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Abstract

Fuzzy extractors (Dodis et al., Eurocrypt 2004) convert repeated noisy readings of a high-entropy
source into the same uniformly distributed key. The ideal functionality of a fuzzy extractor outputs
the key when provided with a value close to the original reading of the source. A necessary condition
for security, called fuzzy min-entropy, is that the probability of every ball of values of the noisy source
is small.

Noisy sources are measured from physical phenomena many of which best modeled by continuous
metric spaces. To build continuous-source fuzzy extractors, prior work assumes that the system designer
has a good model of the high (fuzzy) entropy distribution (Verbitskiy et al., IEEE TIFS 2010). However,
it is impossible to build an accurate model of a high entropy distribution with oracle access to the
distribution.

We show that model inaccuracy is a major hurdle to constructing a continuous-source fuzzy extrac-
tors. Namely, there exists a family of continuous distributions W such that each element W ∈ W has
fuzzy min-entropy but no fuzzy extractor can produce a three bit key for an average element of W.
Our family is built from random p-ary lattices.

We also show a stronger negative result for secure sketches, which are used to construct most fuzzy
extractors. Our results are for the Euclidean metric and are information-theoretic in nature. To the
best of our knowledge all continuous-source fuzzy extractors argue information-theoretic security.

Fuller, Reyzin, and Smith showed negative results for a discrete metric space equipped with the
Hamming metric (Asiacrypt 2016). The geometry of Euclidean space necessitates new techniques.

Keywords: Fuzzy extractor, secure sketch, information theory, key derivation.

1 Introduction

Reproducible secret random bits enable cryptographic applications. Many physical processes have entropy
but have exhibit noise between readings of the same process [BBR88, BS00, Dau04, EHMS00, GCVDD02,
MG09, PRTG02, SD07, TSS+06]. When a secret is read multiple times, readings are close (according to
some metric dis) but not identical. To utilize such sources, it is often necessary to remove noise.

The cryptography goal is for two parties to interactively engage in a protocol to derive the same
key from nearby secrets. This problem has a rich history starting from Wyner [Wyn75] and Bennett,
Brassard, and Robert [BBR88]. These works identify information-reconciliation (removing noise without
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leaking information) and privacy amplification (converting an entropic secret to random). In this work
we focus on the non-interactive and information-theoretically secure setting.

In the non-interactive setting information reconciliation is performed by a secure sketch which is a
pair of algorithms (SS,Rec) [DORS08]. The sketch algorithm SS takes an initial reading w and produces
a nonsecret helper value ss. The recover Rec algorithm takes a subsequent reading w′ along with ss and
outputs w. The correctness guarantee is that w is reproduced if dis(w,w′) ≤ t for metric dis. The security
requirement for a secure sketch is that w is hard to predict given ss.

A fuzzy extractor performs both information reconciliation and privacy amplification, producing a
uniform but stable key [DORS08]. Fuzzy extractors similarly consist of two algorithms. The generate
algorithm (Gen) takes an initial reading w and produces an output key along with a nonsecret helper value
pub. The reproduce (Rep) algorithm takes w′ and pub to reproduce key. The key should be reproduced
when dis(w,w′) ≤ t. The security requirement for fuzzy extractors is that key is statistically close to
uniform knowing pub. In this work we consider sources with continuous values, the primitive is known as
a continuous source fuzzy extractor [BDHV07]. We consider an n-dimension space equipped Euclidean
distance where dis(x, y) =

√∑n
i=1(xi − yi)2.

Prior work on continuous source fuzzy extractors uses one of two approaches [LSM06, BDHV07,
VTO+10]: providing security for specific distributions or introducing a quantization step in the definition
of security. The first approach is undesirable as we can’t model high (fuzzy) entropy distributions. In
the second approach, security is measured with respect to some quantization of the input space. That
is, the metric space is partitioned into different values of key. Li et al. [LSM06, Theorem 6] showed that
the choice of quantization may be far from optimal. In the worst case, the quantization decrease the
length of the derived key by a factor linear in the dimension of the space (Θ(n)) compared to the optimal
quantization. When the metric space is a bounded subset of Rn the desired security level is often linear
in the dimension. Thus, measuring security only after quantization may obscure whether key derivation
is possible.

Fuller, Reyzin, and Smith [FRS16] introduced fuzzy min-entropy. Fuzzy min-entropy codifies the
adversary’s success when provided with only the functionality of a fuzzy extractor (or secure sketch).
Suppose w is sampled from a distribution W . The adversary’s best strategy is to find w′ that maximizes
the weight of possible w ∈ W within distance t. Denote by Bt(w) the closed ball of radius t around w.
Fuzzy min-entropy is formally defined as

Hfuzz
t,∞ (W )

def
= − log

(
max
w′

Pr[W ∈ Bt(w′)]
)
.

Fuzzy min-entropy is suitable for continuous distributions including quantization in the definition. Im-
plicitly, the definition takes an integral over a ball of radius t > 0 and thus finite on bounded metric
spaces in finite dimensions.

In this work, we ask whether continuous source fuzzy extractors can be built for distributions with
fuzzy min-entropy. Since fuzzy extractor designers are securing high entropy distributions they must work
with models of the distribution. After deployment, the adversary can build a more accurate model. Fuzzy
extractors usually secure a family of sources, W. This is called the distributional uncertainty setting. We
ask a natural question:

Do continuous source fuzzy extractors exist for all families of sources with fuzzy min-entropy?

Fuller, Reyzin, and Smith [FRS16] answered in the negative for discrete Hamming space.

2



1.1 Our Contribution and Techniques

We show a family of distributions W where no fuzzy extractor or secure sketch can secure an average
element of W with more than 3 bits of security (Theorems 2 and 3 respectively). This answers the above
question negatively.

The secure sketch result is qualitatively stronger as it holds even if the secure sketch is allowed to be
wrong a constant fraction of the time. For secure sketches we consider the metric space as [0, 1]n. Our
results can be extended to other bounded subsets of Rn. A technicality requires our fuzzy extractor result
to consider (R/Z)n instead of [0, 1]n. We discuss this more below.

In both results we consider distributions W that have fuzzy min-entropy Hfuzz
t,∞ (W ) = Θ(n) and

algorithms that correct t = Θ(
√
n) errors. One may be able to avoid these results when less error

tolerance is required or more fuzzy min-entropy is present. To illustrate techniques we first focus on
secure sketches (which are subject to stronger negative results). We show a family W that satisfies two
properties:

1. When the secure sketch SS sees w ← W for some W ∈ W it is difficult to tell which distribution
it originated from. Intuitively this forces SS to try and secure all distributions W simultaneously.
For a secure sketch this corresponds to choosing points x ∈ [0, 1]n such that most points x′ where
dis(x, x′) ≤ t, Rec(x′, ss) = x. Call of the set of all such points X. The points in X form a Shannon
error correcting code. This implies that ∀x, y ∈ X, dis(x, y) ≥ t/2. Since X forms a code, one can
bound the size of X using packing arguments.

2. Show that the adversary gains additional information by knowing the distribution W . That is, the
size of X ∩W is small. This is true if W consists of points that are the output of a universal hash
family [CW79]. Intuitively, this is because seeing one point w ∈W does not give much information
about the rest of W ’s support.

In the fuzzy extractor setting the first property is more delicate. This is because a continuous region
is allowed to map to the same key. Thus, rather than considering consistent points, the fuzzy extractor
partitions the metric space based on what key is output by Rep. We call this partition Qkey. The
functionality of a fuzzy extractor demands that the true w lies in the interior of some part in Qkey. The
adversary can then limit their search to points in the interior.

A major goal of the proof is deriving bounds on the size of the interiors of a partition. Euclidean
space is more challenging than Hamming space for two reasons:

1. Volume grows exponentially with the radius of the ball in Euclidean space. This growth is super
exponential in Hamming space, growing exponentially in the binary entropy of the radius (see for
example [Gur10]). This slower rate of volume growth increases the size of X (resp. the size of the
interior of parts of Qkey) for secure sketches (resp. for fuzzy extractors).

2. In the fuzzy extractor case, the interior of the parts in Qkey is continuous which precludes the use
of counting techniques.

In place of counting techniques, we show the volume of the interior is smaller than the “volume” of
different distributions. That is, we show that any region V of fixed volume v must not include some
distributions in W. To make this argument, our family W consists of all lattices of a fixed dimension and
minimum distance. We consider each W to be a coset of a lattice. For V to contain a point from every
coset, v must be as large as the Voronoi cell of the lattice. The fraction of distributions not represented
in V is at least the ratio of v to the volume of the Voronoi cell.
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The mod cube In the fuzzy extractor case, we use the “mod” cube (R/Z)n as the input metric space
rather than the unit cube [0, 1]n. In the proof we show that the volume of the interior of Qkey is smaller
than the volume of Qkey. Roughly, we show the maximum security drops by a factor proportional to the
ratio between these volumes. To get a o(n) bound on key length this ratio must be exponential in the
dimension n.

If we consider the metric space [0, 1]n most parts of Qkey can be on a boundary of the unit cube. In
the worst case these objects can be 1-dimension so their interior volume is only a constant factor smaller
than their total volume.

We consider this to be an artifact of working with the unit cube. If a fuzzy extractor only secure
points on the boundary then the data does not vary in all n dimensions. Since extraneous dimensions
complicate error-correction, a system designer would use dimensionality reduction techniques to find a
representation that varies across all dimensions. This transformed distribution would be used for stable
key derivation. In the “mod” space there are no boundary points, the entire region is “n-dimensional.”

The positive results of [VTO+10] Verbitskiy et al. [VTO+10] construct a continuous-source fuzzy
extractor that requires knowledge of the probability distribution of W . This is called the precisely known
distribution or distribution sensitive setting. The idea is to sample two independent partitions A and B
of the input metric space. The input w’s part in A is the key while w’s part in B is the public value pub.
For security, the probability mass in Akey ∩ Bpub must be the same for all key, pub. If so, knowledge of
pub gives no information about key. The resulting key length is |key| = log |A|. For correctness, for any
w ∈ Akey ∩Bpub and w′ ∈ Akey′ ∩Bpub it should be that dis(w,w′) ≥ t.

The value pub leaks information about w so its size should be minimized. Each part Bpub is represented
in each part of A. Thus, as |A| increases it becomes more difficult to pack each Bpub while ensuring the
minimum distance condition. Verbitskiy et al. do not describe how to construct A and B when n > 1.
It is not clear which distributions their construction can secure. In contrast, Woodage et al. describe a
construction for discrete distributions that secures each distribution with fuzzy min-entropy [WCD+17].
Woodage et al.’s construction is for Hamming space but extends to other metrics since it only requires
evaluation of whether points are within distance t.

Verbitskiy et al. [VTO+10] extend their construction to work in the distributional uncertainty setting.
They show security when the statistical distance between the observed distribution W̃ and the actual
distribution W is small. To get a meaningful key, W must have an exponential number of disjoint balls
with nonzero probability. Thus, there is no reason to expect a bound on the statistical distance between
W̃ and W . When the original construction is instantiable it can be extended to the case where W can
be estimated.

We view the gap between our results and those of Vertibskiy et al. as demonstrating a family W that
can not be estimated. However, we have not been able to verify Verbitskiy et al.’s construction can secure
each element in the family W.

Our results do not preclude using methods other than sampling to create a model such as an expert’s
understanding of the physical process.

Other models A line of research views w and w′ as samples from a correlated pair of random vari-
ables [Wyn75, CK78, AC93, Mau93, RW05, TW15, HTW14]. Key length is bounded based on mutual
information. We do not consider this model in this work. Some discrete fuzzy extractors provide com-
putational security [FMR13] [CFP+16, HRvD+17, ACEK17, ABC+18, WLH18]. We are not aware of
continuous-source fuzzy extractors that argue computational security. Computational security is a natural
way to avoid our results.

Organization The remainder of this paper is organized as follows, Section 2 covers basic notation and
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mathematical prerequisites, Section 3 shows the family of distributions W that is used in both negative
results, Section 4 shows our fuzzy extractor negative result, and Section 5 shows our secure sketch negative
result. We focus on the fuzzy extractor negative result as it is more challenging and shows the interesting
aspects of the geometry.

2 Preliminaries

Random Variables We use uppercase letters for random variables and corresponding lowercase letters
for their samples. Multiple occurrence of the same random variable in an expression signifies the same
value of the random variable: for example (W, SS(W )) is a pair of random variables obtained by sampling
w according to W and applying the algorithm SS to w. The statistical distance between random variables
A and B with the same domain is

SD(A,B) =
1

2

∑
a

|Pr[A = a]− Pr[B = b]| = max
S

Pr[A ∈ S]− Pr[B ∈ S].

Entropy All logarithms in this work are base 2. Let (X,Y ) be a pair of random variables. Define
min-entropy of X as

H∞(X) = − log(max
x

Pr[X = x]).

The average (conditional) min-entropy [DORS08, Section 2.4] of X given Y is

H̃∞(X|Y ) = − log( E
y∈Y

max
x

Pr[X = x|Y = y]).

Define Hartley entropy H0(X) to be the logarithm of the size of the support of X, that is H0(X) =
log |{x|Pr[X = x] > 0}|. Define average-case Hartley entropy by averaging the support size:

H̃0(X|Y ) = log( E
y∈Y
|{y|Pr[X = x|Y = y] > 0}|).

Metric Spaces and Balls For a metric space (M, dis), the (closed) ball of radius t around w is the set
of all points within radius t, that is, Bt(w) = {w′|dis(w,w′) ≤ t}. In this work we consider the Euclidean
distance (L2 metric) over vectors defined via dis(w,w′) =

√
(
∑n

i=1(wi − w′i)2).

Mod space (R/Z)n Our first result considers vectors in (R/Z)n in this metric the maximum distance
between any two points is

√
n/2 (the distance between (0, 0, ..., 0) and (1/2, ..., 1/2)). Volume in this

space is

|Bt| =
πn/2tn

Γ(n/2 + 1)
. (1)

as long as t ∈ [0,
√
n/2]. Here Γ is the Γ function. For simplicity we restrict our results to n = 2k where

Γ(2k/2 + 1) = k!.
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Unit Cube Our second result considers vectors in the unit cube [0, 1]n. In this metric the maximum
distance between any two points is

√
n (the distance between (0, 0, ..., 0) and (1, 1, ..., 1)). The volume of

a ball in this space depends on whether the point is near a “boundary.” We use |Bt| to denote the volume
of a ball of radius t around an arbitrary point. This volume is bounded by:

Lemma 2.1. When n is even the volume |Bt| of the ball of radius in t ∈ [0,
√
n] in the L2 metric over

[0, 1]n satisfies

πn/2tn

(n/2)!2n
≤ |Bt| ≤

πn/2tn

(n/2)!
.

2.1 Fuzzy Extractors

Fuzzy extractors derive stable keys from noisy sources.

Definition 2.2. [DORS08] An (M,W, κ, t, ε)-fuzzy extractor is a pair (Gen,Rep). Gen on input w ∈M
outputs an extracted string key ∈ {0, 1}κ and a helper string pub ∈ {0, 1}∗. Rep takes w′ ∈ M and
pub ∈ {0, 1}∗ as inputs. (Gen,Rep) have the following properties:

1. Correctness: if dis(w,w′) ≤ t and (key, pub)← Gen(w), Pr[Rep(w′, pub) = key] = 1.

2. Security: ∀W ∈ W, if (Key,Pub)← Gen(W ), SD((Key,Pub), (Uκ,Pub)) ≤ ε.

Note: Often designers consider the family containing all distributions with a certain amount of (fuzzy)
min-entropy instead of an arbitrary family W. Every element in our family has fuzzy min-entropy so our
results hold if the fuzzy extractor secures all distributions with enough fuzzy min-entropy.

Recovering w from w′ forms the core of many fuzzy extractor constructions. The primitive that
performs just recovery is called a secure sketch. We recall the definition from [DORS08, Section 3.1]:

Definition 2.3. An (M,W, m̃, t)-secure sketch with error δ is a pair (SS,Rec). SS on input w ∈ M
returns a bit string ss ∈ {0, 1}∗. Rec takes an element w′ ∈ M and ss ∈ {0, 1}∗. (SS,Rec) have the
following properties:

1. Correctness: ∀w,w′ ∈M if dis(w,w′) ≤ t then Pr[Rec(w′,SS(w)) = w] ≥ 1− δ.

2. Security: for any distribution W ∈ W, H̃(W |SS(W )) ≥ m̃.

Note: The functionality of secure sketches ensures that when w1, w2 ∈ W |SS(W ) the points w1 and w2

cannot be too close to each other. In particular, this implies that the set W |SS(W ) is discrete and thus
H̃(W |SS(W )) is well defined. This is not true for fuzzy extractors where W |P can be continuous.

Fuller, Smith, and Reyzin [FRS16] proposed fuzzy min-entropy to measure suitability of a noisy
distribution for key extraction. Fuzzy min-entropy captures the adversary’s success probability when
provided with the functionality of the primitive. Fuzzy min-entropy measures ideal security. We adopt
this notion:

Definition 2.4. The t-fuzzy min-entropy of a distribution W in a metric space (M, dis) is:

Hfuzz
t,∞ (W ) = − log

max
w′

∑
w∈M|dis(w,w′)≤t

Pr[W = w]


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Previous work considered a definition of fuzzy extractors whereW is over a continuous space [LSM06,
BDHV07, VTO+10]. Usually such definitions consider a quantization of the space (see for example,
[VTO+10, Section 3.1]). Such definitions mix the fuzzy extractor construction with the definition of
security. Since fuzzy min-entropy measures the maximal probability ball it “discretizes” the space. This
discretization only considers the functionality of Rep rather than any construction.

3 The family of distributions W
In this section we describe the family of distributions W used in our negative results for both fuzzy
extractors and secure sketches. We use different properties of this family in the two negative results,
however, all of the properties are achieved by the same family of functions. Our negative results are for
an average element of W. Thus, instead of thinking of the adversary as receiving the description of W we
think of the adversary receiving Z where Z describes the uniform choice of W from W and we use WZ to
refer to an individual distribution. We define Z to be the restriction of the uniform distribution to points
that have a particular output for a specified element of a hash family. Z consists of two components
z = (A, h) and Wz = {w|HashA(w) = h}.

The key to both results is showing that it is hard to recover A, h from a single w and that the hash
has good geometric properties. The required properties are: 1) universality 2) regularity 3) the set Wz

minimum distance and 4) a large volume is required to cover every possible output of the hash family for
every fixed A.

The Hash Function The hash function we use is the coset of the input point with respect to a random
p-ary lattice with minimum distance ≥ t. Let K be the set of lattices of all p-ary lattices Λp(A) where
A ∈ Zn×mp with minimum distance t defined by Λp(A) = {y ∈ Znp : y = As mod p for some s ∈ Zm}.
Define HashA∈A : (R/Z)n → (R/pZ)m/Λp(A) be defined by

x 7→ [px]Λp(A)

where we understand [px]Λp(A) to be a coset containing px with respect to the lattice. Scaling a random
lattice to the unit cube is known as Construction A and is well studied in the lattice packing literature
(Conway and Sloane [CS13]). In our presentation we expand the input point rather than compressing the
lattice.

Note: The family is stated with respect to the input space (R/Z)n. This metric space will be used in
Section 4. Section 5 uses the metric [0, 1]n. We only use the first three properties in Section 5 and these
properties carry over to [0, 1]n.

Theorem 3.1. Let p be some prime and let n,m ∈ Z+ such that m = µn for some µ ∈ (0, 1/2). For
some matrix A ∈ Zn×mp define the lattice Λp(A) = {Ax|x ∈ Zmp }. Let A be the set of all lattices with

minimum distance t′ = tp = τp
√
n where τ = 1

6pµ
√

2e
. Define HashA∈A(w) = [pw]A. If p ≥ (3

√
2e)1/(1−µ)

the following are simultaneously achieved:

1. is 2−a-universal for a = (n−m) log p− 1, that is

∀v1 6= v2 ∈ (R/Z)n, Pr
A←A

[HashA(v1) = HashA(v2)] ≤ 2(n−m) log p−1,

2. is pm regular, that is
∀A ∈ A, h ∈ Range(HashA), |Hash−1

A (h)| ≥ pm,
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3. preimage sets have minimum distance t for t = τ
√
n, that is

∀A ∈ A, v1 6= v2, if HashA(v1) = HashA(v2) then dis(v1, v2) ≥ t,

4. and has p−µn-preimage volume, that is ∀A ∈ A, V ⊆ (R/Z)n,

Pr
h

$←Range(HashA)

[
Hash−1

A (h) ∩ V 6= ∅
]
≤ Vol(V )

p−µn
.

Proof. Let A be the the set of all p-ary lattices of rate m = µn, length n, and minimum distance t′ = tp.
That is,

A =

{
A|A ∈ Zn×mp , dim(A) = m, min

k∈K−{0n}
dis(k, 0n) > t′

}
.

Universality We show 2p−(m−n)-universality by first considering a slightly larger hash family. Let A′
be the set of all m-dimensional lattices over [0, 1]n. That is, consider A′ where

A′ = {A|A ∈ Zm×np , dim(A) = m} .

Define HashA′ as a hash function with this larger set of keys where the evaluation is still the coset after
multiplication by p. This hash function is universal. Fix v 6= w and write

Pr
K∈K′

[HashK(v) = HashK(w)] = Pr
K

[HashK(v − w) = 0]

= Pr
K

[v − w ∈ kerHashK]

= Pr
K

[[p(v − w)]K = 0] = pm−n

The last equality follows because the elements of A ∈ A′ are all m-dimensional subspaces. Thus, every
nonzero point is included in the null space with probability pm−n. We now show that the set A′ is not
much bigger than A.

We now show most p-ary lattices of dimension m have minimum distance > t. Our theorem is based
on the result of Erez et al. which show this construction (known as Construction A) is good for packing
in Euclidean space [ELZ05].

Lemma 3.2. Let n be an even integer. Let p be a prime, let µ ∈ (0, 1/2) and let m = µn. Suppose that

t ≤
√
n

3(2e)1/2pµ
−
√
n

2p

Then the defined hash function has minimum distance t with high probability across A. That is,

Pr
A

$←A
[HashA has minimum distance t] ≥ 1/2.

In particular, when p ≥ (3
√

2e)1/(1−µ) then the conditions are fulfilled when t =
√
n

6pµ
√

2e
.
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Proof. First note that we consider even n, this restriction is done to simplify calculations with the Γ
function but is not key to the result. By the Theorem statement and Stirling’s formula,

t ≤
√
n

3(2e)1/2pµ
−
√
n

2p

≤
n

√√
2π(n/2)n/2e−(n/2)

3pµπ1/2
−
√
n

2p

≤
n
√

(n/2)!

3pµπ1/2
−
√
n

2p

=
n
√

Γ(n/2 + 1)

3pµπ1/2
−
√
n

2p

Erez et al. [ELZ05, Theorem 1] show that this lattice achieves this packing radius with good probability.

In particular, define r =
n
√

Γ(n/2+1)

pµπ1/2 and d =
√
n/(2p). Our requirement on t implies that t ≤ r/3− d/2.

Their proof shows that,

Pr
A

$←A
[HashA has minimum distance t] ≥ 1−

(
2t+ d

r

)n
≥ 1−

(
2(r/3− d/2) + d

r

)n
= 1− (2/3)n

The fact that this value is at least 1/2 follows as n is even. We note that when p1−µ ≥ 3(2e)1/2 then for
the maximum value of t,

t =

√
n

3(2e)1/2pµ
−
√
n

2p
≥

√
n

3(2e)1/2pµ
−

√
n

2p1−µpµ

≥
√
n

3(2e)1/2pµ
−

√
n

6(2e)1/2pµ
≥

√
n

6(2e)1/2pµ
.

This completes the proof of Lemma 2.

Regularity To show pm-regularity, fix K, h and write

|Hash−1
K (h)| ≥ | kerHashK| = |{v : HashK(v) = 0}| ≥ pm

Since there are m linearly independent lattice vectors in Zmp and p possible coefficients that produce
distinct vectors (by linear independence).

Minimum distance This condition is immediately implied by the minimum distance of the lattice.

Preimage Volume Finally, note that any µn dimensional lattice has pµn points. The Voronoi region
of every lattice point in (R/Z)n is the same. Since the volume of the unit cube is 1 this means each region
has volume p−µn. This completes the proof that a hash function with the required parameters exists and
completes the proof of Theorem 1.
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4 No fuzzy extractor can secure W
We now prove it is impossible to build a fuzzy extractor that securesW. As discussed in the introduction
we use (R/Z)n as the input space equipped with the Euclidean metric.

Theorem 4.1. Let γ ≥ 1 be a constant. Let M = (R/Z)n. Let µ ∈ [0, 1/2) be a constant and define
m = µn. Then there exists a family W such that, for all W ∈ W, Hfuzz

t,∞ = H∞(W ) ≥ m. Let (Gen,Rep)

be a (M,W, κ, t, ε)-fuzzy-extractor with perfect correctness with noise rate τ
d
= t/
√
n where the following

conditions hold:

1. Let p be a prime integer parameter such that p ≥ (3
√

2e)1/(1−µ).

2. Noise rate τ = 1
6pµ
√

2e

3. The key length κ ≥ 1 + max
{

0, log γ + n
(

log pµ − log(6
√
e+
√
π

6
√
e

)
)}

.

Then ε ≥ 1
2 −

e
2
√

2πγ
.

Parameter discussion: There are settings of µ, τ, κ = Θ(1) such that the statistical distance ε is a

constant. Taking log p−µ ≤ log(6
√
e+
√
π

6
√
e

) ≈ −.1334 implies that κ only needs to satisfy κ ≥ 1 + log γ.

Substituting p ≥ (3
√

2e)1/(1−µ) and ignoring factors due to finding a prime p this condition holds when
µ ≤ .045. When γ = 4 then ε ≥ .35 (when κ ≥ 3). The full setting of achievable parameter ranges for a
constant κ, ε are in Figure 1.

Proof. We show the impossibility for an average member of W. Recall that we think of the distribution
W ∈ W as being described by an auxiliary variable Z that is a pair (A, h) where Wz = {w|HashA(w) = h}.
The hash function we use is HashA∈A : (R/Z)n → (R/pZ)m/Λp(A) be defined by

x 7→ [px]Λp(A)

where [px]Λp(A) the coset of the input point with respect to A. The conditions of Theorem 2 implies
those of Theorem 1 and thus we can use Theorem 1. For this proof we need the regularity, minimum
distance, and preimage volume conditions. By the 2m-regularity and minimum distance properties of
Hash, ∀z ∈ Z,H∞(Wz) = Hfuzz

t,∞ (Wz) = m.
We now want to show that for a random z ← Z, if (key, pub) is the output of Gen(Wz), then key can

be easily distinguished from uniform in the presence of pub and z. The outline for the proof is as follows:

• In the absence of information about z, the value w is uniform.

• pub partitions the key space (since there is perfect correctness).

• Each part is the partition created by pub is bounded in size.

• Valid w can only come from the interior of a part (by correctness of Rep, every candidate input w
to Gen must have all of its neighbors w′ produce the same output of Rep(w′, pub)).

• The volume of the interior of a part is smaller than the volume of a part.

• For many parts have interior volume smaller than the preimage volume of the lattice (the volume
of the Voronoi region of the lattice).

• Many elements W ∈ W have no point in the interior of the part.

10



Figure 1: Tradeoff between entropy rate µ and error rate τ for fuzzy extractor. Illustration of parameters
in Theorem 2. The figure looks linear due to the fine grained scaled but the relationship between µ and
τ is not linear. In this analysis we assume that there always exists a prime of size exactly 3(2e)1/(2(1−µ)).
The allowed noise rate τ may actually be smaller to accounting for finding such a prime. Recall that
Bertrand’s postulate state’s that a prime exists between n and 2n for any integer n > 1.

• By averaging across parts, the average distribution W has no points in the interior of many parts.

• It is possible to distinguish a random key from one produced by Gen by checking if it comes from a
part whose interior has no preimage in W .

We now proceed with the formal proof. The following lemma bounds the volume of the smallest parts.

Lemma 4.2. Suppose M is (R/Z)n with the Euclidean metric, κ ≥ 2, 0 ≤ t ≤
√
n

2 , and ε ≥ 0. Suppose
(Gen,Rep) is a (M,W, κ, t, ε)-fuzzy extractor for distribution family W over M. For any fixed pub, there
is a set GoodKeypub ⊂ {0, 1}κ of size 2κ−1 such that,

∀key ∈ GoodKeypub,Vol|{v ∈M|(key, pub) ∈ supp(Gen(v))}| ≤ 2−κ+1.

Proof. Recall that Vol([0, 1]n) = 1. The set GoodKeypub consists of the 2κ−1 keys with the smallest volume
(breaking ties arbitrarily). Note that for all key ∈ GoodKeypub, Vol({v ∈M|Rep(v, pub) = key)}) ≤ 2−κ+1.
If not, then ∪keyVol(Qpub,key) > 1 because for every key 6∈ GoodKeypub,Vol({v ∈M|Rep(v, pub) = key)}) >
2−κ+1. This completes the proof of Lemma 3.

We now proceed to show on key ∈ GoodKeypub the size of the interior is bounded. By perfect correctness
of Rep, the input w to Gen has the following property: for all w′ within distance t of w, Rep(w′, pub) =
Rep(w, pub). Thus, if we partition M according to the output of Rep, the true w is t away from the

11



boundary of a part. Interior sets are small, which means the set of possible of w values is small. (Rep has
a deterministic output even if the algorithm is randomized, so this partition is well-defined.)

To formalize this intuition, fix pub and partition M according to the output of Rep(·, pub) as follows:
let Qpub,key = {w′ ∈ M|Rep(w′, pub) = key}. Note that there are 2κ keys and thus 2κ parts Qpub,key. For
the remainder of the proof we focus on elements in GoodKeypub. As explained above, if w is the input to
Gen, then every point w′ within distance t of w must be in the same part Qpub,key as w, by correctness of
Rep. Thus, w must come from the interior of some Qpub,key, where interior is defined as

Inter(Qpub,key) = {w ∈ Qpub,key|∀w′ s.t. dis(w,w′) ≤ t, w′ ∈ Qpub,key} .

We now use the isoperimetric inequality to bound the size of Inter(Qpub,key). The proof for this lemma is
in Appendix A.1. The bounds on κ from the theorem statement and the volume of the Voronoi region of
the lattices contained in W are crucial for this proof.

Lemma 4.3. Define all parameters as in Theorem 2. Then for any fixed

∀p,∀key ∈ GoodKeypub,Vol(Inter(Qp,key)) ≤
e√

2π · γ · pµn
.

Lemma 4 implies that for each key ∈ GoodKeypub, the interior Vol(Inter(Qp,key)) is smaller than the
volume of the Voronoi region by a factor of e√

2πγ
. This means that for an average W ∈ W,

Pr
W←W,κ

$←GoodKeypub

[Inter(Qpub,key) ∩W = ∅] ≥ 1− e√
2πγ

.

Thus, on average across z = (k, h) a 1− e√
2πγ

fraction of keys in GoodKeypub (that is, overall 1
2 −

e
2
√

2πγ

fraction of keys cannot be produced). Define the set Implausible = {key, pub, z|Inter(Qpub,key) ∩Wz = ∅}.
Triples drawn by creating a key using the fuzzy extractor never come from the set implausible. However,
a uniformly random key will land in this set with probability 1

2 −
e

2
√

2πγ
. Thus, ε ≥ 1

2 −
e

2
√

2πγ
. This

completes the proof of Theorem 2.

5 No Secure Sketch can secure W
We now show no secure sketch can be secure for an average member of W. We consider the metric space
[0, 1]n but we can embed other bounded, continuous spaces of finite dimension into the unit cube.

Theorem 5.1. Let M = [0, 1]n with the Euclidean metric dis where n is even positive integer. Let

µ ∈ [0, 1
2) be a constant and define m

d
= µn. There is a family W where for all W ∈ W, Hfuzz

t,∞(W ) =
H∞(W ) ≥ m, such that for any (M,W, m̃, t)-secure sketch with error δ, we have m̃ ≤ 3 provided the
following conditions hold:

1. n ≥ 2(h2(2δ) + log e). Note that n ≥ 6 suffices.

2. Let p be a prime integer parameter such that p ≥ (3
√

2e)
1

(1−µ)

3. Define the noise rate τ
d
= t/
√
n where τ = 1

6pµ
√

2e
.

4. The error parameter δ satisfies

δ ∈
[
0,

1

2
− log(1/τ)

2(1− µ) log p

)

12



Figure 2: Tradeoff between entropy rate µ and error rate τ for secure sketch. Illustration of parameters
in Theorem 3. In this analysis we assume that there always exists a prime of size exactly 3(2e)1/(1−µ).
The allowed noise rate τ may be reduced to find such a prime. Recall that Bertrand’s postulate state’s
that a prime exists between n and 2n for any integer n > 1. The scale here is different than Figure 1.

Parameters: As an example, µ = .3 implies that p ≥ 129, so if we consider p = 131, we have that
τ ≤ .017 and δ ≤ .08. That is, there is a family with constant fuzzy entropy, constant error rate, and
constant error where no good secure sketch exists. The trade-off between µ and τ is illustrated in Figure 2.

Interpreting the result: A secure sketch “discretizes” the input space into regions that produce a
consistent value. Thus it is not surprising that, like the discrete case, a continuous secure sketch is not
always possible. As stated in the introduction, the geometry of the Euclidean metric is more challenging
than the Hamming metric due to the slower growth of volume.

Proof Sketch: We think of the interaction between the secure sketch designer and the adversary as follows:

1. The adversary samples Wz ←W and learns z.

2. The challenger samples w ←Wz.

3. The challenger runs ss← SS(w).

4. The adversary learns ss and z and guesses w.

The proof uses the family introduced in Section 3. First we show that WZ |SS(WZ) is discrete and forms
an error correcting code. We can then use standard arguments to bound the size of WZ |SS(WZ). We then
rely on the universality of the lattice to show that WZ |(SS(WZ), Z) is small. That is, that Z provides
fresh information that is not contained in SS(WZ).

13



Proof. Recall that we use the family described in Theorem 1, the uniform distribution over the support
of a coset h of a random lattice with minimum distance t. In this proof we will use the fact that for each
W ∈ W the hash family is universal, regular, and has minimum distance.

We will define Z = (A, h) to be the pair of the lattice and coset and consider W = {Wz}. Let
n,m, µ, t, τ and p be defined as in the theorem statement. The core of the proof is showing two properties
of this hash function:

1. The family restricted to a hash function and output value has fuzzy min-entropy. This is because
the hash function is regular and has minimum distance.

2. The adversary learns from sketch value SS(WZ) and new information by seeing the hash function
and value. This is because the hash function is universal.

The first property is immediate, by the 2m log p-regularity and minimum distance properties of HashA,
H∞(Wz) = Hfuzz

t,∞ (Wz) = m log p ≥ m. We now proceed to show that some values of sketch that occur
with good probability decrease the number of possible input values.

Lemma 5.2. Let M denote the Euclidean mod-space [0, 1]n and |Bt| denote the volume of a sphere of
radius t inM. Suppose (SS,Rec) is a (M,W, m̃, t) secure sketch with error δ, for some distribution family
W over M. Then for every v ∈ M there exists a set GoodSketchv such that Pr[SS(v) ∈ GoodSketchv] ≥
1/2 and for any fixed ss,

log |{v ∈M|ss ∈ GoodSketchv}| ≤
h2(2δ)− log |Bt|

1− 2δ
,

and, therefore, for any distribution DM over M,

H0(DM|ss ∈ GoodSketchDM) ≤ h2(2δ)− log |Bt|
1− 2δ

.

Proof. For any v ∈M , define Neight(v) be the uniform distribution on the ball of radius t around v and
let

GoodSketchv = {ss| Pr
v′←Neight(v)

[Rec(v′, ss) 6= v] ≤ 2δ]} .

We prove the lemma by showing two propositions. The first is a simple application of the Markov
inequality shown by Fuller et al. [FRS16, Proposition D.2]

Proposition 5.3. For v ∈M, Pr[SS(v) ∈ GoodSketchv] ≥ 1/2.

To finish the proof of Lemma 5, we show that the set {v ∈ M|ss ∈ GoodSketchv} forms an error-
correcting code and bound the size of the code.

Definition 5.4. We say that a set C is an (t, δ)-Shannon code if there exists a (possibly randomized)
function Decode such that for all c ∈ C,

Pr
c′←Neight(c)

[Decode(c′) 6= c] ≤ δ.

The set {v ∈M|ss ∈ GoodSketchv} forms (t, 2δ) Shannon code if we set Decode(y) = Rec(y, ss). We now
bound the size of such a code.
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Lemma 5.5. If C ⊂ [0, 1]n is a (t, δ)-Shannon code for any t > 0, then |C| <∞ and

log |C| ≤ h2(δ)− log |Bt|
1− δ

(2)

Proof of Lemma 6. First we show |C| < ∞. Suppose for contradiction that |C| = ∞. For any ε > 0, we
can find p, q ∈ C such that |p− q| < ε. Let Bt(p), Bt(q) be the t-radius balls centered on p, q respectively.
Then we can choose p, q, ε such that |Bt(p) ∩ Bt(q)| ≥ 2δ and |p − q| < ε < t. Let R be a uniform
distribution on Bt(p) ∩Bt(q). Clearly

Pr[dis(R, p) ≤ t] Pr[dis(R, q) ≤ t] = 1.

If Pr[Decode(R) 6= p] ≤ 1/2, we necessarily have Pr[Decode(R) 6= q] ≥ 1/2. Without loss of generality
assume that Pr[Decode(R) 6= q] ≥ 1/2. Then we have that

Pr
c′←Neight(q)

[Decode(c′) 6= c] ≥ Pr
c′←R

[Decode(c′) 6= c] Pr[c′ ∈ R] >
2δ

2
= δ.

By contradiction, we know |C| <∞.
This we can assume that C is finite. Let X be a uniform distribution on C and Y a uniform distribution

on the t-radius ball centered on X. Here we use a variant of Fano’s inequality [Fan61] when Y is a
continuous random variable. This formulation is different from most continuous formulation’s of Fano’s
inequality which point the Euclidean norm of the estimate [CD09, Lemma 2]. We do not prove this
formulation, the proof is the same as the standard discrete formulation of Fano’s which only relies on X̂
and X.

Lemma 5.6. Let X be a discrete random variable on M, Y be a continuous random variable on M with
X̂(Y ) a discrete estimator of X based on Y . Then,

H1(X|X̂) ≤ h2(δ) + δ(log |C|).

where δ = Pr[X 6= X̂].

In particular, we consider the following estimator X̂(y), if there exists a single x ∈ C such that
dis(x, y) ≤ t output x. If there are multiple xi such that ∀i, dis(xi, y) ≤ t then output a random y. Then
we have that

H1(X|X̂) ≥ H0(X|X̂) ≥ log

(
(|C| ∗ |Bt|)
|[0, 1]n

)
= log |C|+ log |Bt|.

Here the second inequality proceeds by noting that that |C| ∗ |Bt|/|[0, 1]n measures the thickness of the
space and thus the average number of possible points x ∈ C within distance t for a uniform point y around
a codeword. Thickness is usually used to describe the quality of a covering radius. Here by thickness we
simply mean the total volumes of the balls of radius t divided by the size of the space. Combining these
two facts yields that Equation 5. This completes the proof of Lemma 6.

Lemma 5 follows from Lemma 6.

Since the hash is universal, entropy drops further when the adversary learns A, h. Let M denote the
uniform distribution on M and K denote the uniform distribution on K. We first recall that a universal
hash function reduces entropy of any distribution with small enough support:
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Lemma 5.7. [FRS16, Lemma B.2] Let L be a distribution. Let {HashA}A∈K be a family of 2−a-universal
hash functions on the support of L. Assume A is uniform in K and independent of L. Then

H̃0(L|A,HashA(L)) < log(1 + | supp(L)| · 2−a) ≤ max(1, 1 +H0(L)− a) .

Applying Lemma 8 to Lemma 5, we get that for any ss,

H̃0(M|ss ∈ GoodSketchM,A,HashA(M))

< max

(
1, 2 +

h2(2δ)− log |Bt|
1− 2δ

− (n−m) log p

)
. (3)

We note that H̃0 serves as a bound on H̃∞ (see [FRS16, Lemma D.5]). That is,

H̃∞(M|ss ∈ GoodSketchM,A,HashA(M))

< max

(
1, 2 +

h2(2δ)− log |Bt|
1− 2δ

− (n−m) log p

)
.

We need just two more lemma technical lemmas:

Lemma 5.8. [FRS16, Lemma D.6] For any pair of random variables (X,Y ) and event η that is a
(possibly randomized) function of (X,Y ), H̃∞(X|η, Y ) ≥ H̃∞(X|Y )− log 1/Pr[η].

The second technical lemma bounds the size of ball in the Euclidean space:

Lemma 5.9. Let p be a prime such that p ≥ (3
√

2e)1/(1−µ) then

α
d
=
h2(2δ)− log |Bt|

1− 2δ
− (1− µ)n log p ≤ 0.
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Proof. Due to Lemma 1 and Stirling’s formula, we have that

α =
h2(2δ)− log |Bt|

1− 2δ
− (1− µ)n log p

≤ h2(2δ) + n+ log((n/2)!)− n/2 log π − n log t

1− 2δ
− (1− µ)n log p

≤
h2(2δ) + n(1− log π

2 ) + log e(n/2)n/2+1/2e−n/2 − n log t

1− 2δ
− (1− µ)n log p

=
h2(2δ) + log e+ n(1− log π

2 − log e
2 ) + log(n/2)n/2+1/2 − n log t

1− 2δ
− (1− µ)n log p (4)

≤
h2(2δ) + log e+ n

2 log n
2 − n log t

1− 2δ
− (1− µ)n log p (5)

=
h2(2δ) + log e+ n log (n/2)1/2

τ
√
n

1− 2δ
− (1− µ)n log p

=
h2(2δ) + log e+ n log 1√

2τ

1− 2δ
− (1− µ)n log p

≤
n log 1

τ

1− 2δ
− (1− 2δ)(1− µ)n log p

1− 2δ
(6)

≤
n log 1

τ

1− 2δ
−

log(1/(τ))
(1−µ) log p(1− µ)n log p

1− 2δ
(7)

≤
n log 1

τ

1− 2δ
−

n log 1
τ

(1− 2δ)
= 0

Where Equation 8 follows from Equation 7 as n(1 − log π/2 − log e/2) + 1/2 log n/2 ≤ 0 for all even
positive integers. Equation 9 follows by the fact that n ≥ 2(h2(2δ) + log e) by assumption. Equation 10
follows by the assumption on δ.

17



Putting these facts together allows us to conclude the theorem statement:

H̃∞(WZ |Z, SS(WZ)) = H̃∞(M|SS(M),A,HashA(M))

≤ log
1

Pr[SS(M) ∈ GoodSketchM]
+

H̃∞(M|ss s.t. ss = SS(M) and ss ∈ GoodSketchM,A,HashA(M))

≤ log
1

Pr[SS(M) ∈ GoodSketchM]
+

H̃0(M|ss s.t. ss = SS(M) and ss ∈ GoodSketchM,A,HashA(M))

< log
1

Pr[SS(M) ∈ GoodSketchM]
+ max

(
1, 2 +

h2(2δ)− log |Bt|
1− 2δ

−m log p

)
< log 2 + max

(
1, 2 +

h2(2δ)− log |Bt|
1− 2δ

−m log p

)
≤ log 2 + max

(
1, 2 +

h2(2δ)− log |Bt|
1− 2δ

− (1− µ)n log p

)
≤ log 2 + max(1, 2)

≤3

This completes the proof of Theorem 3.
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A Proofs

A.1 Proof of Lemma 4

Proof. Fix some pub and some key ∈ GoodKeypub and consider Qp,key. Recall that

κ ≥ 1 + log(γ) + n

(
log pµ − log(

6
√
e+
√
π

6
√
e

)

)
.

By substitution one has,

Vol(Qpub,key) ≤ 2−κ+1 ≤ 1

(γ) · 2n
(

log pµ−log( 6
√
e+
√
π

6
√
e

)
) =

2
n log( 6

√
e+
√
π

6
√
e

)

(γ) · pµn·
.

Define α to be the radius of a ball with that volume. Using Equation 1 we have that

πn/2αn

(n/2)!
≤ 2

n log( 6
√
e+
√
π

6
√
e

)

(γ)pµn

Rearranging terms gives a bound on α:

α ≤
n
√

(n/2)!√
π

· 1
n
√
γ · pµ

·
(

6
√
e+
√
π

6
√
e

)
The isoperimetric inequality says that the interior of this part is maximized in the setting when Qpub,key

is a ball. Thus, for all key ∈ GoodKeypub

Vol(Inter(Qp,key)) ≤ Vol(Bα−t).

We know the quantity α− t is bounded by:

α− t ≤
n
√

(n/2)!√
π

· 1
n
√
γ · pµ

·
(

6
√
e+
√
π

6
√
e

)
− 1

6
√

2epµ

√
n

≤ 1

pµ

(
n
√

(n/2)!
n
√
γ
√
π
· (6
√
e+
√
π

6
√
e

)− 1

6
√
e

√
n

2

)
(8)

≤ 1

pµ

(
(n2 )(n+1

2
) · e( 1

n
− 1

2
)

n
√
γ

·
(

1√
π

+
1

6
√
e

)
− 1

6
√
e

√
n

2

)
(9)

≤
(
n
2

)(n+1
2

)
e

1
n
− 1

2

√
πpµγ1/n

(10)

Here equation 3 follows from 2 by use of Stirling’s upper bound that (n/2)! ≤ e(n/2)n/2+1/2 · e−n/2.
As γ ≥ 1 and n ∈ Z+, it is always true that

e2n

2
≤ (γ)2en.
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Thus, equation 4 follows by noting that the quantity(
n
2

) 1
2n e

1
2
− 1

2n

γ1/n
≤ 1

This gives us the desired bound on the volume of this interior:

Vol(Inter(Qp,key)) ≤
πn/2

(
(n2 )

(n+1
2 )

e
1
n−

1
2

√
πpµγ1/n

)n
(n/2)!

≤
(n2 )

n+1
2 p−µn · e · e

−n
2 γ−1

√
2π(n2 )

n+1
2 e

−n
2

=
e√

2π · γ · pµn
.

Here we use Stirling’s lower bound that (n/2)! ≥
√

2π(n/2)n/2+1/2e−n/2. This completes the proof of
Lemma 4.
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