output: a chain of `-isogenies connecting E and E′.

1. Compute a basis 〈1, i, j, ij〉 for Bp,∞.
2. Call oracle MaxOrder on p, 〈1, i, j, ij〉, E, resulting in α1, α2, α3, α4 where

End(E) ' O := 〈α1, α2, α3, α4〉 ⊆ Bp,∞.
3. Call oracle MaxOrder on p, 〈1, i, j, ij〉, E′, resulting in α′1, α

′
2, α
′
3, α
′
4 where

End(E′) ' O′ := 〈α′1, α′2, α′3, α′4〉 ⊆ Bp,∞.
4. Compute connecting ideal: use α1, . . . , α4 and α′1, . . . , α

′
4 to compute a left

ideal I of O such that OR(I) = O′ and Nrd(I) = `e with e = O(log p). Adjust
I so that I 6⊆ `k · O for any positive integer k.

5. For 0 ≤ k ≤ e :
(a) Compute Ik := I+O`k. This is a left ideal of O of norm `k. Also compute

its right order OR(Ik).
(b) Compute a Z-basis γ1, γ2, γ3, γ4 for the ideal Jk+1 := I−1k Ik+1 of OR(Ik).

6. Set E0 := E.
7. For 0 ≤ k ≤ e− 1:

(a) Compute a basis {P1, P2} for Ek[`].
(b) Call oracle MaxOrder with p, 〈1, i, j, ij〉, Ek, resulting in β1, β2, β3, β4

that generate Ok ⊆ Bp,∞.
(c) Call oracle Action-on-`-Torsion with parameters p, P1, P2, 〈1, i, j, ij〉, Ek,

β1, β2, β3, β4 resulting in Qst = ι−1k (βs)(Pt) for s = 1, . . . , 4, t = 1, 2.
Here, ιk : End(Ek)→ 〈β1, . . . , β4〉 is an isomorphism.



(d) Compute v ∈ Bp,∞ such that vOR(Ik)v−1 = Ok.
(e) Compute crs such that vγrv

−1 =
∑
s crsβs.

(f) Find x, y ∈ Z/`Z, not both 0, such that
∑
s crs(xQs1 + yQs2) = 0 for

r = 1, . . . , 4.
(g) Compute ψk+1 and its image Ek+1 corresponding to the kernel subgroup
〈xP1 + yP2〉 = Ek[ι−1k (Jk+1)] using Vélu’s formula

8. Return ψ1, ψ2, . . . , ψe.

Theorem 10. `-PowerIsogeny efficiently reduces to MaxOrder and Action-on-`-
Torsion. In particular, given a prime p, a prime ` 6= p, and supersingular elliptic
curves E, E′ over Fp2 , Algorithm 9 returns isogenies ψ1, . . . , ψe of degree ` whose
composition is an isogeny ψ := ψe ◦ · · · ◦ψ1 of degree `e from E to E′. Assuming
` is of size O(log p), Algorithm 9 runs in time polynomial in log p and makes
O(log p) queries of MaxOrder and Action-on-`-Torsion.

Proof. By Theorem 2, the oracle returns a basis for O and for O′ of polynomial
size. To do Step 4, we first compute an arbitrary connecting ideal for O and
O′ in polynomial time using Algorithm 3.5 of [KV10]. An equivalent connecting
ideal of norm `e, where e = O(log p), can be computed in polynomial time as
claimed in [KLPT14].

Define Ek := E/E[Ik] (here by E[Ik] we mean the subgroup E[ι−1(Ik)], where
ι : End(E)→ O is an isomorphism). We need to show that Ik has norm `k and
that the left OR(Ik)-ideal Jk+1 corresponds to the isogeny ψk+1 : Ek → Ek+1

in the factorization φk = ψk ◦ φk−1; this is proved in Theorem 11. Right orders
and products of ideals can be computed efficiently with linear algebra over Z,
hence Step 4 is efficient; see [Rón92], Theorem 3.2 for the statement on right
orders. Inverses can be computed from the formula I−1 = 1

Nrd(I)I. We make

e calls to the oracle for generators of End(Ek) and their action on `-torsion. If
O ' Ok, we can compute v such that vOkv−1 = O in polynomial time by Lemma
2.5, Corollary 3.6, and Proposition 6.9 of [KV10]. By Theorem 11, the isogeny
corresponding to I factors as the product of the isogenies corresponding to Jk,
k = 1, . . . , e, all of which have degree `. Now compute the kernel of ψk using Jk
and the action of End(Ek−1) on the `-torsion of Ek−1; see Proposition 9. Since `
is O(log p), rational maps for ψk from its kernel can be efficiently computed. ut

6.3 Going from an ideal of norm ` to a corresponding subgroup of
order `

At the beginning of Step 7 of the algorithm, we have an isogeny Ek−1 → Ek
represented by a left OR(Ik−1)-ideal Jk. We wish to specify the subgroup of Ek−1
which is the kernel of this isogeny. If J̃k ⊆ End(Ek−1) is the ideal isomorphic to
Jk, recall from Section 2.2 that

Ek−1[J̃k] =
⋂
γ∈J̃k

ker(γk),



and it suffices to compute ker(γ1) ∩ · · · ∩ ker(γ4), where γ1, . . . , γ4 are a Z-basis

of J̃k. Once we have Ek−1[J̃k], we can use Vélu’s formula to compute ψk.
Step 7 in our algorithm computes Ek−1[J̃k] and is similar to Algorithm 2 in

[GPS17]. In our version, we are working with ideals in consecutive endomorphism
rings, rather than in the endomorphism ring of the starting curve, and we give
proofs of correctness along with analysis of input size of left ideals of a maximal
order.

Proposition 9. Let E be a supersingular elliptic curve over Fp2 , and assume ι :
End(E)→ O ⊆ Bp,∞ is an isomorphism, where O has a basis of size polynomial
in log p. Let I ⊆ O be an ideal of norm `e for a prime ` 6= p with ` = O(log p).
For k = 1, . . . , e, define Ik := I + O · `k and Jk = I−1k−1Ik ⊆ OR(Ik−1) and
Ek := E/E[ι−1(Ik)] as in Theorem 11. Then if we are given ιk−1(End(Ek−1))
in Bp,∞ where ιk−1 : End(Ek−1)⊗Q→ Bp,∞ is an isomorphism of quaternion
algebras, along with the action of End(Ek−1) on Ek−1[`], we can compute the
kernel of the isogeny corresponding to ι−1k−1(Jk) in time polynomial in log p.

Proof. We wish to determine Ek−1[ι−1k−1(Jk)] so that we can compute the corre-
sponding isogeny ψk : Ek−1 → Ek. If Jk has a Z-basis γ1, . . . , γ4 ∈ OR(Ik−1), we
need to understand how the γi act as endomorphisms of Ek−1. Suppose we are
given the action of generators φ1, . . . , φ4 of End(Ek−1) on Ek−1[`] and the im-
age of an embedding ιk−1 : End(Ek−1)→ Bp,∞. Set Ok−1 := ιk−1(End(Ek−1));
then we can compute v ∈ B×p,∞ such that Ok−1 = vOR(Ik−1)v−1 in polynomial
time by [KV10]. By expressing vγiv

−1 in terms of ιk−1(φj), say

vγrv
−1 =

∑
s

crsιk−1(φs),

we discern the kernel of the isogeny corresponding to Jk as follows. We require
a nonzero point P ∈ Ek−1[`] such that for all r = 1, . . . , 4,∑

s

crsφs(P ) = 0.

Because we assume that we are given φs(P ) for s = 1, . . . , 4 and P ∈ Ek−1[`],
we can find such a P by just calculating the sum for all r = 1, . . . , 4 and P 6=
0 ∈ Ek−1[`]. ut

6.4 Isogeny paths and corresponding filtrations of left ideals

Let E,E′/Fp2 be supersingular elliptic curves. We now prove the correctness of
our earlier claims on how an `-isogeny path between E and E′ corresponds to a
sequence of ideals of norm ` in End(E)⊗Q. In particular, suppose φ : E → E′

has degree `e for some prime ` 6= p. Then the kernel ideal I of φ in End(E)
has degree `e. There is a factorization φ = ψe ◦ · · · ◦ ψ1 with deg(ψk) = `, and
by setting φk := ψk ◦ · · · ◦ ψ1, there is a corresponding ideal Ik of End(E) of
norm `k. Additionally, there is an ideal Jk of OR(Ik−1) which corresponds to the



factorization of the isogeny φk = ψk ◦ψk−1; in this section, we construct Ik and
Jk from I. Let I be a left ideal of End(E) of norm `e such that I 6⊆ End(E) · `m
for any positive integer m. In this section, we prove that for k = 0, . . . , e, Ik =
I + End(E) · `k is an ideal of norm `k and that

I = Ie ⊆ Ie−1 ⊆ · · · ⊆ I1 ⊆ I0 = End(E).

We first establish when an ideal corresponds to an isogeny with cyclic kernel.

Proposition 10. Suppose I ⊆ End(E) is a left ideal with Nrd(I) coprime to
p. Then I is not contained in End(E) ·m for any m ∈ N if and only if E[I] is
cyclic.

Proof. Suppose that I ⊆ End(E) ·m. Then E[I] ⊃ E[End(E) ·m] = E[m] and
thus m|deg(φI). Since p does not divide deg(φI), it also does not divide m, so
E[m] 6= 0 and has rank two as a Z/mZ-module. Hence E[I] is not cyclic. For the
other direction, suppose that E[I] is not cyclic. Then, by the structure theorem
of abelian groups,

E[I] '
j⊕
i=1

Z/kiZ

and we can choose the ki uniquely such that ki|ki+1. Since E[I] is not cyclic,
j 6= 1 and hence E[I] has two elements of order k1 which are linearly independent.
Thus E[k1] ⊆ E[I] and hence I ⊃ End(E) · k1. ut

Proposition 11. Suppose I ⊆ End(E) and N := Nrd(I) is coprime to p. Also
suppose M |N , and that I is not contained in End(E) ·m for any m ∈ N. Then
I + End(E) ·M has norm M .

Proof. We claim that

E[I +MO] = E[I] ∩ E[M ].

Indeed, for an arbitrary left ideal J of End(E) with Nrd(J) coprime to p, E[J ] is
the intersection of the kernels of a generating set of J , and for two left End(E)-
ideals J, J ′, J +J ′ is generated by J ∪J ′. Since E[I] is cyclic by Proposition 10,
there is some Q ∈ E[N ] so that E[I] = 〈Q〉. Then E[I] ∩ E[M ] = 〈[N/M ]Q〉, a
group of order M as desired. ut

6.5 Matching up a filtration of an ideal with a factorization of an
isogeny

In this section, we show that the definition of Jk in Algorithm 9 gives us the ideal
which corresponds to the isogeny Ek−1 → Ek of degree `. To do this, it suffices
to understand the horizontal isogeny and corresponding ideal in the following
diagram:

E

Ek−1 := E/E[Ik−1] Ek := E/E[Ik]

Ik−1

Ik

Jk



We will describe the relationship between the horizontal isogeny and its kernel
ideal for two arbitrary left ideals I, I ′ of End(E) satisfying I ′ ⊆ I, so in the
above picture, we replace Ik−1 with I and Ik with I ′. The goal is to find, given
I ′ ⊆ I, the horizontal isogeny EI → EI′ by first computing its corresponding
ideal J̃ in the following diagram:

E

EI := E/E[I] EI′ := E/E[I ′]

I
I′

J̃

Let φI : E → EI := E/E[I] and φI′ : E → EI′ := E/E[I ′] be the corresponding
isogenies; then E[I] ⊆ E[I ′] and hence φI′ factors as φI′ = ψφI for some isogeny
ψ : EI → EI′ . We wish to view the kernel of ψ as EI [J̃ ] for some left ideal J̃ of
End(EI). We make this idea precise in the following proposition.

Proposition 12. Let I ′ ⊆ I be two left End(E)-ideals whose norms are coprime
to p. Then there exists a separable isogeny ψ : EI → EI′ such that φI = ψ ◦ φI′ ,
and a left ideal J̃ of End(EI) with EI [J̃ ] = ker(ψ) such that J = ι(J̃) = I−1I ′,
where ι : End(EI)→ End(E)⊗Q is the map in Lemma 9 below.

To prove this, we need the following three lemmas:

Lemma 8. For a left ideal I of End(E), the map

φ∗I : Hom(EI , E)→ I

ψ 7→ ψφI

is an isomorphism of left End(E)-modules.

Proof. This is Lemma 42.2.6 of [Voi]. It also follows from Proposition 48 of
[Koh96]. ut

Lemma 9. Set B = End(E)⊗Q. The map

ι : End(EI)→ B

β 7→ 1

deg(φI)
φ̂IβφI

is injective, and its image is OR(I).

Proof. This is Lemma 42.2.8 of [Voi] or Proposition 3.9 of [Wat69]. ut

Lemma 10. We have a bijection

g : Hom(EI′ , EI)→ I−1I ′

ψ 7→ 1

deg(φI)
φ̂IψφI′ .



Proof. This is Lemma 42.2.19 of [Voi]. ut

Now we can prove the proposition.

Proof (Proof of Proposition 12). We have that I−1 = 1
Nrd(I)I. Consider an ele-

ment x ∈ I−1I ′ of the form

x =
1

deg(φI)
α̂′β′,

where α′ ∈ I, β′ ∈ I ′. Then by Lemma 8, there exists α ∈ Hom(EI , E) and
β ∈ Hom(EI′ , E) with

α′ = αφI , β
′ = βφI′ .

Thus

x =
1

deg(φI)
φ̂I α̂βφI′ = g(α̂β),

where g : Hom(EI′ , EI) → I−1I ′ is the map in Lemma 10. Since E[I] ⊆ E[I ′],
and φI , φI′ are separable, by Corollary III.4.11 of [Sil09] there exists a unique
separable isogeny ψ : EI → EI′ such that φI′ = ψ ◦ φI . Then define

J̃ := {α ∈ End(E1) : α(P ) = 0 ∀P ∈ ker(ψ)}.

Now map g−1(x) = α̂β ∈ Hom(EI′ , EI) to an element of J̃ using ψ∗: α̂βψ =
ψ∗(α̂β) ∈ J̃ . Finally, compute

x =
1

deg(φI)
φ̂I α̂βφI′

=
1

deg(φI)
φ̂I α̂βψφI

= ι(α̂βψ)

= ι(ψ∗(α̂β))

= (ι ◦ ψ∗ ◦ g−1)(x).

In other words, we have

g = ι ◦ ψ∗.

From this, we conclude that the left ideal of OR(I1) corresponding to J̃ indeed
is I−1I ′. ut

Combining the above results, we have our main theorem on matching up
filtrations of ideals with factorizations of isogenies:

Theorem 11. Suppose that I ⊆ End(E) satisfies Nrd(I) = `e where ` 6= p is a
prime and I 6⊂ End(E) · `k for any k ∈ N. Then there exists a filtration

I = Ie ( Ie−1 ( . . . ( I1 ( I0 = End(E)



and a chain of isogenies

E = E0 E1 · · · Ee−1 Ee = E′
ψ1 ψ2 ψe−2 ψe

such that if we set φk : E → E/E[Ik], then φk+1 = ψkφk. Moreover, for k =
0, . . . , e − 1, the map ψk+1 : Ek → Ek+1 has degree `, and its kernel ideal in
End(Ek) is isomorphic to I−1k Ik+1 ⊆ OR(Ik) under the map

ιk : End(Ek)→ OR(Ik)

ρ 7→ 1

deg(φk)
φ̂kρφ.

Proof. For k = 0, 1, . . . , e, define Ik := I + End(E) · `k. By Proposition 11,
Nrd(Ik) = `k. Let φI : E → Ee := E/E[Ie] = E/E[I] be the isogeny cor-
responding to I = Ie. Set Ok := OR(Ik) ⊆ End(E) ⊗ Q, and Jk := I−1k−1Ik.
Then Nrd(Jk) = `. Let Ek := E/E[Ik]. From the ideals Jk, we have isogenies
ψk : Ek−1 → Ek such that

φ = ψe ◦ · · · ◦ ψ1

by Proposition 12 applied inductively to the ideals Ik+1 ( Ik. ut

7 Some easy problems in supersingular isogeny graphs

The previous sections relied heavily on the quaternion `-isogeny algorithm of
[KLPT14] to derive the computational equivalence of several problems. In this
section, we provide two additional applications of this algorithm. First, we give
an algorithm for constructing the Deuring correspondence from maximal orders
inBp,∞ to supersingular j-invariants. Second, we give a polynomial-time collision
algorithm against the Charles-Goren-Lauter hash function when a special curve
is chosen as the initial point.

7.1 Constructive Deuring correspondence, from quaternion orders
to j-invariants

In this section we provide an efficient algorithm to solve Problem 1. Algorithm 12
first computes an ideal connecting O0 to O. Then it uses the quaternion `-isogeny
algorithm from [KLPT14] (or rather, its powersmooth version) to compute an-
other ideal in the same class but with a norm N =

∏
peii such that maxi p

ei
i is

small. It finally translates that ideal into an isogeny φ : E0 → E1 that corre-
sponds to it via Deuring’s correspondence.

Algorithm 12 Constructive Deuring correspondence, from maximal orders to
j-invariants.
Input: Maximal order O ⊂ Bp,∞.
Output: Supersingular j-invariant j such that End(E(j)) ' O.



1. Compute an ideal I that is a left ideal of O0 and a right ideal of O.
2. Compute an ideal J in the same class as I but with powersmooth norm.
3. Compute an isogeny φ : E0 → EI that corresponds to J via Deuring’s corre-

spondence.
4. Return j(EI).

Let 〈1, ω2, ω2, ω3〉 be a basis for O, and let M ∈ GL(4,Q) be such that
(1, ω2, ω2, ω3) = M(1, i, j, k). Let B be a bound on the numerators and denomi-
nators of all the coefficients of M .

Proposition 13 (Constructive Deuring Correspondence.). Under plau-
sible heuristic assumptions, Algorithm 12 can be implemented to run in time
polynomial in both logB and log p.

Proof. The analysis is similar to the proof of Proposition 5. ut

We remark that this algorithm is implicitly used in the recent identification
protocol of Galbraith, Silva and Petit [GPS17].

7.2 An attack on the CGL hash function

It was shown in [CGL09] that computing collisions or preimages for the Charles-
Goren-Lauter hash function amounts to computing large `-power degree isoge-
nies between two (possibly isomorphic) elliptic curves. The hardness arguments
for these problems then essentially relied on the following arguments:

1. In general, these isogenies must have a degree so large that they cannot be
efficiently computed with current algorithms.

2. The best known algorithms for these problems were variants that used birth-
day arguments, with an exponential complexity in the parameter’s size [Gal99].

Paradoxically, the quaternion `-isogeny algorithm [KLPT14] leads to both the
security arguments of Section 5.5 and to a partial attack against the hash func-
tion. More precisely, in this section we present a collision attack for the hash
function when the initial point used in the random walk is the special elliptic
curve E0 as constructed in Algorithm 3.

Our attack is summarized by Algorithm 13 below. We first compute α ∈
〈1, i, j, k〉 ⊂ O0 with Nrd(α) = `e for some e, which defines a sequence of ideals
Ii corresponding to a loop starting and ending at O0. To ensure there is no
backtracking in the loop (and moreover, that α 6= `e/2), we require that for any
natural number k, `−kα 6∈ O0. Applying the translation algorithm directly to this
sequence of ideals would have a prohibitive cost because `e is larger than p. As
in Algorithm 7, we first replace each ideal in the sequence by another ideal in the
same class but with powersmooth norm, and we apply the translation algorithm
to each of them individually to obtain corresponding isogenies. The end vertices
of these isogenies form a sequence of j-invariants that define a collision for the
original elliptic curve version of the Charles-Goren-Lauter hash function.



Algorithm 13 Collision attack on CGL hash function for special initial points
Input: Special j0 and O0 from Algorithm 3.
Output: A sequence of j-invariants j0, j1, . . . , je = j0 such that for any i there
exists an isogeny of degree ` from E(ji) to E(ji+1).

1. Compute e ∈ N and α ∈ 〈1, i, j, k〉 ⊂ O0 with Nrd(α) = `e.
2. Compute a sequence of ideals Ii = O0q +O0`

i.
3. For all i:

(a) Compute Ji with powersmooth norm in the same class as Ii.
(b) Translate Ji into an isogeny ϕi : E0 → Ei.

4. Return (j0, j(E1), j(E2), . . . , j(Ee) = j0).

To obtain an element whose norm is a power of ` in Step 1, we fix e large
enough, then pick random values of y and z until the equation w2 + qx2 =
`e − p(y2 + qz2) can be solved with Cornacchia’s algorithm. This solution is
described in Algorithm 14.

Algorithm 14 `-power norm element in O0

Input: Maximal order O0 ⊂ Bp,∞ as defined in Proposition 1.
Output: e ∈ N and α ∈ O0 with Nrd(α) = `e.

1. Let e = d2 log pe.
2. Choose random y, z smaller than

√
p/q.

3. Let N ← `e − p(y2 + qz2).
4. Find w, x ∈ Z such that w2 + qx2 = N if there are some, otherwise go to

Step 2.
5. Return α = w + xi+ yj + zk.

Proposition 14. There exists an algorithm that computes a collision for the
Charles-Goren-Lauter hash function when the initial vertex is a special curve in
time polynomial in log p.

Proof. In Algorithm 14 we expect that the equation in Step 4 will have a solution
for 1/2q log p of the random choices (y, z), so we expect this algorithm to run
in time polynomial in log p. Note that e = d2 log pe, and that Steps 4 and 5 in
Algorithm 13 both run in time polynomial in log p. We conclude that the runtime
of Algorithm 13 is also polynomial in log p. To ensure there is no backtracking in
the loop in the isogeny graph, we require that the ideal O0α satisfies O0α 6⊂ O0`

k

for any k. ut

We remark that we described our attack only for the maximal orders O0

defined in Proposition 1, but it can be extended to other maximal orders as
long as the corresponding curve is known or can be computed, and as long as
elements of norm a power of ` can be found in the order. This is the case for
“special” orders, as defined in [KLPT14].

The attack provided by Algorithm 13 can be extended into a “backdoor
attack” where an entity in charge of deciding the initial vertex for the hash
function plays the role of the attacker. This entity could take a random walk



from j0 to another curve E and publish this j(E) as the initial vertex for the hash
function. Due to the random walk the vertex j(E) will be uniformly distributed,
hence the function will be collision resistant based on the assumption that the
endomorphism ring computation problem is hard (see Proposition 8). However,
the entity can concatenate the path from j0 to j and the collision which begins
and ends at j0 to obtain a collision which begins and ends at j.

To the best of our knowledge, there exists no efficient algorithm to sample
supersingular j-invariants that does not involve this random walk procedure, so
the backdoor attack cannot really be avoided. On the other hand, by inspecting
such a collision, it is easy to recover a path to O0 and that will reveal that a
backdoor was inserted. In that sense, the backdoor mechanism may not be too
much of an issue in practice.

8 The EndomorphismRing Problem

In this section we provide an alternative study of the computational hardness of
computing endomorphism rings of supersingular elliptic curves. The inputs are p
and the curve, and so the running time must be polynomial in log p. This brings
up two important questions: 1) Does the endomorphism ring of an elliptic curve
have a polynomial representation size? And 2) If it does, can the endomorphisms
be evaluated in polynomial time? To have any meaningful efficient reduction, or
to analyze how hard it is to compute the endomorphism ring, we need to know
what the representation size of an endomorphism ring is. In particular, we need
to discuss what we mean by computing the endomorphism ring.

We will define a compact representation of endomorphisms which has poly-
nomial size, and show that the endomorphism ring of any supersingular elliptic
curve has a basis of such representations. This answers question 1. We also show
that these representations can be evaluated efficiently at arbitrary points, an-
swering question 2. We then define the problem EndomorphismRing in terms of
this new definition, and show that it efficiently reduces to MaximalOrder and
Action-on-`-Torsion for ` = 2, 3. Our definition of compact representations is
implicitly used in Algorithm 4. We also identify another problem that it reduces
to, which is related to computing isogenies.

8.1 Representation size of endomorphism rings

There are two typical ways to represent the endomorphism ring of E. The first is
to give rational functions F1(x, y), . . . , F4(x, y) and G1(x, y), . . . , G4(x, y) such
that φi : (x, y) 7→ (Fi(x, y), Gi(x, y)) (i = 1, . . . , 4) are endomorphisms of E that
form a basis for End(E). The second is to give the kernel of the maps φi, which
in general is not good enough for computations. However, it is not known if a
basis for End(E) exists in either representation that is of polynomial size. For
example, the basis may contain an endomorphism of exponential degree, where
exponentially many coefficients would be needed to describe it in general. For
the case of using the kernel, the generators may lie in a finite field of exponential



degree over the base field, and there will be exponentially many points in the
kernel.

8.2 Compact representations of endomorphisms

We will now show that the endomorphism ring End(E) of any supersingular
elliptic curve E/Fp2 has compact representations if p ≡ 3 (mod 4). The proof
will require a special curve E0 for which a basis of the endomorphism ring is
known; such a curve exists if p 6≡ 1 (mod 12).

For simplicity, we will focus on the case where p ≡ 3 (mod 4) is a prime and
let E0 : y2 = x3+x. Let π : E0 → E0 denote the Frobenius map, and let φ : E0 →
E0 be the map (x, y) 7→ (−x,

√
−1y). The maps 1+φπ and φ+π both have kernels

containing E[2], so they factor through the map [2] : E0 → E0. Let (1 + φπ)/2
and (φ + π)/2 represent the maps in these factorizations. It can be shown that
1, φ, (1 + φπ)/2, (φ + π)/2 form a basis for End(E0), see [GPS17]. As rational
maps, the size of this basis may not be polynomial in log p, but the description
as rational linear combinations of 1, φ, π, φπ uniquely identifies them, and so it is
enough that φ and π have polynomial size. This representation allows for efficient
evaluation at points P of E0 by writing P = [2]Q and then evaluating linear
combinations of 1, φ, π, φπ at Q. Define [β1, β2, β3, β4] := [1, φ, (1 + φπ)/2, (φ +
π)/2]. We will use β1, β2, β3, β4 in our definition of compact representatives of
endomorphisms for all other supersingular elliptic curves E/Fp2 .

Definition 1 (Compact representation of an endomorphism).
Let p ≡ 3 (mod 4) be a prime, let E0 : y2 = x3 + x, and β1, . . . , β4 :=

1, φ, (1 + φπ)/2, (φ + π)/2 be the endomorphisms of E0 as above. Let E/Fp2
be another supersingular elliptic curve, and let ρ ∈ End(E). Define a compact
representation of ρ to be a list

[d, [c1, . . . , c4], [φ1, . . . , φm], [φ̂1, . . . , φ̂m]],

where c1, . . . , c4, d ∈ Z, φi are isogenies on a path from E0 to E, the total size
of the list

log(|d|) + log(|c1|) + · · ·+ log(|c4|) +

m∑
i=1

log(deg(φm))

is at most polynomial in log p, and

ρ =
1

d

(
φm ◦ · · · ◦ φ1 ◦

(
4∑
i=1

ciβi

)
◦ φ̂1 ◦ · · · ◦ φ̂m

)
.

Theorem 15. Let p ≡ 3 (mod 4) and let E/Fp2 be a supersingular elliptic
curve. Then there exist two lists of four compact representatives of endomor-
phisms of E, such that each list represents a Z-basis of End(E).

Moreover, assume ρ ∈ End(E) is a linear combination of the endomorphisms
corresponding to one such basis, and assume that its coefficient vector in terms
of this basis is of size polynomial in log p. Using the two lists, we can evaluate ρ
at arbitrary points of E in time polynomial in log p and the size of the point P .



Proof. Let O0 be the maximal order in Bp,∞ with basis

b1, . . . , b4 := 1, i, (1 + ij)/2, (i+ j)/2.

Then O0
∼= End(E0) and b1, . . . , b4 correspond to β1, . . . , β4 under an isomor-

phism. There exist chains of isogenies φ1, . . . , φm and ψ1, . . . , ψn between E0

and E with deg(φk) = 2 and deg(ψk) = 3, and with m,n = O(log p). Set
φ = φm ◦ · · · ◦ φ1 and ψ = ψn ◦ · · · ◦ ψ1. Let I ⊆ O0 and J ⊆ O0 be the left
O0-ideals corresponding to φ and ψ respectively.

There exist rational numbers cIrs whose denominators are divisors of 2 Nrd(I)
and rational numbers cJrs whose denominators are divisors of 2 Nrd(J) such that

γIr :=
∑
s

cIrsbs, 1 ≤ r ≤ 4

is a a Minkowski-reduced basis of OR(I), and

γJr :=
∑
s

cJrsbs, 1 ≤ r ≤ 4

is a Minkowski-reduced basis of OR(J). This follows from Theorem 2 and its
proof. We can also efficiently find v ∈ Bp,∞ such that vOR(I)v−1 = OR(J), see
[KV10].

Then ρJr := 1
2mφγ

I
r φ̂ and ρIr := 1

3nψγ
J
r ψ̂ (r = 1, . . . , 4) each form a basis for

End(E). Then our compact representations are, for r = 1, . . . , 4,

[Nrd(I), cIr1, . . . , c
I
r4, [φ1, . . . , φm, ], [φ̂1, . . . , φ̂m]],

[Nrd(J), cJr1, . . . , c
J
r4, [ψ1, . . . , ψn], [ψ̂1, . . . , ψ̂n]].

Observe that we can efficiently evaluate ρJr at any point P of E whose order is
coprime to 2. This is because [2m]ρIr can be evaluated at P as it is a composition

of the φ̂k, an integer linear combination of the βk and then φk, all of which we
can efficiently evaluate in terms of the size of P . Set Q = [2m]ρIr(P ). Let N be
the inverse of 2m modulo the order of P . Then [N ]Q = ρIr(P ).

If we want to evaluate ρIr at a point P with P ∈ E[2f ], we will instead
express vρIrv

−1 as an integral linear combination of ρJ1 , . . . ρ
J
4 . We can evaluate

each ρJ1 , . . . , ρ
J
4 at any point of order coprime to 3 by the same argument.

Thus we can evaluate at arbitrary points P : if P has order 2fM with (2,M) =
1, then we can write P as a sum of a point P2 of order 2f and PM of order M .
We can then evaluate at P by evaluating it at each summand with the two above
strategies. ut

Computing compact representations of endomorphisms which can be evaluated
at points of E and which generate End(E) is a natural interpretation of the
problem of computing endomorphism rings, so we formally state it here before
relating it to other isogeny problems.



Problem 6 (EndomorphismRing) Given a prime p and a supersingular el-
liptic curve E/Fp2 , find a list of total length bounded by O(log p) of compact
representations of endomorphisms of E such that using this list, we can evaluate
the corresponding endomorphisms at points of E, and such that the corresponding
endomorphisms generate End(E) as a Z-module.

In the next section, we will discuss two reductions from EndomorphismRing.

8.3 EndomorphismRing reduces to MaxOrder and
Action-on-2-Torsion and Action-on-3-Torsion

In Algorithm 9, we used embeddings of endomorphism rings in Bp,∞, together
with their action on `-torsion, to construct an `-isogeny.

Theorem 16. If p ≡ 3 (mod 4), EndomorphismRing reduces to MaxOrder and
Action-on-`-Torsion for ` = 2 and 3.

Proof. Let E be a supersingular elliptic curve. Let E0 be the curve y2 = x3 + x
and let O0 be the order isomorphic to End(E0). By Theorem 15, the necessary
data to give compact representations of generators of End(E) is a 2-power and
3-power isogeny from E0 to E, and a basis for the right orders of the ideals which
correspond to these isogenies in Bp,∞. In the proof of Theorem 10, note that
all of this data is constructed using the oracles for MaxOrder, and Problems
Action-on-2-Torsion and Action-on-3-Torsion. ut

8.4 EndomorphismRing reduces to an isogeny problem

We can also reduce the problem EndomorphismRing to a variant of the `-Isogeny
Problem, where we require the `-power isogeny to be represented both by a chain
of `-isogenies and by a left ideal in a maximal order.

Problem 7 (FindKernelIdeal) Given a prime p and a sequence of super-
singular elliptic curves E0, . . . , Em−1 and `-isogenies φk : Ek−1 → Ek, k =
1, . . . ,m, with m = O(log p), along with a maximal order O0 ⊆ Bp,∞ isomorphic
to End(E0), compute the ideal I of O0 ⊆ Bp,∞ corresponding to φm ◦ · · · ◦ φ1 :
E0 → Em.

Theorem 17. Problem EndomorphismRing reduces in polynomial time to Prob-
lems `-PowerIsogeny and FindKernelIdeal.

Proof. Let E be a supersingular elliptic curve. Assume we are given φ1, . . . , φm
and ψ1, . . . , ψn whose compositions are 2m- and 3n-isogenies E0 → E and m,n
are O(log p). Also assume we are given ideals A and B of O0 such that A is
the kernel ideal of φ := φm ◦ · · ·φ1 : E0 → E and B is the kernel ideal of
ψ := ψm ◦ · · · ◦ ψ1. Then we can compute Z-bases of OR(A) and OR(B). The
sequences {φr} and {ψs} for r = 1, . . . ,m and s = 1, . . . , n, along with Z-bases of
OR(A) and OR(B), give us the compact representations of generators of End(E)
constructed in the proof of Theorem 15. ut
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