
ABY3: A Mixed Protocol Framework

for Machine Learning

Payman Mohassel and Peter Rindal

Abstract

Machine learning is widely used to produce models for a range of applications and is increasingly
offered as a service by major technology companies. However, the required massive data collection raises
privacy concerns during both training and prediction stages.

In this paper, we design and implement a general framework for privacy-preserving machine learning
and use it to obtain new solutions for training linear regression, logistic regression and neural network
models. Our protocols are in a three-server model wherein data owners secret share their data among
three servers who train and evaluate models on the joint data using three-party computation (3PC).

Our main contribution is a new and complete framework (ABY3) for efficiently switching back and
forth between arithmetic, binary, and Yao 3PC which is of independent interest. Many of the conversions
are based on new techniques that are designed and optimized for the first time in this paper. We also
propose new techniques for fixed-point multiplication of shared decimal values that extends beyond the
three-party case, and customized protocols for evaluating piecewise polynomial functions. We design
variants of each building block that is secure against malicious adversaries who deviates arbitrarily.

We implement our system in C++. Our protocols are up to four orders of magnitude faster than the
best prior work, hence significantly reducing the gap between privacy-preserving and plaintext training.

1 Introduction

Machine learning is widely used to produce models that classify images, authenticate biometric information,
recommend products, choose which Ads to show, and identify fraudulent transactions. Major technology
companies such as Microsoft, IBM, Amazon, and Google are providing cloud-based machine learning
services [4, 5, 7, 2] to their customers both in form of pre-trained models that can be used for prediction
as well as training platforms that train models on customer data. Advances in deep learning, in particular,
have lead to breakthroughs in image, speech, and text recognition to the extent that the best records are
often held by neural network models trained on large datasets.

A major enabler of this success is the large-scale data collection that deep learning algorithms thrive on.
Internet companies regularly collect users’ online activities and browsing behavior to train more accurate
recommender systems, the healthcare sector envisions a future where patients’ clinical and genomic data
can be used to produce new diagnostic models and there are efforts to share security incidents and threat
data, to improve future attack prediction.

The data being classified or used for training is often sensitive and may come from multiple sources with
different privacy requirements. Regulations such as HIPPA, PCI, and GDPR, user privacy concerns, data

1

sovereignty issues, and competitive advantage are all reasons that prevent entities from pooling different
data sources to train more accurate models.

Privacy-preserving machine learning based on secure multiparty computation (MPC) is an active area
of research that can help address some of these concerns. In particular, it ensures that during training, the
only information leaked about the data is the final model (or an encrypted/shared version), and during
prediction, the only information leaked is the classification label. These are strong guarantees that, though
do not provide a full-proof privacy solution (the models themselves or interactions with them can leak
information about the data [57, 53, 55]), provide a strong first line of defense which can be strengthened
when combined with orthogonal mechanisms such as differential privacy [8, 42]. The most common setting
considered in this line of work is a server-aided model where data owners (clients) send encrypted/shared
version of their data to multiple servers who perform the training procedure on the combined data or apply
a (shared) pre-trained model to classify new data samples. Performance of these solutions has improved
significantly over the years, leading to orders of magnitude speedup in privacy-preserving machine learning.
Nevertheless, there is still a large gap between plaintext training and the state-of-the-art privacy-preserving
solutions. While part of this gap is unavoidable given the desired guarantees, the current state of affairs
is far from optimal. In the three-party computation (3PC) setting with one corruption, new techniques
and implementations [43, 10, 28] have significantly reduced this gap, e.g. processing 7 billion AND gates
per second (1.3 million AES circuits). The MPC techniques for machine learning, however, are primarily
limited to the two-server model and do not benefit from these speedups. They also only consider security
against the weaker semi-honest attackers who continue to follow the protocol even after corrupting a server.

In this paper, we explore privacy-preserving machine learning in the three-server model. We emphasize
this does not mean only three data owners can participate in the computation. We envision application
scenarios where the servers are not considered the same as data owners. Each server can be an independent
party or the representative for a subset of data owners. In other words, as long as we guarantee that at
most one of the three servers is compromised, an arbitrary number of data owners can incorporate their
data into our privacy-preserving machine learning framework.

The first natural question is whether directly applying the new 3PC techniques to machine learning
algorithms would yield the same speedup for server-aided privacy-preserving machine learning. Unfortu-
nately, when using existing techniques the answer is negative.

� The first challenge is that the above-mentioned 3PC techniques are only suitable for computation
over a Z2k ring. This is in contrast with machine learning computation wherein both the training data
and the intermediate parameters are decimal values that cannot be natively handled using modular
arithmetic. The two most common solutions are to (i) represent decimal values as integers where
the least significant bits represent the fractional part, and choose a large enough modulo to avoid a
wrap around. This approach fails when performing many floating point multiplications, which is the
case in standard training algorithms (e.g. stochastic gradient descent) where millions of sequential
multiplications are performed. Moreover, a large modulo implies a more expensive multiplication that
further reduces performance, (ii) perform fixed-point multiplication using a boolean multiplication
circuit inside the MPC. This prevents the values from growing too large by truncating the product
to a fixed number of decimal digits. Such a boolean circuit can be evaluated using either the secret
sharing based [10] or the garbled circuit based [43] techniques, leading to a significant increase in
either round or communication cost of the solution, respectively.

2

� The second challenge is that most machine learning procedures require switching back and forth
between arithmetic operations such as multiplication and addition, and non-arithmetic operations
such as approximate activation functions (e.g. logistic function), and piecewise polynomial functions
(e.g. RELU). The former is most efficiently instantiated using arithmetic secret sharing while the
latter should be implemented using either binary secret sharing or Yao sharing. Standard ways
of converting between different sharing types are costly and quickly become a major performance
bottleneck.

Addressing the above challenges efficiently is even harder in presence of an attacker who behaves
arbitrarily malicious.

1.1 Our Contribution

We design and implement a general framework for privacy-preserving machine learning in the three-server
model with a single corrupted server. Our contributions are as follows:

1. New approximate fixed-point multiplication protocols for shared decimal numbers at a cost close to
a standard secret shared modular multiplication, in both the semi-honest and the malicious case.
Experimentally, we find that our protocol results in a 50× improvement in throughput and 24×
improvement in latency compared to an optimized boolean circuit. This difference can increase by
several orders of magnitude when combined with additional optimizations, e.g. see Section 5.2. We
note that the recent fixed-point multiplication techniques of [44] fail in the 3PC setting and certainly
fail in presence of malicious adversaries. Our new techniques are not only secure against malicious
adversaries but also extend to arbitrary number of parties.

2. A new general framework for efficiently converting between binary sharing, arithmetic sharing [10]
and Yao sharing [43] in the three-party setting, that yields the first Arithmetic-Binary-Yao (ABY)
framework for the three-party case with security against malicious adversaries (See Table 1). Many
of these conversions are based on new techniques and are designed and optimized for the first time in
this paper. Our framework is of general interest given that several recent privacy-preserving machine
learning solutions [44, 39, 47] extensively utilize ABY conversions, and its use cases go beyond
machine learning [21]. As we will see later, the techniques we develop for our ABY framework are
quite different from the original two-party framework of [23], since secure three-party computation
techniques deviate significantly from their two-party counterparts.

3. Other optimizations include a delayed re-share technique that reduces the communication complex-
ity for vectorized operations and a customized 3PC protocol for evaluating piecewise polynomial
functions based on a generalized three-party oblivious transfer primitive.

4. We instantiate all our building blocks in both the semi-honest and the malicious setting, often re-
quiring different techniques in each case.

5. We implement our framework in the semi-honest setting and run experiments for training and infer-
ence for linear, logistic regression and neural network models. Our solutions are up to 55000× faster
than the two-party solution of SecureML [44] when training neural networks, and our framework can

3

do 5089 linear regression training iterations per second compared to 3.7 iterations by [44]. Similarly,
our neural network experiment can generate a handwriting prediction in 10 milliseconds compared
to the state-of-the-art Chameleon [47] protocol requiring 2700 milliseconds.

1.2 Overview of Techniques

As a brief notational introduction, we define JxK as the sharing of a secret value x. This sharing will be one
of three types: 1) JxKA denotes an additive secret sharing of x ∈ Z2k over the group Z2k . 2) JxKB denotes
a vector of k binary secret sharing which encodes x ∈ Z2k . 3) JxKY to denote that x is secret shared using
keys which are suitable for evaluating a Yao’s garbled circuit[43]. For a more extensive description of our
notation we refer to Section 3.1.

Approximate fixed-point multiplication Our starting point is the semi-honest three-party secure
computation protocol of Araki et al. [10] based on replicated secret sharing in the ring Z2k . This protocol
represents a value x ∈ Z2k by linearly secret sharing it into three random values x1, x2, x3 ∈ Z2k such that
the sum of them equals x. Each of the three parties is given two of these shares such that any two parties
can reconstruct x. The first challenge in using the protocol of [10] is that replicated secret sharing does
not naturally support fixed-point multiplication and as we show later, the truncation technique introduced
in [44] for approximate fixed-point multiplication fails in the three-party setting.

We design two new constructions for this problem. Namely, computing JxK := Jx′/2dK given Jx′K and
d. The first solution switches from 2-out-of-3 replicated sharing to 2-out-of-2 sharing between two of the
three parties, performs the truncation technique of [44] and switches back to a 2-out-of-3 sharing, but the
protocol is only secure against a semi-honest adversary. The second approach generates an offline pair
Jr′K, JrK ∈ Z2k where r = r′/2d. Given such a truncation pair, parties can truncate a shared value Jx′K
by first revealing x′ − r′ to all and jointly computing JxK = JrK + (x′ − r′)/2d. We show that with high
probability, x is a correct truncation of x′ with at most 1 bit of error in the least significant bit. We
also show how to efficiently generate the pair JrK, Jr′K using high throughput techniques. Many such pairs
can be generated in the same number of rounds. This approach can be made secure against malicious
adversaries as long as the standard building blocks it uses are maliciously secure as in [28], and it is easy
to see that it generalizes to an arbitrary number of parties.

Moreover, we show that fixed-point multiplication can be further optimized when working with vectors
and matrices. In particular, the inner product of two n-dimensional vectors can be performed using O(1)
communication and a single truncation pair, by delaying the re-sharing and truncation until the end. This
gives us all we need to train linear regression models in the three-server model.

Three-party ABY framework For training linear regression models, we only need to use arithmetic
sharing, i.e. additive replicated sharing over Z2k where k is a large value such as 64. In logistic regression
and neural network training, however, we also need to perform computation that requires bit-level oper-
ations. The best way to perform such tasks is to either use binary sharing i.e. additive sharing over Z2

or Yao sharing based on three-party garbling [43]. The former is more communication efficient, with only
O(n) bits communicated for a circuit with n gates, but with the number of rounds proportional to the
circuit depth, while the latter only requires 1 or 2 rounds but a higher communication cost.

4

Conversion
Semi-honest Malicious

Comm. Rounds Comm. Rounds

JxKA → JxKB k + k log k 1 + log k k + k log k 1 + log k

(JxKA, i)→ Jx[i]KB k 1 + log k 2k 1 + log k

JxKB → JxKA k + k log k 1 + log k k + log k 1 + log k

JbKB → JbKA 2k 1 2k 2

JbKY → JbKB 1/3 1 2κ/3 1

JbKB → JbKY 2κ/3 1 4κ/3 1

JxKY → JxKA 4kκ/3 1 5kκ/3 1

JxKA → JxKY 4kκ/3 1 8kκ/3 1

Table 1: Conversion costs between arithmetic, binary and Yao representations. Communication (Comm.)
is measured in average bits per party. x ∈ Z2k is an arithmetic value, b ∈ {0, 1} is a binary value, κ is the
computational security parameter.

We show efficient conversions between all three sharing types, with the goal of minimizing both round
and communication cost. Please refer to Table 1 for a complete list of our conversion protocols and their
cost. When compared to the original two-party ABY framework of [23], we reiterate that our conversion
techniques, while conceptually similar, differ significantly from [23] due to large deviations between 3PC
and the less efficient 2PC techniques. To provide a flavor of our techniques, we review our new solution for
adding three binary shared values at almost the cost of a single addition circuit (as opposed to two). This
technique is of general interest but in particular arises in both the arithmetic to binary share conversion
(bit decomposition) and the binary to arithmetic one (bit composition). For details of all other conversions
refer to Section 5. Consider JxKA = (x1, x2, x3) where x = x1 + x2 + x3. Since we use replicated sharing,
party 1 holds both x1 and x2 and can compute x1 +x2 locally. Party 1 then inputs (x1 +x2) while party 3
inputs x3 to a binary sharing (or a garbled circuit) 3PC that computes an addition circuit that computes
J(x1 + x2)KB + Jx3KB. Parties also locally compute binary sharing of two random values Jy2KB, Jy3KB which
are revealed to parties (1,2) and parties (2,3) respectively. They then locally compute Jy1KB = (J(x1 +
x2)KB + Jx3KB)⊕ Jy2KB ⊕ Jy3KB and reveal it to parties (1,3). This completes the conversion to the binary
sharing JxKB = (y1, y2, y3). When using a binary sharing 3PC, we use an optimized parallel prefix adder
[33] to reduce the number of rounds from k to log(k) at the cost of O(k log k) bits of communication. When
using a Yao sharing 3PC which only requires a single round by leveraging redundancies in the replicated
secret sharing, we use a ripple-carry full adder circuit with k AND gates and O(κk) communication where
κ is the security parameter.

But this approach is only secure against a semi-honest adversary. In particular, a malicious party 1 can
use a wrong value in place of (x1 + x2) which goes undetected since the addition is done locally. We can
prevent this by performing the addition inside another malicious 3PC but this would double both round
and communication cost. We show how to avoid this extra cost in case of binary sharing 3PC. Consider
the traditional ripple-carry full adder where the full adder operation FA(x1[i], x2[i], c[i − 1]) → (c[i], s[i])
normally takes two input bits x1[i], x2[i] and a carry bit c[i − 1] and produces an output bit s[i] and the
next carry bit c[i]. We modify the full adder to instead take x3[i] as its third input. It is then easy to see
that x1 + x2 + x3 = 2c + s. As a result, k parallel invocations of FA in a single round to compute c and
s and one evaluation of a parallel prefix adder circuit to compute 2c+ s are sufficient to compute x. This
results in log k + 1 rounds and k log k + k bits of communication which is almost a factor of 2 better than
2 log k rounds and 2k log k communication for the naive approach. Since the whole computation is done

5

using a 3PC, the resulting protocol is secure against a malicious adversary if the 3PC is.

3PC for piecewise polynomial functions Piecewise polynomial functions compute a different poly-
nomial at each input interval. Activation functions such as RELU are a special case of such functions and
many of the proposed approximations for other non-linear functions computed during machine learning
training and prediction are also of this form [39, 44]. While our new ABY framework enables efficient
three-party evaluation of such functions, we design a more customized solution based on an optimized con-
struction for the following two building blocks: aJbKB = JabKA (a known by one party) and JaKAJbKB = JabKA

(a is shared) where b is a bit and a ∈ Z2k . We observe that this mixed computation can be instantiated
using a generalized three-party oblivious transfer protocol where a bit bi is the receiver’s input and an
integer a is the sender’s input and the third party plays the role of a helper who has no input/output but
knows the receiver’s input bit. We design new protocols for this task with both semi-honest and malicious
security that run in 1 and 2 rounds respectively and require between 2k to 4k bits of communication de-
pending on the variant. This should be of more general interest as piecewise polynomial functions appear
in many applications and are a common technique for approximating non-linear functions.

Implementation We implemented our framework in the semi-honest setting and demonstrate that it is
faster than all previous protocols. In most cases, this framework improves the overall running time by 100
to 10000× (depending on training model, and problem size) while at the same time reducing the amount
of communication. The tasks that we implement include linear, logistic regression and neural network
training and evaluation for a variety of problem sizes.

2 Related Work

Earlier work on privacy preserving machine learning considered decision trees [38], k-means clustering [35,
14], SVM classification [60, 58], linear regression [25, 26, 51] and logistic regression [54]. These papers
propose solutions based on secure multiparty computation, but appear to incur high efficiency overheads,
as they do not take advantage of recent advances in applied MPC and lack implementation.

Linear Regression Privacy-preserving linear regression in the two-server model was first considered
by Nikolaenko et. al. [46] who present a privacy-preserving linear regression protocol on horizontally
partitioned data using a combination of linearly homomorphic encryption (LHE) and garbled circuits. More
recent work of Gascon et. al. [29] and Giacomelli et. al. [30] extend the results to vertically partitioned
data and show improved performance. However, they reduce the problem to solving a linear system using
either Yao’s garbled circuit protocol or an LHE scheme, which introduces a high overhead on the training
time and cannot be generalized to non-linear models. In contrast, we use the stochastic gradient descent
(SGD) method for training which yields faster protocols and enables training non-linear models such as
neural networks. Recent work of Mohassel and Zhang [44] also uses the SGD for training, using a mix of
arithmetic, binary, and Yao sharing 2PC (via the ABY framework). They also introduce a novel method for
approximate fixed-point multiplication that avoids boolean operations for truncating decimal numbers and
yields the state-of-the-art performance for training linear regression models. The above are limited to the

6

two-server model and do not extend to the three-server model considered in this paper. Recently, Gilad-
Bachrach et. al. [32] propose a framework which supports privacy preserving linear regression. However,
the framework does not scale well due to extensive use of garbled circuits.

Logistic Regression Privacy preserving logistic regression is considered by Wu et. al. [59]. They
propose to approximate the logistic function using polynomials and train the model using LHE. However,
the complexity is exponential in the degree of the approximation polynomial, and as shown in [44] the
accuracy of the model is degraded compared to using the logistic function. Aono et. al. [9] consider a
different security model where an untrusted server collects and combines the encrypted data from multiple
clients, and transfers it to a trusted client to train the model on the plaintext. However, in this setting,
the plaintext of the aggregated data is leaked to the client who trains the model.

Neural Networks Privacy preserving machine learning with neural networks is more challenging. Shokri
and Shmatikov [52] propose a solution where instead of sharing the data, the two servers share the changes
on a portion of the coefficients during the training. Although the system is very efficient (no cryptographic
operation is needed at all), the leakage of these coefficient changes is not well-understood and no formal se-
curity guarantees are obtained. In addition, each server should be able to perform the training individually
in order to obtain the coefficient changes, which implies each server holds a big portion of a horizontally
partitioned data in plaintext.

Privacy-preserving prediction using neural networks models has also been considered in several recent
works. In this setting, it is assumed that the neural network is trained on plaintext data and the model
is known to one party who evaluates it on private data of another. One recent line of work uses fully
homomorphic or somewhat homomorphic encryption to evaluate the model on encrypted data [31, 34, 16,
13]. Another line of work takes advantage of a combination of LHE and garbled circuits to solve this
problem [40, 50, 18]. Riazi et al. [47] and Liu et al. [40] each proposes efficiency improvements to the
ABY framework and use it for privacy-preserving neural network inference. Chandran et al. [18] propose a
framework for automatically compiling programs into ABY components and show how to use it to evaluate
neural network models. These constructions are all based on two-party protocols and do not benefit
from major speed-ups due to new 3PC techniques [10, 28, 43]. They also only provide security against a
semi-honest adversary. In Section 7 we give an explicit performance comparison to these frameworks and
demonstrate that ours is significantly more efficient.

Very few recent work consider privacy preserving training of Neural Networks. Mohassel and Zhang
[44] customize the ABY framework for this purpose and propose a new approximate fixed-point multipli-
cation protocol that avoids binary circuits, and use it to train neural network models. Their fixed-point
multiplication technique is limited to 2PC.

To the best of our knowledge, [41] is the only work that considers privacy-preserving machine learning
with malicious security and more than two parties. They use the SPDZ library [22] to implement privacy
preserving SVM-based image classification and stick to arithmetic operations only and choose a large
enough field to avoid overflows during computation. SPDZ provides security against a dishonest majority
and hence inherits the same inefficiencies as 2PC. In contrast, we assume an honest majority.

An orthogonal line of work considers the differential privacy of machine learning algorithms [20, 56, 8].
In this setting, the server has full access to the data in plaintext but wants to guarantee that the released

7

model cannot be used to infer the data used during the training. A common technique used in differentially
private machine learning is to introduce an additive noise to the data or the update function (e.g., [8, 42]).
The parameters of the noise are usually predetermined by the dimensions of the data, the parameters of the
machine learning algorithm and the security requirement, and hence are data-independent. As a result, in
principle, these constructions can be combined with our system given that the servers can always generate
the noise according to the public parameters and add it directly onto the shared values in the training. In
this way, the trained model will be differentially private once reconstructed, while all the data still remains
private during the training.

Chase et al. [19] consider training neural networks using a hybrid of secure computation and differential
privacy. Their technique allows for almost all of the computation to be performed locally by the parties
and can, therefore, be significantly more efficient than all previous methods, especially for deep networks.
This performance improvement is achieved by updating a public model via a differentially private release
of information. In particular, a differentially private gradient of the current model is repeatedly revealed to
the participating parties. This approach is also limited to the case where the training data is horizontally
partitioned.

3 Preliminaries

3.1 Notation

We will use the notation i± 1 to refer to the next (+) or previous (-) party with wrap around, i.e. party
3 + 1 is party 1, party 1-1 is party 3.

3.2 Three-party Secure Computation techniques

3.2.1 Secret Sharing Based

Throughout our presentation the default representation of encrypted data uses the replicated secret sharing
technique of Araki, et al. [10]. A secret value x ∈ Z2k is shared by sampling three random values x1, x2, x3 ∈
Z2k such that x = x1 +x2 +x3. These shares are distributed as the pairs {(x1, x2), (x2, x3), (x3, x1)}, where
party i holds the ith pair. Such a sharing will be denoted as JxKA. Sometimes, for brevity, we refer to
shares of JxKA as the tuple (x1, x2, x3), though we still mean the replicated secret sharing where each party
holds a pair of shares.

First, observe that any two out of the three parties have sufficient information to reconstruct the actual
value x. This immediately implies that such a secret sharing scheme can tolerate up to a single corruption.
All of the protocols presented will achieve the same threshold. We briefly review these building blocks
here. See Table 2 for the cost of each building block. To reveal a secret shared value to all parties, party
i sends xi to party i + 1, and each party reconstructs x locally by adding the three shares. To reveal the
secret shared value only to a party i, party i− 1 sends xi−1 to party i who reconstructs the secret locally.

Arithmetic operations can now be applied to these shares. To add two values JxK+JyK all parties simply
define Jx + yK by adding together the local shares, i.e. JxK + JyK = Jx + yK := (x1 + y1, x2 + y2, x3 + y3).
Addition of a public constant with a shared value c+ JxK = Jc+ xK can also be done by defining the three
shares of Jc+ xK as (c+ x1, x2, x3). Subtraction can be performed in a similar way. To multiply a shared

8

value JxK with a public constant c we can define the shares of JcxK as (cx1, cx2, cx3). Note that all of these
operations are with respect to the group Z2k . To multiply two shared values JxK and JyK together, the
parties must interactively compute JxyK. First observe that,

xy =(x1 + x2 + x3)(y1 + y2 + y3)

=x1y1 + x1y2 + x1y3

+x2y1 + x2y2 + x2y3

+x3y1 + x3y2 + x3y3

Collectively the parties can compute all such cross terms. We define JzK = JxyK such that

z1 := x1y1 + x1y2 + x2y1 + α1

z2 := x2y2 + x2y3 + x3y2 + α2

z3 := x3y3 + x3y1 + x1y3 + α3

For now ignore the terms α1, α2, α3 and observe that party i can locally compute zi given its shares of JxK
and JyK. However, we require that all parties hold two out of the three shares. To ensure this, the protocol
specifies that party i sends zi to party i − 1. We call this sending operation re-sharing. The additional
terms α1, α2, α3 are used to randomize the shares of z. We therefore require that they be random elements
of Z2k subject to α1 + α2 + α3 = 0. Each party knows exactly one of the three values. Such a triple is
referred to as a zero sharing and can be computed without any interaction after a one time setup where
party i obtains random keys ki and ki+1 to a pseudorandom function (PRF) F . Then, the jth zero sharing
is obtained when party i lets αi = Fki(j)− Fki+1(j). For more details see [10].

The same PRF keys can be used to efficiently share a random value in Z2k . In particular, to share a
random value for the jth time, party i lets ri = Fki(j), ri+1 = Fki+1

(j). Note that (r1, r2, r3) form a proper
replicated secret sharing of the random value r = r1 + r2 + r3.

If, for example, party 1 wishes to construct a sharing of its private input x, the parties first generate
another zero sharing α1, α2, α3. The shares of JxK are then defined as (x1, x2, x3) := (α1 + x, α2, α3). The
sharing of x is completed by having party i send the share xi to party i− 1.

The protocols described above work in the semi-honest setting where the parties follow the protocol
as described. However, in the case where one of the parties is malicious, they may send the incorrect
value during the multiplication or input sharing phases. The follow-up work of [28] presents highly efficient
techniques to prevent such attacks. We, therefore, take for granted that all the operations discussed above
can be efficiently performed in the malicious setting as well.

3.2.2 Arithmetic vs. Binary sharing

Later we will make use of two different versions of the above protocols. The first will correspond to the
case of k = 64 or some suitably large value which supports traditional arithmetic operations such as +,-,*.
We refer to this as arithmetic sharing using the notation JxKA. The latter case will be for k = 1 where the
binary operations ⊕,∧ correspond to +,*. The advantage of a binary representation is that it can be more
flexible and efficient when computing functions that can not easily be framed in terms of modular addition
and multiplication. We refer to this as binary sharing and use the notation JxKB.

9

Protocol
Malicious Semi-honest

Comm Round Comm Round
Add 0 0 0 0
Mult 4k 1 11k 1

ZeroShare 0 0 0 0
Rand 0 0 0 0

RevealAll 3 1 6 1
RevealOne 1 1 2 1

Input 3 1 3 1

Table 2: Round is number of messages sent/received, Comm is number of bits exchanged, ring is Z2k

3.2.3 Yao sharing

Two-party sharing In the two-party setting, Yao’s garbled circuit protocol allows a garbler to encode
a boolean function into a garbled circuit that is evaluated by a second party, called the evaluator. More
concretely, the garbling scheme first assigns two random keys k0

w, k
1
w to each wire w in the circuit cor-

responding to values 0 and 1 for that wire. Each gate in the circuit is then garbled by encrypting each
output wire key using different combinations (according to the truth table for that gate) of input wire keys
as encryption keys. These ciphertexts are randomly permuted so their position does not leak real values
of the intermediate wires during the evaluation. The evaluator obtains the keys corresponding to input
wires to the circuit which enables him to decrypt exactly one ciphertext in each gabled gate and learn the
corresponding output wire key. The evaluator can decode the final output give a translation table that
maps the circuit’s final output wire keys to their real values.

Various optimizations to this basic garbling idea have been introduced over the years, the most notable
of which are the point-and-permute [12], Free-XOR [36] and the half-gate [61] techniques. These optimiza-
tions require some modifications to how the keys are generated. In particular, the free-XOR techniques
requires that k1

w = k0
w ⊕ ∆ for every wire w where ∆ is a global random (secret) string. To use the

point-and-permute technique, we need to let the least significant bit of ∆ to be 1, i.e. ∆[0] = 1. The least
significant bit of each key (pw ⊕ i = kiw[0]) is then referred to as the permutation bit. As discussed in the
two-party ABY framework [23], two-party Yao’s sharing of an input bit x for wire w, can be seen as one
party holding k0

w and ∆, while the other party holds kxw.

Three-party sharing Mohassel et al. [43], extend Yao’s garbled circuit protocol to the three-party
setting with one corruption, and obtain security against a malicious adversary with the cost comparable
to that of the semi-honest two-party Yao’s protocol. The high-level idea is as follows. Party 1 plays the
role of evaluator and parties 2,3 play the role of garblers. The two garblers exchange a random seed that
is used to generate all the randomness and keys required by the garbled circuit. They separately generate
the garbled circuit and send their copy to the evaluator. Since at least one garbler is honest, one of the
garbled circuits is computed honestly. The evaluator can enforce honest garbling behavior by checking
equality of the garbled circuits.

The Yao sharing in the three-party setting, denoted by JxKY, can be seen as the evaluator holding kxw
and the two garblers holding (k0

w,∆). In the semi-honest case, a garbler shares its input bit x by sending
k0
w⊕x∆ to the evaluator. In the malicious case, both garblers send commitments to both keys (permuted),

i.e. Comm(kbw),Comm(k¬bw) to the evaluator and the garbler who is sharing its input sends the opening for

10

Parameters: Clients C1, . . . , Cm and servers S1,S2,S3.
Uploading Data: On input xi from Ci, store xi internally.
Computation: On input f from S1, S2, or S3 compute (y1, . . . , ym) = f(x1, . . . , xm) and send yi to Ci.
This step can be repeated multiple times with different functions.

Figure 1: Ideal Functionality Fml
one of the commitments. The evaluator checks that the two pairs of commitments are equal (the same
randomness is used to generate and permute them) and that the opening succeeds. The evaluator could
share its input by performing an oblivious transfer with one of the garblers to obtain one of the two keys.
Mohassel et al. remove the need for OT by augmenting the circuit such that each input wire corresponding
to evaluator is split into two inputs bits that XOR share the original input. The circuit first XORs these
two bits (for free) and then computes the expected function. The evaluator shares its input bit x by
generating two random bits x2 and x3 where x = x2 ⊕ x3 and sending xi to party i. The party i then
shares xi as it would share its own input, except that there is no need to permute the commitments since
party 1 knows the xis.

To XOR, AND or compute arbitrary boolean functions on the shared values, we just construct the
garbled circuit for the corresponding function and proceed as discussed above. All the two-party garbling
optimizations such as free-XOR, half-gates and point-and-permute can be used in the three-party setting
as well. Note that it is possible to not provide the evaluator with the translation table for output keys such
that it only learns the output key but not its real value (hence remain shared). Moreover, it is possible to
have the evaluator reveal output values to one or both garbler by sending them the output key. Note that
due to the authenticity of the garbling scheme, the evaluator cannot cheat and send the wrong output key.

To share a random value, Parties 2 and 3 generate random values r2 and r3 and input them to a garbled
circuit that XORs them and lets the evaluator (party 1) learn the output keys. The shared random value
is r = r2 ⊕ r3.

4 Security Model

We use the same security model and architecture as SecureML [44] except that we extend it to the three
party case with an honest majority and consider both semi-honest and malicious adversaries. In particular,
data owners (clients) secret share their data among three servers who perform 3PC to train and evaluate
models on the joint data. We observe that security in this model reduces to standard security definitions for
3PC between the three servers. Hence, we follow the same security definitions and refer to [10] and [28] for a
formal description of these adversarial settings. Since all our building blocks are reduced to the composition
of existing 3PC building blocks, their security is implied via standard composition theorems [15].

5 Our Framework

In this section, we construct efficient three-party protocols that form the building blocks of our protocols for
training linear and logistic regression, and neural network models. We also provide a general framework for
performing mixed computation on shared data, i.e. an equivalent of the ABY framework [23] for the three-
party setting. In Section 5.1 we explore protocols for three-party fixed-point multiplication. Somewhat

11

surprisingly, we show that the two-party techniques of [44] do not work in the three-party setting and
describe two efficient solutions for this problem that yield approximate fixed-point multiplication on shared
values for roughly the same cost as standard integer multiplication. In Section 5.2 we show how decimal
arithmetics can be vectorized such that computing the inner product of two n element vectors can be
computed with O(1) communication, as opposed to O(n). These two techniques are sufficient to efficiently
implement linear regression via the gradient descent algorithm (see Section 6.1). In Section 5.3, we show
new and optimized three-party conversion protocols for all possible conversions between arithmetic, binary
and Yao sharing of secret values. We then go on to describe additional building blocks that will facilitate
the training of logistic regression and neural network models in Section 5.4 and Section 5.5.

5.1 Fixed-point Arithmetic

We now detail how to perform decimal arithmetics by secret sharing fixed-point values.
A fixed point value is defined as a k bit integer using twos-complement representation where the bottom

d bits denote the decimal, i.e. for positive values bit i denotes the (i − d)th power of 2. Addition and
subtraction can be performed using the corresponding integer operation since the results are expected to
remain below 2k. Multiplication can also be performed in the same manner but the number of decimal
bits doubles and hence must be divided by 2d to maintain the d decimal bit invariant.

5.1.1 Why technique of [44] fails

We start by reviewing the two-party fixed-point multiplication protocol of [44] and show why it fails in
the three-party setting. [44] secret shares a fixed-point x using the ring Z2k as JxK := (x + r,−r) for
some secret r ← Z2k . Addition and subtraction in Z2k naturally work but multiplication does not due
to (two’s complement) division by 2d not being supported in Z2k . Consider having a standard sharing
Jx′K := JyKJzK over Z2k and desire to compute JxK := Jx′/2dK such that when x, y, z are interpreted as
fixed-point values the quality x = yz holds (assuming the semantic values do not overflow) . Ideally both

shares of Jx′K = (x′+r′,−r′) can be locally divided by 2d to obtain two k-bit shares Jx̃K := (
x′1
2d
,
x′2
2d

) holding

the value x = x′/2d = x̃. However, this final equality does not hold. First, there is a bad event that
the divisions by 2d removes a carry bit from the first d bits that would have propagated into the d + 1th
bit. That is, at bit position d of the addition x′1 + x′2 = (x′ + r′) + (−r′) mod 2k a carry is generated
(which we have eliminated due to separately dividing each share by 2d). However, this probabilistic error
has a magnitude of 2−d and is arguably acceptable given that fixed-point arithmetics naturally has limited
precision. In fact, [44] shows that this small error, does not have any impact on the accuracy of trained
models when d is sufficiently large.

Unfortunately, a more serious error can also be introduced due to the values being shared in the ring
modulo 2k combined with the use of twos complement semantics. In particular, the desired computation of
x′/2d is with respect to two’s complement arithmetics, i.e. shift the bits of x′ down by d positions and fill
the top d bits with the most significant bit (MSB) of x′. This latter step can fail when x′ is secret shared in
Z2k . Take for example x′ = −2k−1, which is represented in binary two’s complement as 100...000. We then
have that x′/2d is represented as 1...100...000 where there are d + 1 leading ones. However, when secret
shared, it is likely that both shares x′1, x

′
2 have zero in the MSB. As a result, when they are divided by 2d,

the two shares will have at least d + 1 leading zeros. When these shares are reconstructed the result will

12

be incorrect. In particular, the result will have d (or d − 1) leading zeros and correspond to an incorrect
positive value.

A simple case analysis shows that a necessary condition for this error is that the MSB of x′ is opposite
of both x′1, x

′
2. That is, the reverse of the example above can also result in this large error1. A clever fix to

this problem is to maintain that |x′| < 2` � 2k where x′ is interpreted as a two’s complement integer. This
ensures that there is a negligible probability that the MSB of x′1 is the same as x′2. To see this, observe
that x′1 := x′ + r′, x′2 = −r′ and that when r′ 6= 0 the sign/MSB of r′ and −r′ are always opposite. When
x′ is positive the probability of x′1 having the same MSB as x′2 is the probability that the top k− ` bits of
r′ are all ones and that a carry is generated at the `th bit of x′+ r′. Due to r′ being uniformly distributed,
the probability that r′ has this many leading ones is 2`−k which can be made very small for appropriately
chosen `, k. A similar argument also holds when x′ is negative.

In summary, there are two sources of error when performing fixed-point arithmetics. When shares
are individually truncated, the carry-in bit can be lost. However, due to this representing an error of
magnitude 2−d, the resulting value is “close enough” to be sufficient in most applications. Indeed, the size
of this error can be made arbitrarily small simply by increasing the size of d. The other more serious source
of error, which has very large magnitude, occurs when the individual shares are sign-extended incorrectly
with respect to the underlying value. However, the probability of this event can be made very small.

Unfortunately the approach of truncating each share separately does not extended to three-party secret
sharing where JxK = (x + r1 + r2, (−r1), (−r2)). The first source of error now has magnitude 2−d+1 due
to the possibility of truncating two carry bits. However, a more serious issue is that bounding |x| < 2` no
longer ensures that the large error happens with very small probability. The necessary condition for this
error is more complex due to the possibility of two carry bits, but intuitively, bounding |x| < 2` no longer
ensures that exactly one of the shares x1, x2, x3 will be correctly sign-extended due to r1, r2 both being
uniformly distributed and independent. To make such a secret sharing work, a constraint on how r1, and
r2 are sampled would be required. However, such a constraint would render the multiplication protocol
insecure.

5.1.2 Our Multi-Party Fixed-Point Multiplication

We present two new methods for performing three-party decimal multiplication/truncation with different
trade-offs. While presented in terms of three parties, we note that our second technique can be extended
to settings with more than three parties as well.

Share Truncation Πtrunc1 Our first approach minimizes the overall communication at the expense of
performing multiplication and truncation in two rounds. The idea is to run the two-party protocol where
one party does not participate. Since we assume an honest majority, the security still holds in the semi-
honest setting. Let the parties hold a 2-out-of-3 sharing of Jx′K := JyKJzK over the ring Z2k and desire to
compute JxK = Jx′K/2d. As in the two-party case, we assume that x′ � 2k.

Parties begin by defining the 2-out-of-2 (x′1, x
′
2 + x′3) between party 1 and 2, and locally truncate their

shares to (x′1/2
d, (x′2 +x′3)/2d). The errors introduced by the division mirror that of the two-party case and

1In the reversed case, x′1, x
′
2 both have MSB of one which overflows and is eliminated. However, after being sign ex-

tended/divided by 2d, the carry results in 1 + 1 + 1 in all higher positions, resulting in the d most significant bits being
incorrectly set to one since by assumption the MSB of x′ is zero.

13

guarantees the same correctness. The result is defined as JxK := (x1, x2, x3) = (x′1/2
d, (x′2 + x′3)/2d − r, r),

where r ∈ Zk2 is a random value known to parties 2,3. Note that party i can locally compute the share xi
and therefore JxK can be made a 2-out-of-3 sharing by sending xi to party i − 1. One limitation of this
approach is that two rounds are required to multiply and truncate. Crucially, party 2 must know both
x′2 and x′3 where the latter is computed by party 3 in the first round of multiplication where the parties
compute a 3-out-of-3 sharing of Jx′K := JyKJzK. Then party 3 sends x′3 to party 2 who then computes
x2 := (x′2 + x′3)/2d − r and forwards this value to party 1. A complete description of the protocol appears
in Figure 2.

Parameters: A single 2-out-of-3 share Jx′KA = (x′1, x
′
2, x
′
3) over Z2k , a positive integer d, and a pre-shared key

K between party 2,3 for a PRF F .
1. Parties 2,3 locally compute a random r ∈ Z2k by invoking FK(·).
2. Party 1,3 locally compute x1 := x′1/2

d.
3. Party 2 locally computes x2 := (x′2 + x′3)/2d − r and sends this to party 1.
4. Party 3,2 locally compute x3 := r.
5. Output JyKA := (x1, x2, x3).

Figure 2: Semi-honest share truncation protocol Πtrunc1. Requires two rounds when composed with fixed-
point multiplication.

Share Truncation Πtrunc2 The number of multiplication rounds can be reduced back to 1 with a more
sophisticated technique which leverages preprocessing. First, let us assume we have preprocessed the shares
Jr′K, JrK = Jr′/2dK where r′ ∈ Z2k is random. Again, let us have computed Jx′K over the ring Z2k and wish
to divide it by 2d. To compute the sharing of x = yz/2d we first reveal Jx′− r′K = Jx′K− Jr′K to all parties2.
Locally, everyone can compute (x′−r′)/2d. Parties then collectively compute Jx̃K := (x′−r′)/2d+JrK. Note
that this computation exactly emulates the two-party scenario and therefore the maximum error between
x̃ and x = yz/2d will be 2−d with probability 1− 2−k+` which is overwhelming for correctly chosen k and
` where x ∈ Z2` .

This operation can be combined with the computation of Jx′K := JyKJzK and performed in a single
round. Recall that standard share multiplication is performed in two steps, 1) locally compute a 3-out-of-3
sharing of Jx′K, and 2) reshare it as a 2-out-of-3 sharing. Between steps 1 and 2, the parties can instead
compute a 3-out-of-3 sharing of Jx′ − r′K. Step 2) can then be replaced by revealing Jx′ − r′K and defining
JxK := (x′ − r′)/2d + JrK. So the multiplication and truncation can be done in exactly one round and the
required communication is 4 messages as opposed to 3 in standard multiplication.

There are several ways to compute the pair Jr′K, JrK = Jr′/2dK. The most immediate approach could be
to use ΠTrunc1, but we choose to use a more communication efficient method using binary secret sharing
that is also secure against malicious adversaries. First, parties non-interactively compute the random
binary share Jr′KB. This sharing is locally truncated to obtain JrKB by removing the bottom d shares. To
obtain the final sharing Jr′KA, JrKA, parties 1 and 2 jointly sample and secret share the values r′2, r2 ∈ Z2k

and parties 2 and 3 sample and share r′3, r3 in the same way (i.e. generating them using pre-shared PRF
keys). Parties then securely compute subtraction binary circuits, and reveal Jr′1K

B := Jr′KB − Jr′2K
B − Jr′3K

B

2Revealing to two parties is sufficient.

14

and Jr1KB := JrKB − Jr2KB − Jr3KB to party 1 and 3. The final shares are defined as Jr′K := (r′1, r
′
2, r
′
3) and

JrK := (r1, r2, r3).
This computation can be performed in parallel for all truncations in a preprocessing stage and hence

has little impact on the overall round complexity of the protocol. As a result, we choose to optimize the
overall communication (instead of rounds) of the addition circuit with the use of an optimized ripple carry
full addition/subtraction circuit using k − 1 and gates. As an additional optimization, the computation
of Jr1K can be performed in Z2k−d and therefore requires k − d − 1 and gates per subtraction. In the
semi-honest setting, one of the subtractions of r2, r3 can be performed locally by party 2.

Parameters: A single 2-out-of-3 (or 3-out-of-3) share Jx′KA = (x′1, x
′
2, x
′
3) over the ring Z2k and a integer d < k.

Preprocess:
1. All parties locally compute Jr′KB ← Rand((Z2)k).
2. Define the sharing JrKB to be the k − d most significant shares of Jr′KB, i.e. r = r′/2d.
3. The parties compute Jr′2KB, Jr′3KB ← Rand((Z2)k) and Jr2KB, Jr3KB ← Rand((Z2)k−d). r′2, r2 is revealed to

party 1,2 and r′3, r3 to parties 2,3 using the RevealOne routine.
4. Using a ripple carry subtraction circuit, the parties jointly compute Jr′1KB := Jr′KB − Jr′2KB − Jr′3KB,

Jr1KB := JrKB − Jr2KB − Jr3KB and reveal r′1, r1 to parties 1,3.
5. Define the preprocessed shares as Jr′KA := (r′1, r

′
2, r
′
3), JrKA := (r1, r2, r3).

Online:
1. The parties jointly compute Jx′ − r′KA and then compute (x′ − r′) := RevealAll(Jx− r′KA).
2. Output JxKA := JrKA + (x′ − r′)/2d.

Figure 3: Single round share truncation protocol Πtrunc2.

Another advantage of this second protocol is its compatibility with the malicious setting. When the
computation of Jx′K = JyKJzK is performed initially all parties hold a 3-out-of-3 sharing of Jx′K and then
reshare this to be a 2-out-of-3 sharing by sending x′i to party i − 1. Additionally, a small proof πi is sent
demonstrating that x′i is indeed the correct value. We propose that this x′i and the proof is still sent along
with the reveal of Jx′ − r′K which can be composed into a single round. However, it is possible for party i
to send the correct message (xi, πi) to party i − 1 but send the incorrect reveal message xi − ri to party
i + 1. To ensure that such behavior is caught, parties i − 1 and i + 1 should maintain a transcript of all
xi − ri messages from party i and compare them for equality before any secret value is revealed. For a
more detailed description of the protocol and a security analysis, we refer the reader to Section A.1.

Public Operations One useful property of an additively secret shared value JxKA is that c+JxKA, JxKA−
c, cJxKA for any signed integer c can be computed locally. When x is a fixed-point value, addition and
subtraction naturally work so long as c is also expressed as a fixed-point value. For multiplication and a
two’s complement integer c, the standard multiplication with a public value still works. When c is a fixed
point value, the result must be divided by 2d using the semi-honest Πtrunc1 or malicious Πtrunc2 protocol
to obtain a sharing JcxKA with d decimal bits. One byproduct of fixed-point multiplication is that division
by a public value c is now supported very efficiently , i.e. JxKA/c = c−1JxKA.

15

5.2 Vectorized Multiplication

For many machine learning algorithms the primary computation is matrix multiplication. This in turn
can be implemented by a series of inner products, one for each row-column pair of the first and second
matrices. Inner product is defined as ~x · ~y :=

∑n
i=1 xiyi, where ~x, ~y ∈ (Z2k)n are vectors of n elements. A

naive solution would require n independent multiplication protocols and O(n) communication. We show
how this can be optimized to only require communicating O(1) ring elements, and computing only one
pre-processed truncation-pair Jr′K, JrK.

Recall from the previous section that semi-honest decimal multiplication is performed in two steps by
first revealing the 3-out-of-3 sharing Jz′ + r′K = JxKJyK + Jr′K. The final product is then computed as
JzK := (z′ + r′)/2d − JrK. Observe that the primary non-linear step here is the computation of JxKJyK after
which a series of local transformations are made. As such, the computation of the inner product can be
written as J~xK · J~yK := reveal((

∑n
i=1JxiKJyiK) + Jr′K)/2d − JrK. Here, all parties locally compute a 3-out-of-3

sharing of each JxiKJyiK which are summed, masked, truncated, and reshared as a 2-out-of-3 sharing of the
final result. As a result, only a single value is reshared. One additional benefit of this approach is that
the truncation induces an error of 2−d with respect to the overall inner produce, as opposed to individual
multiplication terms, resulting in a more accurate computation. More generally, any linear combination of
multiplication terms can be computed in this way where the parties communicate to reshare and truncate
only after computing the 3-out-of-3 secret share of the linear combination (as long as the final result does
not grow beyond the 2` bound).

The malicious setting is more complicated due to the fact that for each multiplication JxiKJyiK a proof of
correctness must be provided. This would immediately result in the communication increasing back to O(n)
elements. However, we show that in the context of matrix multiplication this increased communication
can be transferred to an offline phase. To compute JXKJY K the parties first generate two random matrices
JAK, JBK which are respectively the same dimension as JXK, JY K. During the offline phase, the parties
compute the matrix triple JCK := JAKJBK using the scalar fixed-point multiplication protocol described
in the previous section. Given this, the malicious secure multiplication protocol of [28] can naturally
be generalized to the matrix setting. In particular, the parties locally compute the 3-out-of-3 sharing
JZK := JXKJY K and then party i sends their local share Zi to party i−1. Party i also proves the correctness
of Zi using the matrix triple (JAK, JBK, JCK) along with a natural extension of protocol 2.24 in [28] where
scaler operations are replaced with matrix operations. The online communication of this protocol is
proportional to the sizes of X,Y, Z and almost equivalent to the semi-honest protocol. However, the offline
communication is proportional to the number of scaler multiplication which is cubic in the dimensions of
X and Y .

5.3 Share Conversions

For many machine learning functions, it is more efficient to switch back an forth between arithmetic
(multiplications and addition) and binary (non-linear activation functions, max-pooling, averages, etc.)
operations. In such cases, it is necessary to convert between different share representations. We design new
and optimized protocols that facilitate efficient conversions between all three types of sharing: arithmetic,
binary and Yao. We elaborate on these next. See Table 1 for the cost of various conversions.

16

Bit Decomposition, JxKA → J~xKB We begin with bit decomposition where an arithmetic sharing of
x ∈ Z2k is converted to a vector of secret shared bits x[1], ..., x[k] ∈ {0, 1} such that x =

∑k
i=1 2i−1x[i]. The

basic idea is that parties use their shares of JxKA = (x1, x2, x3) as input to a boolean circuit that computes
their sum. But we introduce several optimizations that significantly reduce rounds of communication and
the communication complexity of this approach.

Observe that JxKA = (x1, x2, x3) can be converted to Jx1KB := (x1, 0, 0), Jx2KB := (0, x2, 0), Jx3KB :=
(0, 0, x3) with no communication. The parties then compute JxKB = Jx1KB + Jx2KB + Jx3KB. In general this
deterministic sharing can be insecure due to the possibility of leaking information through taking linear
combinations of these terms. For example, revealing Jx1KB ⊕ Jx2KB leaks both x1 and x2 as opposed to
the sum of the two shares. However, in our case this does not cause a problem due to how x1, x2, x3 are
distributed between the parties. Take the example above, where all parties can recover x1, x2 given x1⊕x2

since they already hold at least one of the shares.
Naively using the textbook ripple-carry full adder (RCFA) circuit would require 2k rounds to compute

RCFA(RCFA(x1, x2), x3) when performing 3PC on binary shared values. To avoid the high round complexity
which becomes the bottleneck in our implementations, we first employ a parallel prefix adder (PPA) [33]
which takes two inputs and computes the sum using a divide and conquer strategy, totaling log k rounds
and k log k gates. Once again, doing this naively would require two addition circuits. We show how to keep
the cost close to that of a single PPA in both the semi-honest and the malicious setting , hence reducing
both the round (only for binary sharing) and communication complexity by a factor of two.

First observe that the computation of x1 + x2 + x3 can be reduced to computing 2c + s by executing
k independent full adders FA(x1[i], x2[i], x3[i − 1]) → (c[i], s[i]) for i ∈ {0, ..., k − 1} where c[i], s[i] denote
the ith bit of the bitstrings c and s. It is worth noting that traditionally, full adders are chained together
to compute the addition of two bits and a carry in, however, here we used them to reduce 3 operands (i.e.
x1, x2, x3) to 2 (i.e. c, s) while using a single round of communication as opposed to k. The final result can
then be computed as 2JcKB + JsKB using a parallel prefix adder. Alternatively, in the semi-honest setting
Party 2 can provide (x1 + x2) as private input to a 3PC which computes JxKB := Jx1 + x2KB + Jx3KB. In
both settings, this results in a total of 1 + log k rounds, which is significantly better than a factor of two
increase in rounds and communication.

Bit Extraction, JxKA → Jx[i]KB A special case of bit decomposition is when a single bit of the share
JxKA should be decomposed into a binary sharing, e.g. the ith bit Jx[i]KB. This case can be simplified
such that only O(i) and gates and O(log i) rounds are required. While relatively simple, this optimization
removes all the unnecessary gates from the parallel prefix adder. As a result, the circuit logic only requires
2i and gates. We use this optimization in our implementation. For brevity, we refer the reader to inspect
[33] to deduce exactly which gates can be removed.

Bit Composition, JxKB → JxKA It can also be required to convert a k bit value in the binary secret
share representation to an arithmetic secret share representation. Effectively, we use the same circuit as
the bit decomposition with the order of operations slightly reversed. First, parties 1,2 input a random
share J−x2KB and parties 2,3 input a random share J−x3KB. These will be part of the final arithmetic
sharing and therefore the former can be known to parties 1,2 and the latter can be known to parties 2,3.
Jx2KB can be generated by having parties 1,2 hold three PRF keys κ1, κ2, κ3 and party 3 hold κ2, κ3. The

17

share is then defined as Jx2KB := (F (κ1, N), F (κ2, N), F (κ3, N)) where N denotes a public nonce. Jx3KB

can be defined in a similar way with the roles shifted.
The parties compute FA(Jx[i]KB, J−x2[i]KB, J−x3[i]KB)→ (Jc[i]KB, Js[i]KB) for i ∈ {1, ..., k − 1} and then

using a parallel prefix adder Jx1KB := 2JcKB+JsKB. In the semi-honest setting, this can be further optimized
by having party 2 provide (−x2 − x3) as private input and compute Jx1KB := JxKB + J−x2 − x3KB using a
parallel prefix adder. Regardless, x1 is revealed to parties 1,3 and the final sharing is defined as JxKA :=
(x1, x2, x3). Overall, the conversion requires 1 + log k rounds and k + k log k gates.

Bit Injection, JxKB → JxKA Another special case can often occur when a single bit x encoded in a
binary sharing needs to be promoted to an arithmetic sharing JxKA. For ease of presentation, we defer the
explanation of this technique to Section 5.4 where a generalization of it to efficiently compute aJxKB → JaxKA

is presented.

Joint Yao Input Recall that in Yao sharing of a bit x, party 1 (evaluator) holds kxx while the other two
parties hold k0

x ∈ {0, 1}κ and a global random ∆ ∈ {0, 1}κ such that k1
x := k0

x ⊕∆. A useful primitive for
conversions to and from Yao shares is the ability for two parties to provide an input that is known to both
of them. For example, parties 1,2 know a bit x and wish to generate a sharing of JxKY. In the semi-honest
setting, this is trivial as party 2 can locally generate and send JxKY to party 1 (who uses it to evaluate a
garbled circuit). However, in the malicious setting party 1 needs to verify that JxKY actually encodes x
without learning ∆. In the current example, party 3 can be used to allow party 1 to check the correctness
of the sharing by having party 1 and 3 send Comm(k0

x),Comm(k1
x) generated using the same randomness

shared between them (party 2 can send a hash of the commitments). Party 1 verifies that both parties sent
the same commitments and that Comm(kxx) decommits to kxx . This interaction requires two commitments,
one decommitment and at most one round per input bit. In the case that x is known to parties 1,3 the
roles of 2,3 above can simply be reversed.

When sharing many input bits (n� λ, for λ a statistical security parameter), we show that the number
of commitments can be capped at 2λ. After receiving the input labels kx1x1 , ..., k

xn
xn (without commitments)

and before revealing any secret values which are dependent on these input labels, party 1 computes λ
random linear combinations kc1c1 , ..., k

cλ
cλ of kx1x1 , ..., k

xn
xn in (Z2)λ with coefficients in Z2. Parties 2, 3 receive

the combination from party 1 and both compute the λ combinations of k0
x1 , ..., k

0
xn to obtain k0

c1 , ..., k
0
cλ

.
Using the same randomness, parties 2,3 send Comm(k0

ci
),Comm(k1

ci
= k0

ci
⊕∆) for i ∈ {1, ..., λ} to party 1

(one party can send hash of the commitments instead). Party 1 verifies that the two sets of commitment are
the same and that Comm(kcici) decommits to kcici for all i. The probability that party 1 received an incorrect
label and this test passes is 2−λ. In particular, consider that one of the garblers sends an incorrect input
label. To have the ith linear combination pass, either this input label must not be in the sum (happens
with Pr. 1/2) or was canceled out by another incorrect label ` (canceling out using multiple incorrect
labels only reduces adversaries winning probability). Fixing all previous labels, the probability that ` is
included in the sum is 1/2. As a result, with either strategy (including additionl incorrect labels, or not),
the probability of undetected cheating in one linear combination is bounded by 1/2. We therefore have
that cheating is caught with probability 1−2−λ and set λ to be the statistical security parameter to ensure
that cheating is undetected with only a negligible probability.

In the other case were 2,3 both know x, it is possible to generate JxKY with no communication. Using

18

a shared (among all three parties) source of randomness, the parties locally sample kxx ← {0, 1}κ. Parties
2,3 can then define k0

x := kxx ⊕ (x∆).

Yao to Binary, JxKY → JxKB As observed in [23], the least significant bit of the keys (permutation bit)
form a two-party sharing of x. i.e. x⊕px = kxx [0] where px = k0

x [0]. Note that party 3 also knows px since it
holds k0

x [0]. Parties 1 and 2 locally generate another random bit r and party 1 sends kxx [0]⊕ r = x⊕ px⊕ r
to Party 3. This yields the following three-party replicated sharing JxKB = (x ⊕ px ⊕ r, r, px) in a single
round and with one bit of communication.

In the malicious setting, the bit x⊕ b⊕ r that party 1 sends to party 3 must be authenticated to ensure
that party 1 indeed uses b = px. Parties 1 and 2 sample krr ← {0, 1}κ and party 2 sends k0

r := krr ⊕ (r∆)
to party 3 who sends commitments of k0

y := k0
x ⊕ k0

r , k
1
y := k0

x ⊕ k0
r ⊕ ∆ to party 1. Party 1 sends

kx⊕ry := kxx ⊕ krr to party 3 who verifies that it is in the set {k0
y , k

1
y}. Party 1 also verifies that the

commitment Comm(kx⊕ry) sent by party 3 decommits to kx⊕ry . The parties can then compute the three-

party sharing JxKB = (x ⊕ px ⊕ r, r, px). Observe that party 3 computes x ⊕ px ⊕ r as kx⊕ry [0] ⊕ pr. In

total, this conversion takes two rounds of communication, however, the final sharing JxKB is computable
after a single round. It is therefore ok to use JxKB after the first round so long as dependent values are not
revealed in that round. In the event that the verification steps fail, the parties should abort.

Binary to Yao, JxKB → JxKY where JxKB = (x1, x2, x3). Parties jointly input the shares Jx1KY, Jx2KY, Jx3KY

using the procedure discuss earlier for joint Yao input. The final share can then be computed using a gar-
bled circuit that computes XOR of the three values, i.e. JxKY := Jx1KY⊕ Jx2KY⊕ Jx3KY. With the free-XOR
technique, this does not require any communication between the parties and can be computed locally by
party 1. In the semi-honest setting, this can be further optimized by observing that party 2 knows x2

and x3. They can therefore locally compute x2 ⊕ x3 and send Jx2 ⊕ x3KY to party 1 who locally computes
JxKY := Jx1KY ⊕ Jx2 ⊕ x3KY.

Yao to Arithmetic, JxKY → JxKA To convert x ∈ Z2k from Yao to arithmetic sharing, we could first
switch from Yao to Binary and then perform the bit composition or biy injection (in case of a single
bit) protocol, but since the inputs are in form of Yao sharings, we choose to use a garbled circuit 3PC
for the CRFA addition circuit. Parties 1, 2 sample x2 ← Z2k and parties 2, 3 sample x3 ← Z2k and
jointly input them using the procedures above. Then, using a garbled circuit parties compute Jx1KY :=
JxKY−Jx2KY−Jx3KY and reveal this to parties 1 and 3. JxKA = (x1, x2, x3) forms the new arithmetic sharing
of x. This requires communicating k joint input bits (only x2) and 2k garbled gates. In the semi-honest
setting this can be further optimized by having party 3 locally compute x2 + x3 and provide it as private
input to Jx1KY := JxKY− Jx2 + x3KY. As a result, the cost of the garbled circuit is reduced by a factor of 2.

Arithmetic to Yao, JxKA → JxKY Parties jointly input the shares of JxKA = (x1, x2, x3) to generate
Jx1KY, Jx2KY, Jx3KY. A garbled circuit can then be used to generate JxKY := Jx1KY + Jx2KY + Jx3KY. In the
semi-honest setting this can be optimized by having party 2 locally compute x2 + x3 and send party 1 the
sharing Jx2 + x3KY who computes and the final sharing JxKY := Jx1KY + Jx2 + x3KY.

19

5.4 Computing JaKAJbKB = JabKA

While converting between share representations allows for arbitrary combination of shares to be used
together, it can be more efficient to provide custom protocols to directly perform the computation on
mixed representation. To this end, we provide a mixed-protocol for performing JaKAJbKB = JabKA. This
operation is needed repeatedly to compute piecewise linear or polynomial functions that are commonly used
to approximate non-linear activation functions in training logistic regression and neural network models.
All of these operations will take a shared binary bit JbKB and multiply it by an arithmetic (possibly shared)
value a ∈ Z2k and output an arithmetic sharing JcKA := JabKA. The difficulty in constructing such protocols
is that b ∈ {0, 1} is shared over Z2, i.e. b = b1 ⊕ b2 ⊕ b3. However, the result needs to be shared over Z2k

as c = c1 + c2 + c3 mod 2k.

5.4.1 Semi-honest Security

Three-Party OT We begin by providing an oblivious transfer protocol in the three-party honest ma-
jority setting. As with the two-party 1-out-of-2 OT case, we have a sender and a receiver. To this, we add
a third party called a helper who receives no output and knows the receiver’s choice bit. The functionality
for the (sender, receiver, helper) can be expressed as ((m0,m1), c, c) 7→ (⊥,mc,⊥). Several previous work
consider multi-party OT [45, 27, 17, 37], but to the best of our knowledge we are the first to consider this
particular functionality with an honest majority.

Our approach is extremely efficient with information-theoretic security. The sender and helper first
sample two random strings w0, w1 ← {0, 1}k known to both of them. The sender masks the messages as
m0 ⊕w0,m1 ⊕w1 and sends them to the receiver. The helper knows that the receiver desires the message
mc. As such the helper sends wc to the receiver who can then recover mc. This procedure requires sending
3 messages in a single round.

Computing aJbKB = JabKA The simplest case is the multiplication of a public value a ∈ Z2k known to
party 1 with a shared bit b ∈ {0, 1}. First, party 3 (the sender) samples r ← Z2k and defines two messages,
mi := (i ⊕ b1 ⊕ b3)a − r for i ∈ {0, 1}. Party 2 (the receiver) defines his input to be b2 in order to learn
the message mb2 = (b2 ⊕ b1 ⊕ b3)a − r = ba − r. Note that party 1 (the helper) also knows the value b2
and therefore the three party OT protocol above can be used here. The parties then use locally generated
replicated zero sharing (s1, s2, s3) to compute JcK = JabK = (s1 + r, ab− r + s3, s3). However, to make this
a valid 2-out-of-3 secret sharing, c2 = ab− r + s3 must be sent to party 1. This would result in a total of
two rounds of communications. Alternatively, the three-party OT procedure can be repeated (in parallel)
with again party 3 playing the sender with inputs (i+ b2 + b3)a− r+ s3 for i ∈ {0, 1} so that party 1 (the
receiver) with input bit b2 learns the message c2 (not mb2) in the first round, totaling 6k bits and 1 round.

Computing JaKAJbKB = JabKA In the semi-honest setting, it is sufficient to run the aJbKB = JabKA

procedure twice in parallel. Crucial in this technique is to observe that a in the computation above need
not be public. That is, party 1 could have privately chosen the value of a. Leveraging this, observe that
the expression can be written as JaKJbKB = a1JbKB + (a2 + a3)JbKB. Party 1 acts as the sender for the first
term and party 3 for the second term. In total 4k bits per party are communicated over 1 round.

20

5.4.2 Malicious Security

Computing aJbKB = JabKA Unfortunately, our semi-honest approach fails in the malicious setting pri-
marily due to party 1 being free to choose the value a it inputs to the OT, arbitrarily. We avoid this issue by
first performing bit injection on b. That is, we compute JbKB → JbKA and then aJbKA = JabKA. As performed
in Section 5.3, the parties can locally compute shares Jb1KA, Jb2KA, Jb3KA where JbKB = (b1, b2, b3). We can
now emulate the XOR of these values within an arithmetic circuit by computing Jb1 ⊕ b2KA = JdKA :=
Jb1KA + Jb1KA − 2Jb1KAJb2KA followed by JbKA := Jd ⊕ b3KA. This conversion requires sending 2k bits over
two rounds. The final result can then be computed as JabKA := aJbKA where each party locally multiplies a
by its share of b. Compared to performing the generic bit decomposition from Section 5.3, this approach
reduces the round complexity and communication by O(log k).

Computing JaKAJbKB = JabK Once again, the bit injection procedure can be repeated here to convert
JbKB to JbKA. The arithmetic multiplication protocol can then be performed to compute JaKAJbKA.

5.5 Polynomial Piecewise Functions

This brings us to our final building block, the efficient computation of polynomial piecewise functions.
These functions are constructed as a series of polynomials. Let f1, ..., fm denote the polynomials with
public coefficients and −∞ = c0 < c1 < ... < cm−1 < cm =∞ such that,

f(x) =


f1(x), x < c1

f2(x), c1 ≤ x < c2

...

fm(x), cm−1 ≤ x

Our technique for computing f is to first compute a vector of secret shared values b1, ..., bm ∈ {0, 1} such
that bi = 1⇔ ci−1 < x ≤ ci. f can then be computed as f(x) =

∑
i bifi(x).

Let us begin with the simple case of computing JxK < c. This expression can then be rewritten as
JxKA − c < 0. Recall that x is represented as a two’s complement value and therefore the most significant
bit (MSB) of Jx− cK denotes its sign, i.e. 1 iff x− c < 0. This implies that the inequality can be computed
simply by extracting the MSB. This in turn can be computed by taking the Section 5.3 bit extraction of
Jx− cK to obtain binary shares of JbKB := Jmsb(x− c)KB. When the bit-extraction is performed with binary
secret sharing, the round complexity will be O(log k) while the communication is O(k) bits. On the other
hand, when the conversion is performed using a garbled circuit, the round complexity decreases to 1 with
an increase in communication totaling O(κk) bits. Each bi is the logical AND of two such shared bits
which can be computed within the garbled circuit or by an additional round of interaction when binary
secret sharing is used.

Each of the fi functions are expressed as a polynomial fi(JxK) = ai,jJxKj + ... + ai,1JxK + ai,0 where
all ai,l are publicly known constants. When fi is a degree 0 polynomial the computation bifi(JxK) can be
optimized as ai,0JbiKB using the techniques from Section 5.4. In addition, when the coefficients of fi are
integer, the computation of ai,lJxKl can be performed locally, given JxKl. However, when ai,j has a non-zero
decimal, an interactive truncation will be performed as discussed in Section 5.1. The one exception to

21

requiring a truncation is the case that fi is degree 0 which can directly be performed using the techniques
described above.

What remains is the computation of JxKj , ..., JxK2 given JxK. The computation of these terms can be
performed once and used across all f1, ..., fm and requires log j round of communication. Importantly, the
computation of these terms can be performed in parallel with the computation of the outer coefficients
b1, ..., bm. As such, when computing these terms using binary secret sharing, the overall round complexity
is unaffected and remains bounded by O(log k). However, in the event that garbled circuits are employed
to compute the bi terms, the round complexity decreases to log j ≤ log k.

6 Machine Learning

Given the building blocks in Section 5, we show how to design efficient protocols for training linear regres-
sion, logistic regression and neural network models, on private data using the gradient descent method.
We will discuss each model in detail next.

6.1 Linear Regression

Our starting point is the linear regression model using the stochastic gradient decent method. Given n
training examples x1, ...,xn ∈ RD and the corresponding output variable y1, ..., yn, our goal is to find a
vector w ∈ RD which minimizes the distance between f(xi) := xi ·w =

∑
j xijwj and the true output yi.

There are many ways to define the distance between f(xi) and yi. In general, a cost function C{(xi,yi)}(w)
is defined and subsequently minimized in an optimization problem. We will focus on the commonly used
L2 cost function, C{(xi,yi)}(w) := 1

n

∑
i

1
2(xi ·w−yi)2. That is, the squared difference between the predicted

output f(xi) and the true output yi.
One reason this cost function is often used is due to it resulting in a straightforward minimization

problem. If we assume that there is a linear relation between xi and yi, the cost function C is convex
which implies that the gradient decent algorithm will converge at the global minimum. The algorithm
begins by initializing w ∈ RD with arbitrary values and at each step the gradient at C(w) is computed. w
is then updated to move down the gradient which decreases the value of C(w). That is, at each iteration

of the algorithm w is updated as wj := wj − α∂C(w)
∂wj

= wj − α 1
n

∑n
i (xi ·w − yi)xij The extra term α is

known as the learning rate which controls how large of a step toward the minimum the algorithm should
take at each iteration.

Batching One common optimization to improve performance is known as batching. The overall dataset
of n examples are randomly divided into batches of size B denoted by X1, ...,Xn/B and Y1, ...,Yn/B. The

update procedure for the jth batch is then defined as, w := w − α 1
BXT

j × (Xj ×w −Yj)
Typically, once all the batches have been used once, the examples are randomly placed into new batches.

Each set of batches is referred to as an epoch.

Learning Rate Choosing the correct learning rate α can be challenging. When α is too large the algo-
rithm may repeatedly overstep the minimum and diverge. However, if α is too small the algorithm will take
unnecessary many iterations to converge to the minimum. One solution is that α can be dynamically set

22

using a variety of methods such as the one presented by Barzilai and Borwein [11]. A second option is to
compute the cost function periodically on a subset of the training data. The value of α can then be dynam-
ically tuned based on the rate at which the cost function is decreasing. For example, additively increase
α by a small amount until the cost function increases at which point decrease it by some multiplicative
factor. We leave the investigation of trade-offs between these methods to future work.

Termination Another problem is to determine when the algorithm should terminate. Sometimes an
upper bound on the number of iterations is known. Alternatively, the cost function can also be used to
determine the termination condition. When the cost function fails to decrease by a significant amount for
several iterations, the algorithm can be concluded that the minimum has been reached.

Secure Linear Regression Implementing this algorithm in the secure framework of Section 5 is a
relatively easy task. First, the parties jointly input the training examples X ∈ Rn×D,Y ∈ Rn. We place
no restrictions on how the data is distributed among the parties. For simplicity, the initial weight vector
w is initialized as the zero vector. The learning rate α can be set as above.

In the secret shared setting the correct batch size, B, has several considerations. First, it should be large
enough to ensure good quality gradients at each iteration. On the other hand, when B increases beyond
a certain point, the quality of the gradient stops improving which results in wasted work and decreased
performance. This trade-off has a direct consequence in the secret shared setting. The communication
required for each iteration is proportional to B. Therefore, decreasing B results in a smaller bandwidth
requirement. However, two rounds of interaction are required for each iteration of the algorithm, regardless
of B. Therefore, we propose to set B proportional to the bandwidth available in the time required for one
round trip (two rounds) or the minimum value of B determined by the training data, whichever is larger.

The batched update function can then be applied to each batch. The termination condition could then
be computed periodically, e.g. every 100 batches. We note that this check need not add to the overall round
complexity. Instead, this check can be performed asynchronously with the update function. Moreover, due
to it being performed infrequently, it will have little impact on the overall running time.

One important observation is that the two matrix multiplications performed in update function should
be optimized using the delayed reshare technique of Section 5.2. This reduces the communication per
multiplication to B + D elements instead of 2DB. In many cases the training data is very high dimen-
sional, making this optimization of critical importance. The dominant cost of this protocol is 2 rounds of
communication per iteration. In the semi-honest setting, each iteration sends B +D shares per party and
consumes B +D truncation triples described in Section 5.1.

6.2 Logistic Regression

Logistic regression is a widely used classification algorithm and is conceptually similar to linear regression.
The main difference is that the dependent variable y is binary as opposed to a real value in the case of
linear regression. For example, given someone’s credit card history x, we wish to decide whether a pending
transaction should be approved y = 1 or denied y = 0. In this case, the rate of convergence can be improved
by bounding the output variable to be in the range between zero and one. This is achieved by applying an
activation function f , which is bounded by zero and one, to the inner product, i.e. y′ = g(x) = f(x ·w).

23

While there are many suitable activation functions, in the problem of logistic regression, f is defined to
be the logistic function f(u) = 1

1+eu . One consequence of using this activation function is that the L2 cost
function from the previous section is no longer convex. This is addressed by changing the cost function
to be the cross-entropy equation, C(x,y)(w) := −y log f(x ·w)− (1− y) log(1− f(x ·w)). Given this, the

update function for batch j can be defined as, w := w−α 1
BXT

j ×(f(Xj×w)−Yj). Observe that while the
cost function has changed, the update function is quite similar to linear regression with the sole addition
of the activation function f .

Unfortunately, computing the logistic function in the secret shared setting is an expensive operation.
We instead follow the approach presented by Mohassel & Yupeng [44] where the logistic function is replaced
with the piecewise function

f(x) =


0, x < −1/2

x+ 1/2, −1/2 ≤ x < 1/2

1, 1/2 ≤ x

As shown in [44, figure 7], the piecewise function roughly approximates the original. Moreover, [44]
empirically showed that this change only decreases the accuracy of the MNIST model by 0.02 percent.
However, we replaced the special purpose two party protocol that [44] presents with our general approach
for computing any polynomial piecewise function that was detailed in Section 5.5. This allows us to easily
handle other approximations of the logistic function too (e.g. non-linear piecewise polynomials, or [39]
considers a piecewise linear function with 12 pieces).

6.3 Neural Nets

Neural network models have received a significant amount of interest over the last decade due to their
extremely accurate predictions on a wide range of applications such as image and speech recognition.
Conceptually, neural networks are a generalization of regression to support complex relationships between
high dimensional input and output data. A basic neural network can be divided up into m layers, each
containing mi nodes. Each node is a linear function composed with a non-linear “activation” function. To
evaluate a neural network, the nodes at the first layer are evaluated on the input features. The outputs of
these nodes are then forwarded as inputs to the next layer of the network until all layers have been evaluated
in this manner. The training of neural networks is performed using back propagation in a similar manner to
logistic regression except that each layer of the network should be updated in a recursive manner, starting
at the output layer and working backward. Many different neural network activations functions have been
considered in the literature. One of the most popular is the rectified linear unit (ReLU) function which
can be expressed as f(x) = max(0, x). This function and nearly all other activations functions can easily
be implemented using our piecewise polynomial technique from Section 5.5. Due to space constraints, we
will only consider the evaluation of neural networks. However, we note that a single training iteration is
approximately twice the cost of the evaluation. For a more detailed description of the exact operations,
neural network evaluation entails, we refer readers to [47, 39].

24

7 Experiments

We demonstrate the practicality of our proposed framework with an implementation of the machine learning
algorithms discussed above and report on their efficiency. The implementation was written in C++ and
builds on the primitives provided by the libOTe library [49], the Ivory Runtime [48], and the linear algebra
library Eigen [3]. All arithmetic shares are performed modulo 264. Binary shares employ high throughput
vectorization techniques for matrix transpose and bit operations. That is, when computing a binary circuit
on shared data it is almost always the case that the same circuit will be applied to several sets of inputs,
e.g. the logistic function. In this case, 128 circuit evaluations can be compressed together by packing
several shared bits into a single machine word and performing SIMD operations to that word. For more
details on this technique, we refer to [10].

Due to the significant development time required to implement the maliciously secure protocols ([28] has
no publicly available code), we have only implemented and report performance numbers for the semi-honest
variant of our framework. This does not hinder comparison with prior work since they primarily focus on
semi-honest protocols (in fact our work is the first maliciously secure protocol for machine learning).

Experimental Setup We perform all benchmarks on a single server equipped with 2 18-core Intel Xeon
CPUs and 256GB of RAM. Despite having this many cores, each party performs the vast majority of
their computation on a single thread. Using the Linux tc command we consider two network settings: a
LAN setting with a shared 10Gbps connection and sub-millisecond RTT latency and a WAN setting with
a 40Mbps maximum throughput and 40ms RTT latency. The server also employs hardware accelerated
AES-NI to perform fast random number generation.

Datasets Our work is primarily focused on the performance of privacy-preserving machine learning
solutions. As a result, we choose to use synthetic datasets which easily allow for a variable number of
training examples and features and better demonstrate the performance of our training. We emphasize
that we do NOT use synthetic data to measure accuracy of the train models. In fact, our training algorithms
(i.e. if our protocols were run honestly) are functionality equivalent to those of [44], and we refer the reader
to their paper for precise accuracy measurements on real datasets.

More specifically, all function altering optimizations employed in our framework which may impact the
accuracy of the trained models have already been proposed and discussed in prior work (e.g. [44]) and
have been shown to have a very small impact on model accuracy compared to the original functions. Next,
we elaborate in what ways our machine learning algorithms differ from textbook implementations.

1. Fixed-point as opposed to floating point arithmetic. In most cases, it is easy to compute an upper
bound on any intermediate value and ensure that the fixed-point numbers contain sufficiently many
bits to contain them. Moreover, a standard technique to improve the convergence rate of machine
learning algorithms is to first normalize all of the features to be centered at zero and have constant
standard deviations, e.g. 1. As such, the task of computing the upper bound on intermediate values
is simplified due to all features having similar magnitudes.

2. Secret shared fixed-point error. As described in Section 5.1, multiplication of two secret shared fixed-
point values can introduce an error of magnitude 2−d or with very small probability an error with a

25

large magnitude. As shown in [44, Figure 5], given sufficiently many decimal bits, this also has little
to no impact on the accuracy of the trained models.

3. Approximating the logistic function with a linear piecewise function. A similar approximation algo-
rithm was also employed by [44, Table 1] and was shown to result in a very small drop in accuracy.
For example, the MNIST [6] handwriting recognition task has an accuracy of 98.62 percent as op-
posed to 98.64 percent with the true logistic function. The accuracy of the Arcene [1] was completely
unaffected with an accuracy of 86 percent regardless of which activation function was used.

7.1 Linear Regression

We begin with the gradient decent protocol for learning linear regression models as detailed in Section 6,6.1.
The computation of this protocol is easy given our framework. At each iteration, a random subset Xj of the
dataset is sampled and the model is updated as w := w−α 1

BXT
j × (Xj×w−Yj). We report performance

in terms of iterations per second as opposed to end-to-end running time. This is primarily done to present
the results in a way that can be easily generalized to other tasks. Figure 4 presents the throughput of our
protocol compared to [44] and is further parameterized by the number of features D ∈ {10, 100, 1000} and
the size of the mini-batch B ∈ {128, 256, 512, 1024}.

The columns labeled “Online” denote the throughput of the input dependent computation while the
columns labeled “Online + Offline” denote the total throughput including the pre-processing phase that
is input independent. Our throughput is strictly better than that of [44]. In the LAN setting our online
throughput is between 1.5 to 4.5 times greater than [44] which is primarily due to a more efficient multipli-
cation protocol. For example, [44] requires preprocessed matrix beaver triples along with a more complex
opening procedure. While our protocol’s online throughput is considerably higher than [44], our main
contribution is an offline phase that is orders of magnitude more efficient. Overall, our protocol becomes
200 to 1000 times greater than [44] due to the elimination of expensive beaver triples. The only operation
performed in our offline phase is the generation of truncated shares JrK, Jr/2dK which requires computing
the addition circuit which can be made extremely efficient.

In the WAN setting, our protocol is also faster than [44] by roughly a factor of 2 in the online phase
and 10 to 1000 times faster when the overall throughput is considered. As before, the overall throughput
of our protocol is almost identical to just the online phase, with a reduction in throughput of roughly 10
percent. This is in drastic contrast with [44] where the majority of the computation is performed in the
offline phase.

Our protocol also achieves a smaller communication overhead compared to [44]. The communication
complexity for the online phase of both protocols is effectively identical. Each party performs two matrix
multiplications where shares of size B and D are sent. However, in the offline phase, [44] presents two
protocols where the first requires O(BD) exponentiations and D + B elements to be communicated per
iterations. Our protocol requires no exponentiations and achieves the same asymptotic communication
overhead but with better constants. Due to a large number of exponentiations required by their protocol,
[44] also propose a second technique based on oblivious transfer which is more computationally efficient
at the expense of an increased communication of O(BDκ) elements per iterations. In the LAN setting,
the computationally efficient oblivious transfer protocol achieves the higher throughput. However, in
the WAN setting, the communication overhead is the bottleneck and the exponentiation-based protocol

26

Setting Dimension Protocol
Batch Size B

Online Online + Offline
128 256 512 1024 128 256 512 1024

LAN

10
This 11764 10060 7153 5042 11574 9803 6896 4125
[44] 7889 7206 4350 4263 47 25 11 5.4

100
This 5171 2738 993 447 5089 2744 1091 470
[44] 2612 755 325 281 3.7 2.0 1.1 0.6

1000
This 406 208 104 46 377 200 100 46
[44] 131 96 45 27 0.44 0.24 0.12 0.06

WAN

10
This 24.6 24.5 24.3 23.9 20.8 20.7 20.6 20.3
[44] 12.4 12.4 12.4 12.4 2.4 1.6 0.88 0.50

100
This 24.5 24.1 23.7 23.3 20.7 20.4 20.1 19.4
[44] 12.3 12.2 11.8 11.8 0.63* 0.37* 0.19* 0.11*

1000
This 22.2 20.2 17.5 12.6 19.3 17.9 16.5 11.6
[44] 11.0 9.8 9.2 7.3 0.06* 0.03* 0.02* 0.01*

Figure 4: Linear Regression performance measured in iterations per second (larger = better). Dimension
denotes the number of features while batch size denotes number of samples used in each iteration. WAN
setting has 40ms RTT latency and 40 Mbps throughput. The preprocessing for [44] was performed either
using OT or the DGK cryptosystem with the faster protocol being reported above. The * symbol denotes
that the DGK protocol was performed.

becomes faster. In Figure 4, we always report and compare against the variant with the best throughput.
In our protocol, on the other hand, the preprocessing is computationally more efficient than either approach
presented by [44] and requires less communication.

Due to the offline phase of [44] having such a low throughput, the authors proposed an alternative
client-aided protocol where semi-honest clients generate triplet shares in preprocessing and share them
among the two servers. If we relabel an assisting client as the third sever, this variant of their protocol has
a similar security model as ours with the notable exception that there is no natural way to extend it to the
malicious setting. The advantage of adding a third party is that the throughput of the offline phase can be
significantly improved. However, it is still several orders of magnitude slower than our preprocessing for a
few reasons. First, their protocol requires that random matrices of the form R1×R2 = R3 be generated by
the third party, where R1 is a D×B dimension matrix. These have to be constructed and sent to the two
other parties resulting in high communication. On the other hand, our preprocessing simply requires the
sending of O(B +D) elements. Considering that D can be in the order of 100s this results in a significant
reduction in computation and communication. Moreover, our overall protocol is already faster than the
online phase of [44] and therefore is faster regardless of which preprocessing technique is used.

7.2 Logistic Regression

Our next point of comparison is with regards to the training of logistic regression models. This protocol
is more complex compared to linear regression due to the need to compute the logistic function at each
iteration. Our protocol approximates this using a piecewise linear function which requires switching to and
from a binary secret sharing scheme. While relatively efficient computationally, it does have the negative
consequence of increasing the round complexity of the protocol by 7 per iterations. In the LAN setting
where latency is small, this has little impact. For example, given a batch size of B = 128 and dimension
D = 10, our protocol can perform 2251 iterations per second using a single thread. Moreover, increasing

27

Setting Dimension Protocol
Batch Size B

Online Online + Offline
128 256 512 1024 128 256 512 1024

LAN

10
This 2251 2053 1666 1245 2116 1892 1441 1031
[44] 188 101 41 25 37 20 8.6 4.4

100
This 1867 1375 798 375 1744 1276 727 345
[44] 183 93 46 24 3.6 1.9 1.1 0.6

1000
This 349 184 95 42 328 177 93 41
[44] 105 51 24 13.5 0.43 0.24 0.12 0.06

WAN

10
This 4.12 4.10 4.06 3.99 3.91 3.90 3.86 3.79
[44] 3.10 2.28 1.58 0.99 1.4 0.94 0.56 0.33

100
This 4.11 4.09 4.03 3.94 3.91 3.89 3.84 3.74
[44] 3.08 2.25 1.57 0.99 0.52* 0.32* 0.17 * 0.01*

1000
This 4.04 3.95 3.78 3.47 3.84 3.75 3.59 3.32
[44] 3.01 2.15 1.47 0.93 0.06* 0.03* 0.02* 0.01*

Figure 5: Logistic Regression performance measured in iterations per second (larger = better). See caption
of Figure 4.

the dimension to D = 100 only decreases the throughput to 1867 iterations per second. When compared
to [44], this represents an order of magnitude improvement in running time. This difference is primarily
attributed to [44] using garbled circuits which requires fewer rounds at the cost of increased bandwidth
and more expensive operations. For both linear and logistic regression, the offline phase is identical. As
such, our extremely efficient offline phase results in a 200 to 800 times speedup over [44] when the overall
throughput is considered.

In the WAN setting, our increased round complexity begins to degrade our performance to the point
that [44] is almost as fast as our protocol during the online phase. For B = 128 and D = 100 our protocol
performs 4.1 iterations per seconds while [44] achieves 3.1 iterations per second. However, as the batch
size increases (resulting in a better rate of convergence), our protocol scales significantly better then [44].
Consider a batch size of B = 1024 where our protocol achieves 3.99 iterations per second while [44] achieves
0.99 iterations per seconds. When including the offline phase, our protocol receives almost no slowdown
(5%) while [44] is between 2 and 100 times slower, representing 3 to 300 times improvement when compared
with our protocol.

Our protocol also achieves a smaller communication overhead when approximating the logistic func-
tion. Primarily this is due to our protocol using a binary secret sharing and our new binary-arithmetic
multiplication protocol from Section 5.4. In total, our protocol requires each party to send roughly 8Bk
bits while [44], which uses garbled circuits, requires 1028Bk bits. The main disadvantage of our approach
is that it requires 7 rounds of interaction compared to 4 rounds by [44]. However, at the cost of less than
double the rounds, our protocol achieves a 128 times reduction in communication which facilitates a much
higher throughput in the LAN or WAN setting when there is a large amount of parallelism.

7.3 Neural Networks

Our protocol particularly stands out when working with neural networks. The first network we consider
(NN) is for the MNIST dataset and contains three fully connected layers consisting of 128, 128, and
10 nodes respectively. Between each layer, the ReLU activation function is applied using our piecewise
polynomial technique. When training the NN network, our implementation is capable of processing 10

28

training iterations per seconds, with each iteration using a batch size of 32 examples. Proportionally, when
using a batch size of 128, our protocol performs 2.5 iterations per second. As such, an accuracy of 94% can
be achieved in 45 minutes (15 epochs). Compared to [44], which achieves the same accuracy, our online
running time is 80× faster while the overall running time is 55, 000× faster.

We also consider a convolutional neural net (CNN) with 2 hidden layers as discussed [47]. This network
applies a convolutional layer which maps the 784 input pixels to a vector of 980 features. Two fully
connected layers with 100 and 10 nodes are performed with the ReLU activation function. For a detailed
depiction, see [47, Figure 3]. For ease of implementation, we overestimate the running time by replacing
the convolutional kernel with a fully connected layer. Our protocol can process 6 training iterations per
second with a batch size of 32, or 2 iterations per second with a batch size of 128. We estimate, if
the convolutional layer was fully implemented, that our training algorithm would achieve an equivalent
accuracy as a plaintext model [47] of 99% in less than one hour of training time.

7.4 Inference

We also benchmark our framework performing machine learning inference using linear regression, logistic
regression, and neural network models, as shown in Figure 6. For this task, a model that has already been
trained is secret shared between the parties along with an unlabeled feature vector for which a prediction
is desired. Given this, the parties evaluate the model on the feature vector to produce a prediction label.
We note that inference (evaluation) for all three types of models can be seen as a special case of training
(e.g. one forward propagation in case of neural networks) and hence can be easily performed using our
framework. Following the lead of several prior works [44, 47, 40], we report our protocol’s performance on
the MNIST task [6] which takes 784 = 28× 28 pixel images of handwritten numbers as input features and
attempts to output the correct number. The accuracy of these models ranges from 93% (linear) to 99%
(CNN).

When evaluating a linear model, our protocol requires exactly one online round of interaction (excluding
the sharing of the input and reconstructing the output). As such, the online computation is extremely
efficient, performing one inner product and communicating O(1) bytes. The offline preprocessing, however,
requires slightly more time at 3.7 ms along with the majority of the communication. The large difference
between online and offline is primarily due to the fact that our offline phase is optimized for high throughput
as opposed to low latency. Indeed, to take advantage of SSE vectorization instructions our offline phase
performs 128 times more work than is required. When compared to SecureML we observe that their total
time for performing a single prediction is slightly less than ours due to their offline phase requiring one
round of interaction as compared to our 64 rounds. However, achieving this running time in the two-party
setting requires a very large communication of 1.6 MB as opposed to our (throughput optimized) 0.002
MB, an 800× improvement. Our protocol also scales much better as it requires almost the same running
time to evaluate 100 predictions as it does 1. SecureML, on the other hand, incurs a 20× slowdown which
is primarily in the communication heavy OT-based offline phase.

We observe a similar trend when evaluating a logistic regression model. The online running time of
our protocols when evaluating a single input vector requires just 0.2 milliseconds compared to SecureML
requiring 0.7, with the total time of both protocols being approximately 4 milliseconds. However, our
protocol requires 0.005 MB of communication compared to 1.6 MB by SecureML, a 320× difference. When
100 inputs are all evaluated together our total running time is 9.1ms compared to 54.2 by SecureML, a 6×

29

Model Protocol Batch Size
Running Time (ms) Comm.
Online Total (MB)

Linear
This

1 0.1 3.8 0.002
100 0.3 4.1 0.008

SecureML [44]
1 0.2 2.6 1.6

100 0.3 54.2 160

Logistic
This

1 0.2 4.0 0.005
100 6.0 9.1 0.26

SecureML [44]
1 0.7 3.8 1.6

100 4.0 56.2 161

NN
This 1 3 8 0.5

SecureML [44] 1 193 4823 120.5

CNN
This* 1 6 10 5.2

Chameleon [47] 1 1360 2700 12.9
MiniONN [40] 1 3580 9329 657.5

Figure 6: Running time and communication of privacy preserving inference (model evaluation) for linear,
logistic and neural network models in the LAN setting (smaller = better). [44] was evaluated on our
benchmark machine and [47, 40] are cited from [47] using a similar machine. The models are for the
MNIST dataset with D = 784 features. NN denotes neural net with 2 fully connected hidden layers
each with 128 nodes along with a 10 node output layer. CNN denotes a convolutional neural net with 2
hidden layers, see [47] details. * This work (over) approximates the cost of the convolution layers with an
additional fully connected layer with 980 nodes.

improvement.
Our protocol requires 3ms in the online phase to evaluate the model and 8ms overall. SecureML, on

the other hand, requires 193ms in the online phase and 4823ms overall, a 600× difference. Our protocol
also requires 0.5 MB of communication as compared to 120.5 MB by SecureML.

More recently MiniONN [40] and Chameleon [47] have both proposed similar mixed protocol frameworks
for evaluating neural networks. Chameleon builds on the two-party ABY framework [24] which in this
paper we extend to the three-party case. However, Chameleon modifies that framework so that a semi-
honest third party helps perform the offline phase as suggested in the client-aided protocol of [44]. As
such, Chameleon’s implementation can also be seen in the semi-honest 3 party setting (with an honest
majority). In addition, because Chameleon is based on 2 party protocols, many of their operations are less
efficient compared to this work and cannot be naturally extended to the malicious setting. MiniONN is
in the same two-party model as SecureML. It too is based on semi-honest two-party protocols and has no
natural extension to the malicious setting.

As Figure 6 shows, our protocol significantly outperforms both Chameleon and MiniONN protocols
when ran on similar hardware. Our online running time is just 6 milliseconds compared to 1360 by
Chameleon and 3580 by MiniONN. The difference becomes even larger when the overall running time is
considered with our protocol requiring 10 milliseconds, while Chameleon and MiniONN respectively require
270× and 933× more time. In addition, our protocol requires the least communication of 5.2 MB compared
to 12.9 by Chameleon and 657.5 by MiniONN. We stress that Chameleon’s implementation is in a similar
security model to us while MiniONN is in the two-party setting.

30

References

[1] Arcene data set. https://archive.ics.uci.edu/ml/datasets/Arcene. Accessed: 2016-07-14.

[2] Azure machine learning studio. https://azure.microsoft.com/en-us/services/

machine-learning-studio/.

[3] Eigen library. http://eigen.tuxfamily.org/.

[4] Google cloud ai. https://cloud.google.com/products/machine-learning/.

[5] Machine learning on aws. https://aws.amazon.com/machine-learning/.

[6] MNIST database. http://yann.lecun.com/exdb/mnist/. Accessed: 2016-07-14.

[7] Watson machine learning. https://www.ibm.com/cloud/machine-learning.

[8] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep
learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 308–318. ACM, 2016.

[9] Y. Aono, T. Hayashi, L. Trieu Phong, and L. Wang. Scalable and secure logistic regression via
homomorphic encryption. In Proceedings of the Sixth ACM Conference on Data and Application
Security and Privacy, pages 142–144. ACM, 2016.

[10] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-throughput semi-honest secure three-
party computation with an honest majority. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C.
Myers, and S. Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages 805–817. ACM, 2016.

[11] J. BARZILAI and J. J. Borwein. Two-point step size gradient methods. 8:141–148, 01 1988.

[12] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: a system for secure multi-party computation.
pages 257–266.

[13] F. Bourse, M. Minelli, M. Minihold, and P. Paillier. Fast homomorphic evaluation of deep discretized
neural networks. Cryptology ePrint Archive, Report 2017/1114, 2017. https://eprint.iacr.org/

2017/1114.

[14] P. Bunn and R. Ostrovsky. Secure two-party k-means clustering. In Proceedings of the 14th ACM
conference on Computer and communications security, pages 486–497. ACM, 2007.

[15] R. Canetti. Security and composition of multiparty cryptographic protocols. 13(1):143–202, 2000.

[16] H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff. Privacy-preserving classification
on deep neural network. IACR Cryptology ePrint Archive, 2017:35, 2017.

31

https://archive.ics.uci.edu/ml/datasets/Arcene
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
http://eigen.tuxfamily.org/
https://cloud.google.com/products/machine-learning/
https://aws.amazon.com/machine-learning/
http://yann.lecun.com/exdb/mnist/
https://www.ibm.com/cloud/machine-learning
https://eprint.iacr.org/2017/1114
https://eprint.iacr.org/2017/1114

[17] N. Chandran, J. A. Garay, P. Mohassel, and S. Vusirikala. Efficient, constant-round and actively secure
MPC: beyond the three-party case. In B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors,
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 277–294. ACM, 2017.

[18] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi. Ezpc: Programmable, efficient,
and scalable secure two-party computation. Cryptology ePrint Archive, Report 2017/1109, 2017.
https://eprint.iacr.org/2017/1109.

[19] M. Chase, R. Gilad-Bachrach, K. Laine, K. Lauter, and P. Rindal. Private collaborative neural network
learning.

[20] K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic regression. In Advances in Neural
Information Processing Systems, pages 289–296, 2009.

[21] M. Chiesa, D. Demmler, M. Canini, M. Schapira, and T. Schneider. Towards securing internet ex-
change points against curious onlookers. In L. Eggert and C. Perkins, editors, Proceedings of the 2016
Applied Networking Research Workshop, ANRW 2016, Berlin, Germany, July 16, 2016, pages 32–34.
ACM, 2016.

[22] B. Crypto. Spdz-2: Multiparty computation with spdz online phase and mascot offline phase, 2016.

[23] D. Demmler, T. Schneider, and M. Zohner. ABY - A framework for efficient mixed-protocol secure
two-party computation.

[24] D. Demmler, T. Schneider, and M. Zohner. Aby-a framework for efficient mixed-protocol secure
two-party computation. In NDSS, 2015.

[25] W. Du and M. J. Atallah. Privacy-preserving cooperative scientific computations. In csfw, volume 1,
page 273. Citeseer, 2001.

[26] W. Du, Y. S. Han, and S. Chen. Privacy-preserving multivariate statistical analysis: Linear regression
and classification. In SDM, volume 4, pages 222–233. SIAM, 2004.

[27] M. K. Franklin, M. Gondree, and P. Mohassel. Multi-party indirect indexing and applications. pages
283–297.

[28] J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein. High-throughput secure three-party computation
for malicious adversaries and an honest majority. In J. Coron and J. B. Nielsen, editors, Advances
in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II,
volume 10211 of Lecture Notes in Computer Science, pages 225–255, 2017.

[29] A. Gascon, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Zahur, and D. Evans. Secure linear
regression on vertically partitioned datasets.

32

https://eprint.iacr.org/2017/1109

[30] I. Giacomelli, S. Jha, M. Joye, C. D. Page, and K. Yoon. Privacy-preserving ridge regression over
distributed data from lhe. Cryptology ePrint Archive, Report 2017/979, 2017. https://eprint.

iacr.org/2017/979.

[31] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing. Cryptonets:
Applying neural networks to encrypted data with high throughput and accuracy. In International
Conference on Machine Learning, pages 201–210, 2016.

[32] R. Gilad-Bachrach, K. Laine, K. Lauter, P. Rindal, and M. Rosulek. Secure data exchange: A
marketplace in the cloud. Cryptology ePrint Archive, Report 2016/620, 2016. http://eprint.iacr.
org/2016/620.

[33] D. Harris. A taxonomy of parallel prefix networks, 12 2003.

[34] E. Hesamifard, H. Takabi, and M. Ghasemi. Cryptodl: Deep neural networks over encrypted data.
arXiv preprint arXiv:1711.05189, 2017.

[35] G. Jagannathan and R. N. Wright. Privacy-preserving distributed k-means clustering over arbitrarily
partitioned data. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, pages 593–599. ACM, 2005.

[36] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications. pages
486–498.

[37] R. Kumaresan, S. Raghuraman, and A. Sealfon. Network oblivious transfer. In M. Robshaw and
J. Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of
Lecture Notes in Computer Science, pages 366–396. Springer, 2016.

[38] Y. Lindell and B. Pinkas. Privacy preserving data mining. In Annual International Cryptology Con-
ference, pages 36–54. Springer, 2000.

[39] J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious neural network predictions via minionn transfor-
mations. In B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 619–631. ACM, 2017.

[40] J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious neural network predictions via minionn transfor-
mations. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 619–631. ACM, 2017.

[41] E. Makri, D. Rotaru, N. P. Smart, and F. Vercauteren. Pics: Private image classification with svm.
Cryptology ePrint Archive, Report 2017/1190, 2017. https://eprint.iacr.org/2017/1190.

[42] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang. Learning differentially private language models
without losing accuracy. arXiv preprint arXiv:1710.06963, 2017.

33

https://eprint.iacr.org/2017/979
https://eprint.iacr.org/2017/979
http://eprint.iacr.org/2016/620
http://eprint.iacr.org/2016/620
https://eprint.iacr.org/2017/1190

[43] P. Mohassel, M. Rosulek, and Y. Zhang. Fast and secure three-party computation: The garbled circuit
approach. pages 591–602.

[44] P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-preserving machine learning. In
2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017,
pages 19–38. IEEE Computer Society, 2017.

[45] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In EC, pages
129–139, 1999.

[46] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft. Privacy-preserving ridge
regression on hundreds of millions of records. In Security and Privacy (SP), 2013 IEEE Symposium
on, pages 334–348. IEEE, 2013.

[47] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and F. Koushanfar. Chameleon:
A hybrid secure computation framework for machine learning applications.

[48] P. Rindal. A generic Secure Computation API for garbled circuits, SPDZ, etc. https://github.com/
ladnir/Ivory-Runtime.

[49] P. Rindal. libOTe: an efficient, portable, and easy to use Oblivious Transfer Library. https://

github.com/osu-crypto/libOTe.

[50] B. D. Rouhani, M. S. Riazi, and F. Koushanfar. Deepsecure: Scalable provably-secure deep learning.
arXiv preprint arXiv:1705.08963, 2017.

[51] A. P. Sanil, A. F. Karr, X. Lin, and J. P. Reiter. Privacy preserving regression modelling via distributed
computation. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 677–682. ACM, 2004.

[52] R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages 1310–1321. ACM, 2015.

[53] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against machine
learning models. In Security and Privacy (SP), 2017 IEEE Symposium on, pages 3–18. IEEE, 2017.

[54] A. B. Slavkovic, Y. Nardi, and M. M. Tibbits. ” secure” logistic regression of horizontally and verti-
cally partitioned distributed databases. In Seventh IEEE International Conference on Data Mining
Workshops (ICDMW 2007), pages 723–728. IEEE, 2007.

[55] C. Song, T. Ristenpart, and V. Shmatikov. Machine learning models that remember too much. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages
587–601. ACM, 2017.

[56] S. Song, K. Chaudhuri, and A. D. Sarwate. Stochastic gradient descent with differentially private
updates. In Global Conference on Signal and Information Processing (GlobalSIP), 2013 IEEE, pages
245–248. IEEE, 2013.

34

https://github.com/ladnir/Ivory-Runtime
https://github.com/ladnir/Ivory-Runtime
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe

[57] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Stealing machine learning models
via prediction apis. In USENIX Security Symposium, pages 601–618, 2016.

[58] J. Vaidya, H. Yu, and X. Jiang. Privacy-preserving svm classification. Knowledge and Information
Systems, 14(2):161–178, 2008.

[59] S. Wu, T. Teruya, J. Kawamoto, J. Sakuma, and H. Kikuchi. Privacy-preservation for stochastic
gradient descent application to secure logistic regression. The 27th Annual Conference of the Japanese
Society for Artificial Intelligence, 27:1–4, 2013.

[60] H. Yu, J. Vaidya, and X. Jiang. Privacy-preserving svm classification on vertically partitioned data.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 647–656. Springer, 2006.

[61] S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole - reducing data transfer in garbled
circuits using half gates. pages 220–250.

Appendices

A Proofs

A.1 Malicious Secure Fixed-Point Multiplication

Remarks: Observe that step 3 of the online phase need not be performed before step 4. Instead it can
be performed in the following round and before any values dependent of the output JzKA are revealed.
This observation allows the effective round complexity of the fixed-point multiplication protocol to be 1,
conditioned on the next operation not to be revealing a value resulting from z.

Theorem 1. Protocol Πmal−mult of Figure 7 securely computes Fmult with abort, in the presence of one
malicious party, where Fmult is defined as the functionality induced by Πmal−mult in the semi-honest setting
(steps 1a and 3 of the online phase can be omitted).

proof sketch: The security of this protocol can easily be reduced to the security of [10]. First observe
that the preprocessing phase makes only black box use of [28] and outputs a valid sharing of a uniformly
distributed value r′ ∈ Z2k .

Now observe that sending z′i − r′i reveals no information about x, y, z′ due to r′ being uniformly dis-
tributed. What remains to be shown is that if a malicious party i sends an incorrect value for z′i − r′i, the
honest parties will abort before any private information is revealed. By the correctness of step 1b, party
i + 1 will hold the correct value of zi. As such, party i + 1 can compute the correct value of z′i + r′i and
run compareview(z′i + r′i) with party i+ 2. Conditioned on not aborting, both agree on the correct value of
z′ + r′. Note that compareview is general technique for ensuring both parties agree on the specified value.
We refer interested readers to [28] for more details. Should the parties abort, no information is revealed
due to the prohibition on revealing any private values before step 3 of the online phases completes.

35

Parameters: A single 2-out-of-3 (or 3-out-of-3) share Jx′KA = (x′1, x
′
2, x
′
3) over the ring Z2k and a integer d < k.

Preprocess:
1. All parties locally compute Jr′KB ← Rand((Z2)k).
2. Define the sharing JrKB to be the k − d most significant shares of Jr′KB, i.e. r = r′/2d.
3. The parties compute Jr′2KB, Jr′3KB ← Rand((Z2)k) and Jr2KB, Jr3KB ← Rand((Z2)k−d). r′2, r2 is revealed to

party 1,2 and r′3, r3 to parties 2,3 using the RevealOne routine.
4. Using a ripple carry subtraction circuit, the parties jointly compute Jr′1KB := Jr′KB − Jr′2KB − Jr′3KB,

Jr1KB := JrKB − Jr2KB − Jr3KB and reveal r′1, r1 to parties 1,3.
5. Define the preprocessed shares as Jr′KA := (r′1, r

′
2, r
′
3), JrKA := (r1, r2, r3).

Online: On input JxKA, JyKA,
1. The parties run the malicious secure multiplication protocol of [28, Protocol 4.2] where operations are

performed over Z2k . This includes:

(a) Run the semi-honest multiplication protocol [28, Section 2.2] on JxKA, JyKA to obtain a sharing of
Jz′KA := JxKAJyKA. ⊕ and ∧ operations are replaced with +, ∗ respectively.

(b) Before any shares are revealed, run the triple verification protocol of [28, Protocol 2.24] using
(JxKA, JyKA, Jz′KA).

2. In the same round that party i sends z′i to party i+ 1 (performed in step 1a), party i sends (z′i − r′i) to
party i+ 2.

3. Before any shares are revealed, party i+ 1 locally computes (z′i− r′i) and runs compareview(z′i− r′i) with
party i+ 2. If they saw different values both parties send ⊥ to all other parties and abort.

4. All parties compute (z′ − r′) =
∑3

i=1(zi − r′i).
5. Output JzKA := JrKA + (z′ − r′)/2d.

Figure 7: Single round share malicious secure fixed-point multiplication protocol Πmal−mult.

36

	Introduction
	Our Contribution
	Overview of Techniques

	Related Work
	Preliminaries
	Notation
	Three-party Secure Computation techniques
	Secret Sharing Based
	Arithmetic vs. Binary sharing
	Yao sharing

	Security Model
	Our Framework
	Fixed-point Arithmetic
	Why technique of secureML fails
	Our Multi-Party Fixed-Point Multiplication

	Vectorized Multiplication
	Share Conversions
	Computing bold0mu mumu "464A671 a"564B679 A "464A671 b"564B679 B ="464A671 ab"564B679 A"464A671 a"564B679 A "464A671 b"564B679 B ="464A671 ab"564B679 A"464A671 a"564B679 A "464A671 b"564B679 B ="464A671 ab"564B679 A"464A671 a"564B679 A "464A671 b"564B679 B ="464A671 ab"564B679 A"464A671 a"564B679 A "464A671 b"564B679 B ="464A671 ab"564B679 A"464A671 a"564B679 A "464A671 b"564B679 B ="464A671 ab"564B679 A
	Semi-honest Security
	Malicious Security

	Polynomial Piecewise Functions

	Machine Learning
	Linear Regression
	Logistic Regression
	Neural Nets

	Experiments
	Linear Regression
	Logistic Regression
	Neural Networks
	Inference

	Appendices
	Proofs
	Malicious Secure Fixed-Point Multiplication

