
Cache-Attacks on the ARM TrustZone implementations
of AES-256 and AES-256-GCM via GPU-based analysis

Ben Lapid and Avishai Wool

School of Electrical Engineering, Tel Aviv University, ISRAEL
ben.lapid@gmail.com, yash@eng.tau.ac.il

Abstract. The ARM TrustZone is a security extension which is used in recent
Samsung flagship smartphones to create a Trusted Execution Environment (TEE)
called a Secure World, which runs secure processes (Trustlets). The Samsung
TEE includes cryptographic key storage and functions inside the Keymaster trust-
let. The secret key used by the Keymaster trustlet is derived by a hardware device
and is inaccessible to the Android OS. However, the ARM32 AES implemen-
tation used by the Keymaster is vulnerable to side channel cache-attacks. The
Keymaster trustlet uses AES-256 in GCM mode, which makes mounting a cache
attack against this target much harder. In this paper we show that it is possible
to perform a successful cache attack against this AES implementation, in AES-
256/GCM mode, using widely available hardware. Using a laptop’s GPU to par-
allelize the analysis, we are able to extract a raw AES-256 key with 7 minutes
of measurements and under a minute of analysis time and an AES-256/GCM key
with 40 minutes of measurements and 30 minutes of analysis.

1 Introduction
1.1 Motivation

The ARM TrustZone [1] is a security extension helping to move the “root of trust”
further away from the attacker. TrustZone is a separate environment that can run se-
curity dedicated functionality, parallel to the OS and separated from it by a hardware
barrier. Recent Samsung flagship smartphones rely on Samsung’s Exynos SoC archi-
tecture cf. [23]. The ARM cores in Exynos support the TrustZone security extension to
create Trusted Execution Environments (TEEs).

In order to support cryptographic modules, the Android OS includes a mechanism
for handling cryptographic keys and functions called the Keystore [8]. Keystore is used
for several privacy related features such as full disk encryption and password storage.
The Keystore depends on a hardware abstraction layer (HAL) module called the Key-
master to implement the underlying key handling and cryptographic functions; and
many OEMs, including Samsung, choose to implement the Keymaster as a trustlet in
the TrustZone.

1.2 Related Work

Lipp et al. [14] implemented cache attack techniques to recover secret keys from Java
implementation of AES-128 on ARM processors, and exfiltrate additional execution
information. In addition they were able to monitor cache activity in the TrustZone.



Zhang et al. [29] demonstrated a successful cache attack on a T-Table implementa-
tion of AES-128 that runs inside the TrustZone—however, their target was the C imple-
mentation that is part of OpenSSL while we focus on ARM32 assembly implementation
found in Samsung Keymaster Trustlet for AES-256 and AES-256/GCM modes. Ryan
et al. [15] demonstrated reliable cache side channel techniques that require loading a
kernel module into the Normal World—which is disabled or restricted to OEM-verified
modules on modern devices. To our knowledge no previous cache attacks on a standard
devices’ ARM TrustZone AES implementation using publicly available vulnerabilities
have been published.

Recently, Green et al. [11] presented AutoLock, an undocumented feature in certain
ARM CPUs which prevents eviction of cross-core cache sets. This feature severely re-
duces the effectiveness of cache side-channel attacks. The authors listed multiple CPUs
that include AutoLock, and among them are the A53 and A57 used in the device we
used (Samsung Galaxy S6).

Cache side channel attacks on AES were first demonstrated by Bernstein [3] with
the target being a remote encryption server with an x86 CPU. Osvik et al. [21, 26]
demonstrated the Prime+Probe technique to attack a T-Table implementation of AES
which resides in the Linux kernel on an x86 CPU. Xinjie et al. [28] and Neve et al. [16]
presented techniques which improve the effectiveness of cache side channel attacks.
Spreitzer et al. [25] demonstrated a specialization of these attacks on misaligned T-
Table implementations. Neve et al. [17] discussed the effectiveness of these attacks on
AES-256 and demonstrated a successful specialized attack for AES-256.

1.3 Contributions

Our starting point is the observation of [13] that the ARM32 assembly-language AES
implementation used by the Keymaster Trustlet uses a T-Table and is vulnerable to
cache side-channel attacks. Furthermore, the Keymaster’s T-Table is misaligned, which
helps the attacker. Unlike prior works, which attacked evaluation boards or AES-128,
we successfully demonstrate cache attacks on a real device, against the AES-256 and
AES-256/GCM implementation used by the Keymaster trustlet. Beyond the larger keys
in AES-256, GCM mode introduces additional challenges, since the cryptanalyst has
no control over 4 of the 16 bytes of plaintext in an AES block.

A key aspect of our attack is that we extract the secret key using a divide and con-
quer strategy. In the AES-256/GCM case, rather than analyze all 256 key bits simulta-
neously, we identify them in 4 phases: we identify 84 bits in phase 1; based on them we
identify the next 124 bits in phase 2, and so forth until all 256 bits are discovered.

In addition, we present our approach to implementing the analysis phase of our
attacks on a GPU. Such an approach requires careful planning and, when implemented
correctly, leads to a significant improvement in analysis speed.

Using a laptop’s GPU to parallelize the analysis, we are able to extract a raw AES-
256 key with 7 minutes of measurements and under a minute of analysis time and an
AES-256/GCM key with 40 minutes of measurements and 30 minutes of analysis.

Organization: Section 2 describes the Keymaster trustlet and its cryptographic
functions. Section 3 demonstrates cache side-channel attacks against the AES imple-
mentation used by the Keymaster trustlet in isolation. Section 4 describes the use of

2



GPU to mount the attacks and we conclude with Section 5. We provide GPU kernel
examples in Appendix A.

2 Preliminaries

2.1 ARM TrustZone Overview

ARM TrustZone security extensions [2] enable a processor to run in two states, called
Normal World and Secure World. This architecture also extends the concept of “privi-
lege rings” and adds another dimension to it. In the ARMv8 ISA, these rings are called
“Exception Levels” (ELs). The most privileged mode is the “Secure Monitor” which
runs in EL3 and sits “above” the Secure and Normal Worlds. In the Secure World, the
Secure OS kernel runs in EL1 and the Secure userspace runs in EL0. On Samsung de-
vices, the Normal World OS is Android: the Linux kernel runs in EL1 and the user-space
programs run in EL0.

The separation of Secure and Normal World allows that certain RAM ranges and
bus peripherals may be indicated as “secure” and only be accessed by the Secure World.
This means that compromised Normal World code (in userspace or kernel) will not be
able to access these memory ranges or devices.

It’s important to note that the world separation is completely “virtual”. The same
cores are used to run both Secure and Normal Worlds and they use the same RAM.
Therefore, they use the same cache used by the core to improve memory access times;
in [13] we describe how this design decision may be leveraged to mount cache side
channel attacks.

In the Samsung ecosystem there are two major players in field of TrustZone imple-
mentations. One is Qualcomm, with the QSEE operating system [22] which is compat-
ible with the Snapdragon SoC architecture used on many Samsung devices. The other
is Trustonic, with the Kinibi operating system [27] which is used by Samsung in their
popular Exynos SoC architecture as a part of the KNOX security system [24]. In this
paper we focus on the Trustonic TrustZone.

These Trusted Execution Environments (TEEs) are used for various activities within
the smart device: Secure boot, Keymaster implementation (see Section 2.2), secure UI,
kernel protections, secure payments, digital rights management (DRM) and more.

2.2 Keystore and Keymaster Hardware Abstraction Layer (HAL)

The Android Keystore system [8], which was introduced in Android 4.3, allows appli-
cations to create, store and use cryptographic keys while attempting to make the keys
themselves hard to extract from the device. The documentation advertises the following
security features:

– Extraction Prevention: The keys themselves are never present in the application’s
memory space. The applications only know of key-blobs which cannot be used
directly. The key-blobs are usually the keys packed with extra meta-data and en-
crypted with a secret key by the Keymaster HAL (Hardware Abstraction Layer).

3



– Key Use Authorizations: The Keystore system allows the application to place re-
strictions on the generated keys to mitigate the possibility of unauthorized use.

The Keystore system is implemented in the keystored daemon [9], which exposes a
binder interface that consists of many key management and cryptographic functions.
Under the hood, the keystored holds the following responsibilities:

– Expose the binder interface, listen and respond to requests made by applications.
– Manage the application keys. The daemon creates a directory on the filesystem for

each application; the key-blobs are stored in files in the application’s directory. Each
key-blob file is encrypted with a key-blob encryption key (different per application)
which is saved as the masterkey in the application’s directory. The masterkey file
itself is encrypted when the device is locked, and the encryption employs the user’s
password and a randomly generated salt to derive the masterkey encryption key.

– Relay cryptographic function calls to the Keymaster HAL device (covered below).

The Keymaster hardware abstraction layer (HAL) [7] is an interface between An-
droid’s keystored and the OEM implementation of a secure-hardware-backed crypto-
graphic module. It requires the OEM to implement several cryptographic functions
such as: key generation, init/update/final methods for various cryptographic primitives
(public key encryption, symmetric key encryption, and HMAC), key import, public key
export and general information requests. The implementation is a library that exports
these functions and is implemented by relaying the request to the secure hardware sys-
tem. The secure system usually encrypts generated keys with some key encryption key
(which is usually derived by a hardware-backed mechanism). Therefore, the non-secure
system does not know the actual key that is used, but may still save it in the filesystem
and subsequently use it through the Keymaster to invoke cryptographic functions with
the key. In practice - this is exactly how the keystored daemon uses the Keymaster HAL
(with the aforementioned addition of an additional encryption of the key blobs).

An example of the usage of the Keymaster HAL is the Android Full Disk Encryption
feature, implemented by the userspace daemon vold [10], which uses the Keymaster
HAL as part of the key derivation.

2.3 Samsung’s Keymaster HAL and Trustlet

Samsung’s Keymaster HAL library exposes the aforementioned Keymaster interface
and implements its functions by making calls to the Keymaster Trustlet. The trustlet
itself has UUID: ffffffff00000000000000000000003e, and is located in the system parti-
tion (/system/app/mcRegistry/<UUID>.tlbin). The Trustlet code handles several tasks,
of which the following are relevant to our work:

– Key generation of RSA/EC, AES and HMAC keys. Keys are generated using ran-
dom bytes from the OpenSSL FIPS DRBG module, which seeds its entropy either
from keymaster add rng entropy calls from the Normal World or from a secure
PRNG made available by the Secure World Crypto Driver. Key generation requests
receive a list of key characteristics (as defined by the Keymaster HAL), which de-
scribe the algorithm, padding, block mode and other restrictions on the key. The

4



generated keys (concatenated with their characteristics) are encrypted by a key-
encryption-key (KEK) which is unique to the Keymaster trustlet. The trustlet re-
ceives this key by making an IPC request along with a constant salt to a driver
which uses a hardware-based cryptographic function to drive the key. The encryp-
tion used for key encryption is AES256-GCM128. The GCM IV and authentication
tag are concatenated to the encrypted key before being returned to the user as a key
blob. Therefore, an attacker that is able to obtain this KEK is able to decrypt all the
key blobs stored in the file system—i.e., the KEK can be viewed as the “key to the
kingdom”, and it’s encryption scheme is the target of our attacks in Section 3.

– Execution of cryptographic functions. The trustlet can handle begin/update/final re-
quests for given keys created by the trustlet. It first decrypts the key-blobs and ver-
ifies the authentication tag, then verifies that the key (and the trustlet) supports the
requested operation, and then executes it. The cryptographic functions are imple-
mented using the OpenSSL FIPS Object Module [20]. In particular, we discovered
that the AES code is a pure ARMv4 assembly implementation that uses a single
1KB T-Table. In general, AES implementations based on T-Tables are vulnerable
to cache attacks [21, 26]. Our attacks (described in Section 3) explore cache side
channel attacks on this AES implementation.

– The trustlet handles requests for key characteristics and requests for information on
supported algorithms, block modes, padding schemes, digest modes and import/-
export formats.

2.4 Attack model

The fundamental reason for the existence of the TrustZone is to provide a hardware-
based root of trust for a trusted execution environment (TEE)—that is designed to resist
even a compromised Normal World kernel.

Since the Normal World kernel, and all the kernel modules on Samsung’s smart-
phones are signed by Samsung and verified before being loaded, injecting code into
the kernel is challenging for the attacker. Our goal in this work is to demonstrate that
weaker attacks, that do not require a compromised kernel, are sufficient to exfiltrate
Secure World information—in particular secret key material.

Our attack has two stages: a data collection stage and an analysis stage. In the data
collection stage we assume an attacker is able to execute code on a Samsung Galaxy
S6 device, under root privileges and relevant SELinux permissions. Note that these
privileges are significantly less than kernel privileges, since the attack code runs in EL0.

Root privileges are needed to access the /proc/self/pagemap to identify cache sets,
as described by Lipp et al. [14]. Our attack can theoretically be mounted without access
to this file, but it will be substantially more difficult.

To achieve root privileges and the necessary SELinux permissions in our investiga-
tion we used the publicly known vulnerability called dirtycow. The rooting process is
based on Trident [6], which uses dirtycow.

The main target of our attack is the Keymaster trustlet. The API to communicate
with the trustlet expects a buffer which should hold a key blob. Valid key blobs typ-
ically include over 100 bytes of encrypted data, therefore an API call (e.g. to extract
some meta-data from a key blob) uses the AES-256 block function at least 9 times (2

5



for initialization and at least 7 subsequent blocks). If we measure cache access effects
only after the trustlet completes its work, the 9 block function invocations will induce
too much noise and render our attacks infeasible. Therefore, instead we send invalid
requests: having the key blob hold just one byte. Such API calls induce the two block
function calls for GCM initialization, and a one more call to decrypt the single byte.
The request then fails, therefore we do not have access to any ciphertext. Our attacks
take this restriction into consideration by focusing on the first AES-256 rounds and
knowledge of the plain-text and IV - and avoid relying on the resulting ciphertext.

In the subsequent analysis stage, the collected clock measurement data is analyzed
on a separate machine - we utilized a Macbook Pro laptop using a Radeon Pro 460
GPU.

3 Cache Attacks Against the Keymaster AES

3.1 Overview

As stated before, the Keymaster key encryption uses AES256/GCM128, therefore we
focused on AES side channel attacks. In this section we present our attack methods.

We begin our work by adapting prior cache attacks on AES to the ARM32 im-
plementation used in the Keymaster trustlet. Our measurements were taken on a stock
Samsung Galaxy S6 running original Samsung firmware.

Prior research [21, 26][28][16] demonstrated that the use of T-Tables in AES in-
duces cache activity which leads to key leakage. In particular, when the T-Tables are
misaligned in memory, better results have been achieved [25]. These methods exploit
the fact that the implementation of the AES rounds use memory lookups which may
be traced by evicting the T-Table from memory, running the AES encryption and then
observing the cache access timing pattern. While the aforementioned methods assume
the AES implementation uses four T-Tables, the AES implementation in the Keymaster
trustlet uses one T-Table which is misaligned [13]. According to [21, 26] this design
choice is still vulnerable but requires roughly 3000 times more data and analysis, which
is still feasible.

The attack, presented by Osvik et al. [21, 26], assumes we can detect cache activity
(on the cache sets which hold the T-Table) using the Prime+Probe method and focuses
on the first round of AES. The Prime+Probe method measures cache activity by first
priming a specific cache set (by writing memory to memory addresses which map to the
same set - thereby evicting the cache set), then allowing the AES algorithm to run and
finally probing the cache set (by accessing the primed memory addresses and measuring
the time it took to fetch them). From the resulting measurements one can infer whether
the AES algorithm has evicted a specific set - which would cause the probing phase
to measure a higher value (due to some of its memory addresses being fetched from
memory instead of the cache). In order to differentiate between probe measurements of
evicted sets and non-evicted sets, a threshold value (denoted Ta below) is used. This
value must be calibrated in advance for each hardware (CPU+Cache) that will be used
as a target for the attack.

6



Fig. 1. Histogram of probe timing measurement for 50, 000 probes. Separation between
evicted and non-evicted sets is visible at around 800ns.

If the probe measurement, for the cache set which holds T-Table entry number i, is
below Ta, the entry was not accessed and therefore certain ki values are incorrect. If, in-
fact, one of these ki values was correct, the T-Table entry would have been accessed and
eviction would occur for one of our primed addresses, resulting in a probe measurement
above the threshold. More precisely, due to noise in the system, we may only infer that
they are more likely, therefore we give each ki candidate a score based on how many
times we deem it likely (0 for each time it is unlikely and 1 otherwise). The ki values
we infer from cache activity depends on pi, the details of the cache and the alignment
(or misalignment) of the T-Table with respect to cache lines.

3.2 Calibrating the probe measurement threshold

We selected the threshold value Ta through analysis of cache access times and eviction
strategies as described by Lipp et. al. [14]. This method applies Prime+Probe to a single
address multiple times in two manners: first, it is primed and probed consecutively and
second, memory access is added after the prime and before the probe. This, essentially,
creates statistics on probe measurements for a given eviction strategy on a given CPU
and cache. Ta separates between probes on set indexes which were not evicted versus set
indexes which at least one address was evicted. Figure 1 shows the results of this method
on our Galaxy S6. The strategy we used (using the notation from Lipp et. al. [14]) is
N = 5 (total eviction set size), A = 5 (shift offset), D = 16 (number of accesses
per iteration) which we found to be the best strategy for our device after testing many
alternatives; time measurements were made with linux’s monotonic clock due to lack
of better clock source available under our attack model. Based on the figure we set Ta

to be 800[ns].

3.3 The analysis stage for AES-128 attacks

To begin with, we describe an attack on AES-128 in ECB mode. With the cache activity
measurements gathered on the Galaxy S6 in the data collection stage, we implement the

7



analyzing stage on a GPU-equipped laptop. The analysis stage consists of two phases,
described below.

Phase 1 In the first round of the AES implementation, each i-th plaintext byte pi is
XOR-ed with the i-th key byte ki: x

(0)
i = pi ⊕ ki. The value of x(0)

i is then used as an
index to the T-Table which is accessed subsequently.

Because these calculations only rely on the value of pi and ki, it’s possible to use a
divide-and-conquer approach and consider each key byte independently. Given a probe
measurement for T-Table entry x, we iterate through byte index i = 0, ..., 15 and let pi be
the i-th plaintext byte. For all possible values of ki = 0, ..., 255, we check whether ki is
likely based on the method described above and update the scores. We end with a score
matrix for the level of likelihood for each candidate value per key byte. We continue the
measurements and analysis until for each key byte, one candidate has a z-score above 5
(i.e., 5 standard-deviations above the mean).

On the Samsung Galaxy S6 ARM A53 and A57 CPUs, each cache line is 64 bytes
long; therefore each line holds 16 T-Table entries (4 bytes per entry). In the implemen-
tation present in the Keymaster trustlet, the T-Table has an 8 byte misalignment with
respect to the cache lines, see [13]: So the T-Table actually spans over 17 cache lines,
with the first line holding 14 entries and the last line holding 2 entries. This means that
our best case resolution is 2: if we use the constraints based on a single AES round we
are eventually left with 2 candidates for each key byte which are indistinguishable to
us. This means we learn 7 out of 8 bits for each key byte, reducing the unknown key
space from 128 bits to 16 bits.

Phase 2 Enumerating through 16 bits is trivial with modern hardware; however, we
present the rest of the attack which continues to apply divide-and-conquer using anal-
ysis of subsequent rounds. It will be useful to understand the next sections in which we
attack AES-256 and AES-256/GCM and it may also be of independent interest in cases
where the misalignment is less favorable or nonexistent.

To identify the remaining AES128 key bits we focus on the second round of the
AES implementation; specifically, the following equations, derived from the Rijndael
specification[4], which give 4 of the entries accessed in the second round:

x
(1)
2 = s(p0 ⊕ k0)⊕ s(p5 ⊕ k5)

⊕ 2 • s(p10 ⊕ k10)⊕ 3 • s(p15 ⊕ k15)⊕ s(k15)⊕ k2

x
(1)
5 = s(p4 ⊕ k4)⊕ 2 • s(p9 ⊕ k9)

⊕ 3 • s(p14 ⊕ k14)⊕ s(p3 ⊕ k3)⊕ s(k14)⊕ k1 ⊕ k5

x
(1)
8 = 2 • (p8 ⊕ k8)⊕ 3 • s(p13 ⊕ k13)

⊕ s(p2 ⊕ k2)⊕ s(p7 ⊕ k7)⊕ s(k13)⊕ k0 ⊕ k4 ⊕ k8 ⊕ 1

x
(1)
15 = 3 • s(p12 ⊕ k12)⊕ s(p1 ⊕ k1)

⊕ s(p6 ⊕ k6)⊕ 2 • s(p11 ⊕ k11)⊕ s(k12)⊕ k15 ⊕ k3 ⊕ k7 ⊕ k1

(1)

8



Where s(·) denotes Rijndael S-box function and • denotes multiplication over GF(256).
There are three properties of these equations which are important to note:

– Each equation refers to 4 “bound” ki’s (that are an input to s(·)) and between 1 to
4 “free” ki’s that are simply XOR’ed. In fact, the keen reader may see that if we
analyze the equations sequentially, each equation only has 1 “free” ki: If we solve
the equations in sequence then all but one of the “free” ki is completely discovered
by the previous equations.

– Because our measurement resolution is 2 entries, only the 7 most significant bits of
the “free” ki variables are relevant to the index calculations.

– Since the first 7 bits of every ki are known from phase 1, each equation only has 4
unknown bits - the least significant bit of every “bound” ki.

These properties allows us to apply divide-and-conquer once again, and consider
each equation separately. For each pair of plaintext and probe measurements, we enu-
merate the 4 possible key bits, calculate the equation and check whether they are likely
based on the cache accesses during the second AES round. Eventually, the most likely
candidate of these 4 bits is selected.

Combining the results for the four equations, along with the result of the phase 1,
yields the entire 128 bits of the key - full key recovery.

We implemented a cache side-channel attack against the AES-128 implementation
used by the Keymaster trustlet after copying it to a user-space sandbox and using AES
in ECB mode. We were able to successfully recover the entire 128 bits of the key using
the method described above. Our experiment used 100,000 measurements: this amount
of data can be collected in under a minute on a Samsung Galaxy S6 and analyzed in
less than 15 seconds on a Radeon Pro 460 GPU. The amount of memory used by the
GPU (in phase 1 of the attack) was 1GB. Details on the GPU analysis implementation
in Section 4.

3.4 AES-256 attacks

Phases 1 & 2 As we saw in Section 2.3, Samsung’s Keymaster trustlet uses AES-
256. Attempting to use the attack described in the previous section on AES-256 is not
enough for full key recovery. There are relatively few papers discussing the specifics
of cache attacks against AES-256. The most relevant seems to be by Neve and Tiri
[17]. They proposed an extension of a different attack—one that looks at the last two
rounds of AES instead of the first, and requires knowing the ciphertext, in contrast to
the requirement of knowing the plaintext in the attack we used in Section 3.3. As we
discussed in section 2.4, relying on last AES round is difficult against the Keymaster
trustlet. Therefore, we devised a method which extends the attack of Section 3.3 to
recover 256 bit keys using the first three rounds.

The first part of the attack remains the same as phase 1 of the AES-128 attack (see
Section 3.3): discover the 7 most significant bits of k0 through k15. We determine that
the first round sieving has ended when for all 16 key bytes the most likely candidate
value has a z-score above 5.

In order to recover the missing 16 bits in the lower half of the key, and most of the
bits in the upper half, we rely on the second AES round. E.g., consider the first four
indexes, which are derived from the Rijndael specifications:

9




x
(1)
0

x
(1)
1

x
(1)
2

x
(1)
3

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 •


s(p0 ⊕ k0)
s(p5 ⊕ k5)
s(p10 ⊕ k10)
s(p15 ⊕ k15)

⊕

k16
k17
k18
k19

 (2)

It’s important to note that every 4 indexes depend on the same four key bytes from
the lower half of the key (k0, k5, k10, k15 in equation (2)) and each index depends on
one byte of the upper half of the key. Another important property is that as in section
3.3, from the 8 bits of the bytes from the upper half of the key only the 7 most significant
bits affect the measurement of the index. Therefore, each equation has only 11 unknown
bits: 1 for each of the 4 lower-half-key bytes and 7 for the single upper-half-key byte.

Once again, we use divide-and-conquer; divide the problem to four four-equation
subproblems, divide each subproblem to it’s four equations and on each equation use
the same methods described above to select the most likely candidate for the 1 least
significant bits of the lower-half key bytes and the 7 most significant bits of the single
upper-half key byte. Therefore, for a given equation e and measurement, iterate over
all 211 combinations of key-bit values. If the measurement is compatible with key-bit
combination c, then increment score[e][c]. After this step, we have the entire lower-half
key bytes (k0 through k15) and the 7 most significant bits of every upper-half key byte
(k16 through k31). Therefore, we have reduced the key space from 256 bits to 16 by
using the first two rounds.

Phase 3 While enumeration of 16 bits is feasible, we present a third phase of the attack
which may be applied to other misalingment circumstances. We do so by imitating the
second phase of the attack on 128 bit AES (section 3.3). Consider equation (3) which is
derived from the Rijndael specification with 256 key expansion (after substituding the
first round indexes x(1)

i )

x
(2)
2 = s(2 • s(p0 ⊕ k0)⊕ 3 • s(p5 ⊕ k5)⊕ s(p10 ⊕ k10)

⊕ s(p15 ⊕ k15)⊕ k16)

⊕ s(s(p4 ⊕ k4)⊕ 2 • s(p9 ⊕ k9)⊕ 3 • s(p14 ⊕ k14)

⊕ s(p3 ⊕ k3)⊕ k21)

⊕ 2 • s(s(p8 ⊕ k8)⊕ s(p13 ⊕ k13)⊕ 2 • s(p2 ⊕ k2)

⊕ 3 • s(p7 ⊕ k7)⊕ k26)

⊕ 3 • s(3 • s(p12 ⊕ k12)⊕ s(p11 ⊕ k11)⊕ s(p6 ⊕ k6)

⊕ 2 • s(p11 ⊕ k11)⊕ k31)

⊕ s(k31)⊕ k2

(3)

At first sight this equation may seem daunting. However, notice that we, in fact,
know p0 through p15, k0 through k15 and the 7 most significant bits of k16, k21, k26,
k31. Therefore, only 4 bits are unknown in this equation. We then use a similar sieving

10



Fig. 2. Number of correct bits in the most likely candidate as function of samples used
(log2 scale).

method as in the previous phases to select the most likely candidate for these bits.
Then, we apply the same technique to the equations for x(2)

5 , x(2)
8 and x

(2)
15 . Eventually,

we arrive at full recovery of the AES 256 bit key.

Putting it all together We implemented this attack on the AES-256 code used by
Samsung’s Keymaster trustlet. Figure 2 shows the the number of correct bits in the
most likely candidate as a function of the number of measurements used. The horizontal
barriers mark the target of each phase of the attack: 112 bits for the 1st phase, 240 bits
for the 2nd and 256 bits for the 3rd phase. It’s important to note that after we complete
the first phase, we reuse the samples for the second phase which explains the sudden
increase in known bits between phase one and phase two of the attack. It took 7 minutes
to collect the one million measurements on the Galaxy S6. The sieving process took
under a minute to complete (all three stages) and 3.5GB of memory, using a Radeon
Pro 460 GPU on a laptop.

3.5 Galois counter mode (GCM) attacks

Challenges A further complication is that Samsung’s Keymaster trustlet uses AES-256
in GCM mode [5]. Two factors make cache side channel attacks harder against GCM:
the use of the block function in the initialization, and the lack of control over the 4 last
bytes of the input to the block function.

According to the GCM specification, the computation of the authentication tag re-
quires two invocations of the block function. When the input initialization vector (IV)
is 96 bits long, the block function is invoked once with a plain-text of 016 (a 16 zero
byte string) and then with a plain-text of IV ||04. Unless it is possible to distinguish
between this initialization phase and subsequent encryption phases, the initialization
induces substantial cache-access noise.

Furthermore, subsequent block function invocations made by GCM are called with
the input IV ||Counter, where IV is the original 96 bit IV and Counter is a four byte
integer counter (starting with the value 2) which is appended (with big endianess) to the
IV. This means that we have limited control over the input to the block function. While
we control the 96 bits given as IV, the Counter bytes may only be changed by encrypting

11



additional data with the same GCM context. This implies that it is much more difficult
to collect enough data to differentiate between key candidates for k12 through k15.

Phases 1 & 2 We begin by attempting to apply the same technique used in the previous
section to AES-256/GCM. We assume that we can distinguish between cache-access
due to the first two block function invocations (initialization calls) and subsequent in-
vocations. However, we continue limit ourselves to scenarios that allow only one en-
cryption call and do not allow knowledge of the resulting ciphertext to allow use against
the Keymaster trustlet. Because we do not have control over the last four bytes of the
input, the first phase of the technique (section 3.4), which focuses on the first round of
AES, only recovers the 7 most significant bits of k0 through k11, recovering only 84
bits of the key.

The second part of the technique, which focuses on the second round of AES-256, is
more difficult under GCM. Instead of the 11 unknown bits we identified in Section 3.5,
we now face 18 unknown bits: 1 least significant bit for k0 through k11 (three of these
per equation), 8 bits for k12 through k15 (one per equation) and 7 most significant bits
for k16 through k31 (one per equation).

While an enumeration of 18 bits is feasible even with modest resources, another
hurdle emerges. Consider the value t = s(p15 ⊕ k15) ⊕ k16 in the equation for x(1)

0 in
equation (2). Because p15 has a single value (typically p15=2) which we cannot control,
t has a constant value. We note that for each key byte candidate value x for k15 we can
find a key byte candidate k16, which will result in the same value x. More precisely,
due to the resolution from the T-Table misalignment, we can find a 7 most significant
bit candidate for k16.

By applying the same sieving technique described above, we use pairs of IV (first 12
bytes of plaintext) and probe measurements to select the likely value of the 18 unknown
bits. Due to the dependency between k15 and k16 described above, we expect to find
256 likely values: each having the correct least significant bit of k0, k5 and k10, one of
the 256 candidates for k15 and the 7 most significant bits of k16 candidate. This method
allows us to gain full information on k0, k5 and k10, and a constraint on k16 depending
on k15. This constraint may be visualized as a table indexed by k15 and having its value
be the constraint on k16.

We apply the same method for the rest of the equations shown in equation set (2)
to gain information on the respective constraint between k15 and k17 through k19. Note
that in the case of k18 and k19 the constrained value t is t = 3 • s(p15⊕ k15)⊕ k18 and
t = 2 • s(p15 ⊕ k15)⊕ k19 respectively. These four constraints may be grouped into a
single table, Table 1 shows an example of such table.

The same method may be used to extract similar constraints between the three other
bytes k12, k13, k14 and their respective four bytes from the upper half of the key.

To summarize, based on 2 rounds of AES in GCM mode we can extract the values
of k0 through k11, and have four table which describe further constraints on the key.
The remaining key space is 48 bits: 8 bits per table (32 total) and 1 additional bit per
byte in the upper half of the key.

12



Table 1. The 7 most significant bits of upper key bytes for each possible k15 value

k15 k16 k17 k18 k19
0 67 22 60 67
1 69 16 54 79
2 73 38 34 87
...
253 115 38 109 34
254 32 117 21 9
255 82 7 14 96

Phase 3 We now shift our focus to round 3 and consider equations x(2)
12 through x

(2)
15 .

Equation (4) shows one such equation: These equations are important to us for two
reasons:

– The “bound” expressions holding k12 to k15 in these equations have appeared in
our 2nd round analysis and therefore we have a table that constraints the “free”
upper-half key bytes to their values (e.g. s(p15 ⊕ k15)⊕ k17 is known up to 1 bit).
Thereby reducing the unknown bits in each of these expressions from 8 bits to 1.

– Due to the AES key expansion scheme, each of these equations includes one of the
key bytes k12 through k15 in a “free” manner. Which allows us to receive different
measurements for these bytes; note that this is the first round this is possible in.

x
(2)
12 =

2 • s(2 • s(p12 ⊕ k12)⊕ 3 • s(p1 ⊕ k1)⊕ s(p6 ⊕ k6)⊕ s(p11 ⊕ k11)⊕ k28) ⊕
3 • s(s(p0 ⊕ k0)⊕ 2 • s(p5 ⊕ k5)⊕ 3 • s(p10 ⊕ k10)⊕ s(p15 ⊕ k15)⊕ k17) ⊕
s(s(p4 ⊕ k4)⊕ s(p9 ⊕ k9)⊕ 2 • s(p14 ⊕ k14)⊕ 3 • s(p3 ⊕ k3)⊕ k22) ⊕
s(3 • s(p8 ⊕ k8)⊕ s(p13 ⊕ k13)⊕ s(p2 ⊕ k2)⊕ 2 • s(p7 ⊕ k7)⊕ k27) ⊕
k12 ⊕ k8 ⊕ k4 ⊕ k0 ⊕ s(k29)⊕ 1

(4)

While Equation (4) might seem to have 48 unknown bits, using the knowledge from
the previous phases we assert that it only has 13 unknown bits: 8 bits to choose k12, 1
least significant bit for k29, and 1 more least significant bit for each “bound” expression
(4 additional bits).

Applying our sieving technique once again for equations x(2)
12 through x

(2)
15 gives us

the most likely value of the 7 most significant bits of k12 to k15 and the least significant
bit of k28 through k31. Thereby reducing the amount of unknown bits from 48 to 16 -
1 least significant bit of k12 to k15 and 1 least significant bit of k16 to k27. Additional
analysis of the 3rd round accesses may reveal the remaining bits, but we chose to apply
brute-force enumeration to find them.

It took five million measurements to mount this analysis which took 40 minutes
to collect on the Galaxy S6. The analysis took 30 minutes and 3.5GB of memory to
complete using a Radeon Pro 460 GPU on a laptop.

In summary, we see that the AES-256 GCM, with a single T-Table implementation
used by Samsung’s Keymaster trustlet, is vulnerable to cache side-channel attacks when
it is used in isolation.

13



4 Analysis Acceleration using a GPU with OpenCL

4.1 Overview

Previous work [3][14][17][16][21, 26][25][29][28] goes into great details about the im-
plementation of the attack phase and candidate sieving; however, little discussion is
presented on the implementation of the analysis phase. While designing the attacks de-
scribed in the previous sections, we found that the amount of data and time required
by a sequential implementation of the attack is significant, so, we decided to leverage
GPUs to expedite the analysis. The following sections provide detail into our design
and implementation of a GPU based cache attack analysis method.

4.2 Programming the GPU

When programming a GPU, one must design a function that will be run in parallel on
many data points; such a function is called a kernel. We used a GPGPU (general pur-
pose GPU) programming framework called pyOpenCL [12]. This framework allowed
us to write most of the analysis in python while easily deferring the heavy lifting to
the GPU. pyOpenCL provides a very convenient way to write OpenCL kernels called
“ElementwiseKernel”: the programmer only needs to write the calculation for a single
element while abstracting away most other details. A kernel is essentially a function,
that receives at least one pointer to a GPU memory block (usually containing tables)
and an argument i which is used as an index to that memory block. The framework
instructs the GPU to run numerous copies of that kernel in parallel, each on a different
GPU core, with each copy being allocated a different index i.

A kernel returns output by modifying the memory blocks received as arguments.
In order to minimize the need to synchronize the kernels, usually each kernel writes to
a separate cell in memory; thus avoiding memory contention and race conditions. The
Radeon Pro 460 which we used in our analysis has 1024 cores and 4GB of internal
memory.

4.3 Using the GPU in the attacks

Previous sections outlined the basic algorithm used for the analysis of the side channel
artifacts: Use the plaintext bytes and side channel map to sieve through the possible
candidates until one most likely candidate is found. This process can be broken down
to the following steps: (i) thresholding the cache access patterns to discern between
cache hits and misses, (ii) AES round calculations, (iii) matching between calculation
and the cache access pattern and (iv) scoring.

i The thresholding step is straightforward: it receives a cache access timing matrix
(rows are different measurements, columns are the relevant cache set indexes which
were measured) and a threshold value Ta (recall section 3.2). Each matrix cell is
compared against Ta and is set to either 1 if it’s above Ta (miss) or 0 otherwise
(hit).

ii The AES round calculation varies depending on the step of the analysis (as de-
scribed in previous sections) but follows the same principles: receive the relevant

14



key candidates and plain-texts used in measurements, apply the relevant round cal-
culation, apply the table misalignment and return the relevant cache set indexes
for the given candidates for each given plain-text. Round calculations follow the
equations presented in the previous sections, and use lookup tables to calculate the
S-Box and GF(256) multiplications. The S-Box and multiplication tables are placed
inside the GPU internal memory. The result is a matrix M of the candidates versus
the plain-texts where each cell Mi,j holds the result of the AES round calculation
for i-th plain-text and the j-th key candidate. In other words, if key candidate j is
correct, Mi,j holds a cache index which we expect to measure as a miss for the i-th
plaintext and its cache measurements.

iii The next step takes the thresholded cache access matrix and the cache set index
matrix result from the AES round calculation step and returns an array which holds
the score for each candidate. This is done in two steps: matching and summing. The
match step takes the two input matrices and outputs a matrix of candidates versus
plain-texts in which each cell is 1 if the index predicted by the AES round calcula-
tions (for a given plain-text and candidate) was a cache miss in our measurements
(which implies the candidate is more likely) and 0 otherwise. The summing phase
then sums the result by the plain-text axis, resulting in an array of scores for each
key candidate.

iv Finally, we are left with the scores for each key candidate, all we have left is to
choose the most likely one. Due to the large key enumeration space in phase 2 and 3
of the AES-256 and AES-256/GCM attacks, the memory on our GPU was not large
enough to hold the plain-text over key candidate matrices when trying to analyze all
of the plain-texts at once. Instead, we divided the plain-texts into batches, analyzed
them separately and combined their result after each batch by simply adding the
score array. This allowed us to analyze large amounts of data (over 220 samples)
over up to 18 bits of key candidates on a commodity laptop GPU within minutes.

4.4 Kernel implementation details

We used several such kernels and provide their code in the appendix:

1. Thresholding: The first kernel is used to reduce the measurements from a matrix
of plain-texts over cache indexes which contains the cache timing measurements
to a matrix of the same dimensions but with a value 1 if the measurement is above
Ta which indicates a cache miss, or 0 otherwise. This is accomplished via a simple
ternary operator. See Appendix A.1.

2. Round calculation kernel: The following explanation is relevant to the first four
round bytes of the 2nd AES256 round calculations (recall section 3.4), the same
principles apply for the the rest of the round bytes and the 3rd round as well. This
kernel receives our key candidates (5 key bytes serialized as a 64-bit integer), plain-
text bytes, S-Box and GF(256) multiplication lookup tables, misalignment param-
eter and output matrices (plain-texts over candidates). Note that instead of calcu-
lating the round for each round byte separately, we optimize this kernel by reusing
calculations to calculate four round bytes together (see Equation (2)). The kernel
basically calculates the first AES round (SubBytes, ShiftRows and MixColumns)
and then XORs the result with an upper-half key candidate byte. The result is the

15



index of the T-Table which will be access by the 2nd round. It then applies the
misalignment parameter and selects the bits which are relevant to the cache index
and stores the results in the output matrices. These matrices then hold the cache
set which we expect to measure as a miss for a each plain-text, if that the key
candidates are correct. See Appendix A.2.

3. Round to hit matrix kernel: The previous kernel results in four matrices of cache
sets. This kernel performs a pass through those matrices and merges their results
with the actual measurements. It receives the four result matrices, and the thresh-
olded measurements matrix. For each cell of the result matrices (which represent
the index which we expect to see as 1 in the measurement matrix for a plain-text
and a key candidate, if the candidate is correct), we retrieve the measurement of
the relevant plain-text and the relevant cache index. This result will be 1 if the
measurements support this candidate (cache index was indeed measured as a miss)
and 0 otherwise. We write the result back to the result matrix to save memory. See
Appendix A.3.

4. Sum axis kernel: The previous kernel results in four score matrices of plain-text
over candidates. Since we are trying to calculate the candidate score, we then need
to sum these matrices by the candidates axis. Special care must be taken when
summing in GPU code as many cores may access the sum variable concurrently.
Several solutions exist, such as: summing in CPU instead, logarithmic reduction
kernels or using atomic OpenCL intrinsics. We compared the CPU solution (using
the Python Numpy package sum by axis function) with a kernel which uses the
“atomic add” intrinsic and found that the kernel is about twice as fast. That being
said, both solutions took negligible time compared to the other operations. We did
not attempt to implement a more optimized sum kernel. See Appendix A.4.

5 Conclusions
The ARM TrustZone is a security extension which is used in recent Samsung flagship
smartphones to create a Trusted Execution Environment (TEE) called a Secure World,
which runs secure processes called Trustlets. The Samsung TEE includes cryptographic
key storage and functions inside the Keymaster trustlet. The secret key material used by
the Keymaster trustlet is derived by a hardware device and is inaccessible to the Android
OS. However, the ARM32 AES implementation used by the Keymaster is vulnerable to
side channel cache-attacks. The Keymaster trustlet uses AES-256 in GCM mode, which
makes mounting a cache attack against this target much harder. In this paper we show
that it is possible to perform a successful cache attack against this AES implementation,
in AES-256/GCM mode using widely available hardware. Using a laptop’s GPU to
parallelize the analysis, we are able to extract a raw AES-256 key with 7 minutes of
measurements and under a minute of analysis time and an AES-256/GCM key with 40
minutes of measurements and 30 minutes of analysis.

We conclude that cache side-channel effects are a serious threat to the current AES
implementation inside the Keymaster trustlet. However, side-channel-resistant imple-
mentations, that do not use memory accesses for round calculations, do exist for the
ARM platform, such as a bit-sliced implementation [19] or one using ARMv8 cryp-
tographic extensions [18]. Using such an implementation would render most cache at-
tacks, including ours, ineffective.

16



References

1. ARM. Building a secure System using TrustZone Technology. http://infocenter.
arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-
GENC-009492C_trustzone_security_whitepaper.pdf.

2. ARM. ARM trustzone. https://www.arm.com/products/security-on-arm/
trustzone, 2018.

3. Daniel J Bernstein. Cache-timing attacks on AES. 2005. https://cr.yp.to/
antiforgery/cachetiming-20050414.pdf.

4. Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. In AES submission document.
1999. http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-
ammended.pdf.

5. Morris J Dworkin. SP 800-38D: Recommendation for block cipher modes of operation:
Galois/counter mode GCM and GMAC, 2007. National Institute of Standards & Technology.

6. freddierice. Trident - temporary root for the Galaxy S7 active. https://github.com/
freddierice/trident.

7. Google. Android keymaster HAL. https://source.android.com/security/
keystore/implementer-ref.

8. Google. Android keystore. https://developer.android.com/training/
articles/keystore.html.

9. Google. Android keystore - source code. http://androidxref.com/6.0.0_r1/
xref/system/security/keystore/keystore.cpp.

10. Google. Android vold cryptfs. http://androidxref.com/6.0.0_r1/xref/
system/vold/cryptfs.c.

11. Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Irazoqui, Johann Heyszl, and
Thomas Eisenbarth. Autolock: Why cache attacks on ARM are harder than you think. In
26th USENIX Security Symposium, pages 1075–1091, 2017.

12. Andreas Klöckner, Nicolas Pinto, Yunsup Lee, B. Catanzaro, Paul Ivanov, and Ahmed Fasih.
PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation.
Parallel Computing, 38(3):157–174, 2012.

13. B. Lapid and A. Wool. Navigating the Samsung TrustZone with applications to cache-attacks
on AES-256 in the Keymaster trustlet. In Proc. 23rd European Symposium on Research in
Computer Security (ESORICS), Barcelona, September 2018. To appear.

14. M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. ARMaged-
don: Cache attacks on mobile devices. In USENIX Security conference, pages
549–564, 2016. https://www.usenix.org/system/files/conference/
usenixsecurity16/sec16_paper_lipp.pdf.

15. nccgroup. Cachegrab. https://github.com/nccgroup/cachegrab.
16. Michael Neve and Jean-Pierre Seifert. Advances on access-driven cache attacks on AES. In

International Workshop on Selected Areas in Cryptography, pages 147–162. Springer, 2006.
17. Michael Neve and Kris Tiri. On the complexity of side-channel attacks on AES-256 –

methodology and quantitative results on cache attacks. Technical report, 2007. https:
//eprint.iacr.org/2007/318.

18. OpenSSL. ARM AES implementation using cryptographic extensions. https://
github.com/openssl/openssl/blob/master/crypto/aes/asm/aesv8-
armx.pl.

19. OpenSSL. ARMv7 AES bit sliced implementation. https://github.com/openssl/
openssl/blob/master/crypto/aes/asm/bsaes-armv7.pl.

20. OpenSSL. OpenSSL FIPS. https://www.openssl.org/docs/fips.html.

17



21. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: the
case of AES. In Cryptographers Track at the RSA Conference, pages 1–20. Springer, 2006.

22. Qualcomm. Snapdragon security. https://www.qualcomm.com/solutions/
mobile-computing/features/security, 2018.

23. Samsung. Mobile processor: Exynos 7 Octa (7420). http://www.samsung.
com/semiconductor/minisite/exynos/products/mobileprocessor/
exynos-7-octa-7420/, 2018.

24. Samsung. Platform security. http://developer.samsung.com/tech-
insights/knox/platform-security, 2018.

25. Raphael Spreitzer and Thomas Plos. Cache-access pattern attack on disaligned AES T-tables.
In International Workshop on Constructive Side-Channel Analysis and Secure Design, pages
200–214. Springer, 2013.

26. Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on AES, and coun-
termeasures. Journal of Cryptology, 23(1):37–71, 2010.

27. Trustonic. Trustonic Kinibi technology. https://developer.trustonic.com/
discover/technology.

28. Zhao Xinjie, Wang Tao, Mi Dong, Zheng Yuanyuan, and Lun Zhaoyang. Robust first two
rounds access driven cache timing attack on AES. In Computer Science and Software Engi-
neering, 2008 International Conference on, volume 3, pages 785–788. IEEE, 2008.

29. Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y Thomas Hou. TruSpy: Cache
side-channel information leakage from the secure world on ARM devices. IACR Cryptology
ePrint Archive, 2016(980), 2016.

A OpenCL Kernels Code

A.1 Thresholding kernel

Listing 1.1. Thresholding Kernel

t h r e s h o l d k e r n e l = E l e m e n t w i s e K e r n e l ( c tx ,
’ ’ ’
u i n t ∗ in , u i n t t h r e s h , u i n t ∗ o u t
’ ’ ’ ,
’ ’ ’
o u t [ i ] = ( i n [ i ] > t h r e s h ) ? ( 1 ) : ( 0 )
’ ’ ’ ,
‘ ‘ t h r e s h o l d k e r n e l ’ ’
)

A.2 Round two kernel

Listing 1.2. Round Two Kernel

r o u n d k e r n e l = E l e m e n t w i s e K e r n e l ( c tx ,
’ ’ ’
u i n t ∗x0 , u i n t ∗x1 , u i n t ∗x2 , u i n t ∗x3 , u long ∗ c a n d i d a t e s , u i n t ∗p0 ,
u i n t ∗p5 , u i n t ∗p10 , u i n t ∗p15 , u i n t r o w s i z e , u i n t ∗ sbox ,
u i n t ∗mult2 , u i n t ∗mult3 , u i n t d i s a l i g n m e n t

18



’ ’ ’ ,
’ ’ ’
/ / E x t r a c t key b y t e c a n d i d a t e from s e r i a l i z e d c a n d i d a t e and
/ / a p p l y S u b B y t e s
u i n t t 0 = SHIFT RIGHT ( c a n d i d a t e s [ i % r o w s i z e ] , 0 ) ˆ p0 [ i / r o w s i z e ] ;
u i n t t 5 = SHIFT RIGHT ( c a n d i d a t e s [ i % r o w s i z e ] , 8 ) ˆ p5 [ i / r o w s i z e ] ;
u i n t t 1 0 = SHIFT RIGHT ( c a n d i d a t e s [ i % r o w s i z e ] , 1 6 ) ˆ p10 [ i / r o w s i z e ] ;
u i n t t 1 5 = SHIFT RIGHT ( c a n d i d a t e s [ i % r o w s i z e ] , 2 4 ) ˆ p15 [ i / r o w s i z e ] ;
u i n t k e = SHIFT LEFT ( SHIFT RIGHT ( c a n d i d a t e s [ i % r o w s i z e ] , 3 2 ) , 1 ) ;

t 0 = sbox [ t 0 ] ;
t 5 = sbox [ t 5 ] ;
t 1 0 = sbox [ t 1 0 ] ;
t 1 5 = sbox [ t 1 5 ] ;

/ / a p p l y S h i f t R o w s and MixColumns
/ / a l s o XOR w i t h t h e upper key b y t e c a n d i d a t e
x0 [ i ]= mul t2 [ t 0 ] ˆ mu l t3 [ t 5 ] ˆ t 1 0 ˆ t 1 5 ˆ k e ;
x1 [ i ]= t 0 ˆ mu l t2 [ t 5 ] ˆ mul t3 [ t 1 0 ] ˆ t 1 5 ˆ k e ;
x2 [ i ]= t 0 ˆ t 5 ˆ mul t2 [ t 1 0 ] ˆ mul t3 [ t 1 5 ] ˆ k e ;
x3 [ i ]= mul t3 [ t 0 ] ˆ t 5 ˆ t 1 0 ˆ mul t2 [ t 1 5 ] ˆ k e ;

/ / a p p l y d i s a l i g n m e n t
x0 [ i ] = ( x0 [ i ] + d i s a l i g n m e n t ) & 0 x f f ;
x1 [ i ] = ( x1 [ i ] + d i s a l i g n m e n t ) & 0 x f f ;
x2 [ i ] = ( x2 [ i ] + d i s a l i g n m e n t ) & 0 x f f ;
x3 [ i ] = ( x3 [ i ] + d i s a l i g n m e n t ) & 0 x f f ;

/ / s e l e c t b i t s which a f f e c t cache i n d e x
x0 [ i ] = SHIFT RIGHT ( x0 [ i ] , 4 ) ;
x1 [ i ] = SHIFT RIGHT ( x1 [ i ] , 4 ) ;
x2 [ i ] = SHIFT RIGHT ( x2 [ i ] , 4 ) ;
x3 [ i ] = SHIFT RIGHT ( x3 [ i ] , 4 ) ;
’ ’ ’ ,
‘ ‘ r o u n d k e r n e l ’ ’ ,
p reamble = ’ ’ ’
# d e f i n e SHIFT RIGHT ( X , Y ) ( ( X >> Y ) & 0 x f f )
# d e f i n e SHIFT LEFT ( X , Y ) ( ( X << Y ) & 0 x f f )
’ ’ ’
)

A.3 Round to hit matrix kernel

Listing 1.3. Round To Hit Matrix Kernel

r o u n d t o h i t s k e r n e l = E l e m e n t w i s e K e r n e l ( c tx ,
’ ’ ’

19



u i n t ∗x0 , u i n t ∗x1 , u i n t ∗x2 , u i n t ∗ x3 ,
u i n t r o w s i z e , u i n t ∗ s e t s d a t a t h r e s h ,
u i n t s e t s d a t a t h r e s h r o w s i z e
’ ’ ’ ,
’ ’ ’
/ / ( i / r o w s i z e ) p r o v i d e s an i n d e x t o t h e measurement row ,
/ / x [ i ] p r o v i d e s t h e o f f s e t t o t h e cache s e t we wish t o check
x0 [ i ]= s e t s d a t a t h r e s h [ ( i / r o w s i z e )∗ s e t s d a t a t h r e s h r o w s i z e +x0 [ i ] ] ;
x1 [ i ]= s e t s d a t a t h r e s h [ ( i / r o w s i z e )∗ s e t s d a t a t h r e s h r o w s i z e +x1 [ i ] ] ;
x2 [ i ]= s e t s d a t a t h r e s h [ ( i / r o w s i z e )∗ s e t s d a t a t h r e s h r o w s i z e +x2 [ i ] ] ;
x3 [ i ]= s e t s d a t a t h r e s h [ ( i / r o w s i z e )∗ s e t s d a t a t h r e s h r o w s i z e +x3 [ i ] ] ;
’ ’ ’ ,
‘ ‘ r o u n d t o h i t s k e r n e l ’ ’
)

A.4 Axis sum kernel

Listing 1.4. Axis sum Kernel

s u m a x i s c o l u m n k e r n e l = E l e m e n t w i s e K e r n e l ( c tx ,
’ ’ ’
u i n t ∗ tmp , u i n t t m p r o w s i z e , u i n t ∗ o u t
’ ’ ’ ,
’ ’ ’
/ / Use a t o m i c a d d t o a v o i d da ta races ,
/ / n o t t h e f a s t e s t approach b u t t h e t i m e i t t a k e s i s n e g l i g i b l e anyway
a t o m i c a d d (& o u t [ i % t m p r o w s i z e ] , tmp [ i ] ) ;
’ ’ ’ ,
” s u m a x i s c o l u m n k e r n e l ”
)

20


