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Abstract. The generalized birthday problem (GBP) was introduced by
Wagner in 2002 and has shown to have many applications in cryptanaly-
sis. In its typical variant, we are given access to a function H : {0, 1}` →
{0, 1}n (whose specification depends on the underlying problem) and an
integer K > 0. The goal is to find K distinct inputs to H (denoted by
{xi}Ki=1) such that

∑K
i=1H(xi) = 0. Wagner’s K-tree algorithm solves

the problem in time and memory complexities of about N1/(blogKc+1)

(where N = 2n). Two important open problems raised by Wagner were
(1) devise efficient time-memory tradeoffs for GBP, and (2) reduce the
complexity of the K-tree algorithm for K which is not a power of 2.

In this paper, we make progress in both directions. First, we improve
the best know GBP time-memory tradeoff curve (published by indepen-
dently by Nikolić and Sasaki and also by Biryukov and Khovratovich)
for all K ≥ 8 from T 2MblogKc−1 = N to T d(logK)/2e+1Mb(logK)/2c = N ,
applicable for a large range of parameters. For example, for K = 8 we
improve the best previous tradeoff from T 2M2 = N to T 3M = N and
for K = 32 the improvement is from T 2M4 = N to T 4M2 = N .

Next, we consider values of K which are not powers of 2 and show that
in many cases even more efficient time-memory tradeoff curves can be
obtained. Most interestingly, for K ∈ {6, 7, 14, 15} we present algorithms
with the same time complexities as the K-tree algorithm, but with signif-
icantly reduced memory complexities. In particular, for K = 6 the K-tree
algorithm achieves T = M = N1/3, whereas we obtain T = N1/3 and
M = N1/6. For K = 14, Wagner’s algorithm achieves T = M = N1/4,
while we obtain T = N1/4 and M = N1/8. This gives the first significant
improvement over the K-tree algorithm for small K.

Finally, we optimize our techniques for several concrete GBP instances
and show how to solve some of them with improved time and memory
complexities compared to the state-of-the-art.

Our results are obtained using a framework that combines several algo-
rithmic techniques such as variants of the Schroeppel-Shamir algorithm
for solving knapsack problems (devised in works by Howgrave-Graham
and Joux and by Becker, Coron and Joux) and dissection algorithms
(published by Dinur, Dunkelman, Keller and Shamir). It then builds on
these techniques to develop new GBP algorithms.

Keywords: Cryptanalysis, time-memory tradeoff, generalized birthday
problem, K-tree algorithm.



1 Introduction

The generalized birthday problem (GBP) is a generalization of the classical birth-
day problem of finding a collision between two elements in two lists, introduced
by Wagner in 2002 [19]. Since its introduction, Wagner’s K-tree algorithm for
GBP has become a widely applicable tool used in cryptanalysis of code-based
cryptosystems [3] (that are important designs in post-quantum cryptography),
hash functions (such as FSB [5]) and stream ciphers, where it is used as a proce-
dure in fast correlation attacks [9, 14]. Furthermore, it is an important component
in improved algorithms for hard instances of the knapsack problem [2, 13]. The
K-tree algorithm is also closely related to the BKW algorithm for the learning
parity with noise (LPN) problem [7], and the BKW extension to the learning
with errors (LWE) problem [1].

We consider the most relevant GBP variant in cryptanalysis. For integer
parameters K > 0 and 0 ≤ ` ≤ n, we are given access to a function H :
{0, 1}` → {0, 1}n, and the goal is to find K distinct inputs to H, {xi}Ki=1, such

that
∑K
i=1H(xi) = 0. For simplicity, we assume that addition is performed

bitwise over GF (2), but our algorithms easily extend to work with addition over
GF (2n). We further assume that K � n and treat it as a constant. We view H
as a random oracle whose outputs are selected independently and uniformly at
random from {0, 1}n. The number of K-tuples over `-bit words is about 2K`, and
as the problem places an n-bit constraint on the solution, the expected number of
solutions is 2K`−n. In particular, we expect a solution only if K` ≥ n. For K ≥ 2,
the problem can be solved in time 2n/2 using a simple collision search. Wagner’s
observation was that for values of K ≥ 4, the problem can be solved much more
efficiently assuming that the number of expected solutions is sufficiently large.

Wagner’s K-tree algorithm for K = 2k (where k is a positive integer) receives
as input K lists {Li}Ki=1, each containing about 2n/(k+1) strings of n bits, which
are assumed to be uniform in {0, 1}n. The algorithm returns a K-tuple {yi}Ki=1,

where yi ∈ Li such that
∑K
i=1 yi = 0. The algorithm can be used to solve GBP

assuming that ` ≥ n/(k + 1) by initializing the lists {Li}Ki=1 with elements of
the form y = H(x) for arbitrary values of x ∈ {0, 1}`.

At a high level, the K-tree algorithm merges its 2k inputs lists in a full
binary tree structure with k layers. In each layer, the lists are merged in pairs,
where each merged pair gives a new list that is input to the next layer and
contains words with a larger zero prefix. Finally, the last layer yields a zero
word which can be traced back to a K-tuple {xi}Ki=1 such that

∑K
i=1H(xi) = 0

as required. The time and memory complexities of the K-tree algorithm are
about 2n/(k+1) = N1/(logK+1) (up to constants and small multiplicative factors
in n,K), as detailed in Section 3. Since any GBP algorithm for a certain value
of K can be extended with the same complexity to any K ′ > K, the time and
memory complexities of the K-tree algorithm for general K are N1/(logK+1),
where logK is rounded down to the nearest integer.

Due to the high memory consumption of the K-tree algorithm, an important
challenge (already pointed out by Wagner) is to investigate time-memory tradeoff
algorithms for GBP, which optimize the time complexity T given only 2m = M <
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2n/(k+1) memory. The trivial time-memory tradeoff algorithm repeatedly builds
K lists of size M from arbitrary inputs to H and executes the K-tree algorithm
until a solution is found. Simple analysis shows that this algorithm achieves a
tradeoff of TM logK = N , which is very inefficient even when K is moderately
large, as the time complexity T increases sharply for memory M < N1/(logK+1).

Improved tradeoffs were first published in [4, 5] (by Bernstein and Bernstein
et al., respectively), where the main idea is to execute (what we call) a prepa-
ration phase before running the K-tree algorithm. This phase iterates over a
portion of the domain space and builds lists that are input to the K-tree algo-
rithm (rather than building them arbitrarily), thus increasing its probability to
find a solution. A different approach to the preparation phase based on partial
collisions in H was published independently by Nikolić and Sasaki [16] and by
Biryukov and Khovratovich [6]. This technique gives the currently best known
GBP time-memory tradeoff of T 2M logK−1 = N .

Another challenge for GBP is the improve the K-tree algorithm for values of
K that are not powers of 2. While it is known how to achieve small (polynomial
in n) savings in the GBP time complexity for some values of K (e.g., see [16]),
obtaining exponential improvements in n remains an open problem.

In an additional practical setting, the domain size L = 2` of H is limited
and the K-tree algorithm cannot be directly applied. The best known algorithm
for such cases is an extension of the K-tree algorithm, published by Minder and
Sinclair [15]. In this context, we also mention the recent work of Both and May [8]
which analyzed GBP instances generated by the parity check problem, which is
an important problem in stream cipher cryptanalysis that can be reduced to
GBP. Both and May developed a specific optimization technique for the parity
check problem and used it to improve upon the extended K-tree algorithm for
several GBP instances with values of K that are not powers to 2.

In this paper, we improve the state-of-the-art with respect to the aforemen-
tioned challenges. Some of our results are summarized at a high level below, while
our full tradeoff curves for K ∈ {8, 16, 32, 6, 14} are plotted in Appendix F.

1. We devise a sub-linear1 time-memory tradeoff T d(logK)/2e+1Mb(logK)/2c =
N for GBP with K ≥ 8. This improves upon the currently best known
tradeoff T 2M logK−1 = N for all K ≥ 8. Our tradeoff is applicable whenever
T 1/2 ≤M ≤ T . For the range 1 < M ≤ T 1/2, we also improve upon the best
known tradeoff for K ≥ 8, but our curve formula becomes more complex as
K grows. We further improve these tradeoffs for values of K that are not
powers of 2. Some examples are described below.

2. We devise the tradeoff T 2M2 = N for K = 6 (and K = 7), which improves
upon the currently best tradeoff of T 2M = N (obtained by the formula
T 2M logK−1 = N using K = 4) for the full range 1 < M ≤ T 1/2.

3. In particular, for K = 6 (and K = 7) we achieve T = N1/3, M = N1/6,
reducing to a square root the memory complexity of the best GBP algorithm,
which obtains T = M = N1/3 using the K-tree algorithm for K = 4.

1 In a sub-linear time-memory tradeoff, the exponent of T is larger than the exponent
of M .

3



4. We devise the tradeoff T 3M2 = N for K = 14 (and K = 15), which improves
upon the currently best tradeoff of T 2M2 = N (obtained by the formula
T 2M logK−1 = N using K = 8) for the range T 1/4 ≤ M ≤ T 1/2. We also
obtain the improved tradeoff T 2M6 = N for the range 1 ≤M ≤ T 1/4.

5. In particular, for K = 14 (and K = 15) we achieve T = N1/4, M = N1/8,
reducing to a square root the memory complexity of the best GBP algorithm
which obtains T = M = N1/4 using the K-tree algorithm for K = 8.

6. We consider concrete GBP instances with a limited domain size L, recently
analyzed by Both and May [8] and show how to solve some (but not all)
of them more efficiently, improving both the time and memory complexi-
ties. Unlike Both and May’s technique (which is specific to the parity check
problem) our algorithms can be applied to any GBP instance, achieving im-
provements over the extended K-tree algorithm [15] for many values of K
that are not powers to 2.

As noted above, previous time-memory tradeoffs applied a preparation phase
to initialize several lists and search for a solution among them in (what we
call) a list sum phase. In these works the focus was placed on the preparation
phase, while the list sum phase applied the K-tree algorithm. In contrast, we
focus on the list sum phase and develop algorithms that are superior to the
straightforward application of the K-tree algorithm when the available memory
is limited. We then carefully combine these algorithms with previous preparation
phase techniques to obtain improved time-memory tradeoffs for GBP.

We begin by considering a list sum problem whose input consists of K sorted
lists {Li}Ki=1 of n-bit words and the goal is to find a certain number of K-tuples

{yi}Ki=1, where yi ∈ Li such that
∑K
i=1 yi = 0. There are several exhaustive list

sum memory-efficient algorithms known for this problem that output all solu-
tions. These algorithms are the starting points of the framework we develop in
this paper. Our framework transforms such an exhaustive list sum algorithm into
an efficient GBP algorithm for a given amount of memory. Obviously, an exhaus-
tive list sum algorithm can be directly applied to solve GBP (after initializing
{Li}Ki=1 accordingly), as the goal is to find only one out of all solutions. However,
this trivial application is inefficient since it does not exploit the fact that we only
search for a single solution and moreover, it does not use a preparation phase.

Our framework consists of three main parts. First, we transform a given
exhaustive list sum algorithm to efficiently output a limited number of solutions,
obtaining a basic list sum algorithm, optimized for a specific value of K = P .

There are two classes of exhaustive memory-efficient list sum algorithms rel-
evant to this work: the first class consists of variants of the Schroeppel-Shamir
algorithm for solving knapsacks, devised by Howgrave-Graham and Joux [13]
(which focused on K = 4) and by Becker, Coron and Joux [2] (which applied
a recursive variant for K = 16). The second class consists of dissection algo-
rithms [10], published by Dinur et al. and used to efficiently solve certain search
problems with limited amount of memory.

In general, both classes of exhaustive list sum algorithms partition the prob-
lem on K lists into smaller subproblems, solve these subproblems and merge the
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solutions to solve the original problem. The difference between the classes is in
the way the problem is partitioned: while Schroeppel-Shamir variants partition
problem symmetrically into subproblems of equal sizes, dissection algorithms
partition the problem asymmetrically into smaller and larger subproblems. Thus,
Schroeppel-Shamir variants work best on values of K which are powers of 2,
while dissection works best on “magic numbers” of K (which are not necessarily
powers of 2) such as 7 and 11 that exhibit ideal asymmetric partitions.

While the first part of the framework builds basic list sum algorithms for
specific values of K = P , the second part composes basic algorithms in a layered
tree structure. This gives optimized list sum algorithms for values of K = P k

(and additional values) where k is a positive integer. Finally, after optimizing
the list sum phase, we combine it with a preparation phase to obtain a memory-
efficient GBP algorithm. Methodologically, we make the following contributions:

1. We generalize and tie together several existing algorithmic techniques in a
consistent framework: Section 2 introduces new algorithmic classification and
notation and Section 3 presents prior work in a very structured way based on
this classification. While these are preliminary sections, they already contain
a non-trivial contribution that allows to construct new list sum algorithms
in the subsequent parts of this paper in a relatively simple manner.

2. We transform the (symmetric) exhaustive Schroeppel-Shamir variants of [2,
13] to basic list sum algorithms for all values of K that are powers of 2. This
generalizes the transformation for K = 4 by Howgrave-Graham and Joux.

3. We devise new algorithms that extend the dissection framework to GBP.
We further highlight the subtle differences in the ways that symmetric and
asymmetric exhaustive list sum algorithms are transformed to solve GBP.
Prior to this work dissection algorithms could not be efficiently applied to
GBP as their complexity was at least 2n/2, which is a substantial limitation.

4. Analytically, we derive formulas that allow comparing competing list sum
(and consequently GBP) algorithms for various parameter values.

Even though the focus of this work is on memory-efficient GBP algorithms,
for many concrete instances our techniques yield improvements in both time and
memory complexities compared to the extended K-tree algorithm [15] (which is
the current state-of-the-art). This occurs for values of K which are not powers of
2 (such as K = 7), where our new algorithms extend the dissection framework.
Such an improvement is surprising as standard dissection algorithms are time-
memory tradeoffs which cannot improve the best time complexity of solving a
problem given unlimited memory. The time complexity improvement is due to
the fact that symmetric algorithms round the value of K down to the nearest
power of 2 and ignore many of the possible solutions. On the other hand, the
efficiency of GBP algorithms depends on their ability to find one out of many
solutions, and ignoring a large fraction of them in advance is a suboptimal ap-
proach. This further highlights the contribution of our third item above.

Finally, as a first important future research direction, our framework can be
adapted to the (increasingly relevant) quantum computation model by combin-
ing it with Grover’s algorithm [12]. Here, time complexity of search algorithms
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can be substantially reduced, whereas memory complexity remains unchanged.
This gives yet another advantage to our time-memory tradeoff curves (partic-
ularly to points such as T = M2) over the classical memory-consuming K-tree
algorithm. Second, our framework can be extended to solve the LPN and LWE
problems that are closely related to GBP. Preliminary analysis suggests that it
improves several LPN time-memory tradeoffs recently obtained in [11]. Moreover,
this work opens the door for efficient application of asymmetric (dissection-like)
algorithms to LPN, whereas their complexity was previously too high to be
competitive.

The rest of the paper is organized as follow. In Section 2 we introduce our
notations and conventions, and describe preliminaries and previous work in Sec-
tion 3. The first part of our framework that transforms exhaustive list sum
algorithms to basic ones is introduced in Section 4, while the second part that
constructs new layered algorithms is described in Section 5. In Section 6 we focus
on the third part of the framework that combines preparation and list sum phase
algorithms to solve GBP. Finally, in Section 7 we apply our new algorithms to
concrete GBP instances and conclude the paper in Section 8.

2 Notations and Conventions

Given an n-bit string x, we label its bits as x[1], x[2], . . . , x[n] (where x[1] is the
least significant bit or LSB). Given integers 1 ≤ a ≤ b ≤ n, we denote by x[a–b]
the (b− a+ 1)-bit string x[a], x[a+ 1], . . . , x[b].

Let F : {0, 1}` → {0, 1}n, be a function for ` ≤ n . Given parameters
`′ ≤ ` and n′ ≤ n, define the truncated function F|`′,n′ : {0, 1}`′ → {0, 1}n′

as
F|`′,n′(x′) = F (x)[1–n′] (where the `-bit string x is constructed by appending
`− `′ zero most significant bits to the `′-bit string x′).

The generalized birthday problem (GBP). GBP with parameter K is given oracle
access a function H : {0, 1}` → {0, 1}n for ` ≤ n, and the goal is to find a K-
tuple {xi}Ki=1, where xi ∈ {0, 1}` are distinct (i.e., xi 6= xj for i 6= j) such that∑K
i=1H(xi) = 0. The addition is performed bitwise over GF (2).
We assume in this paper that H is a pseudo-random function. Our goal is to

optimize the time complexity T of solving GBP with parameters K and `, given
M = 2m words of memory, each of length n bit. In some settings (such as in [5])
each xi in the output K-tuple needs to come from a different domain. This can
be modeled using K functions {Hi}Ki=1. The adaptation of the algorithms we
consider to this setting is mostly straightforward.

Typically, GBP algorithms evaluate the function H in a preparation phase
in order to set up an instance of the list sum problem.

The list sum problem. Given K sorted lists {Li}Ki=1, each of M = 2m words
(chosen uniformly at random) of length at least n, the goal is to find S (one,

several, or all) K-tuples {yi}Ki=1, where yi ∈ Li such that (
∑K
i=1 yi)[1–n] = 0.

The number of required solutions S is a parameter to the problem. We note that
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in our framework list sum algorithms use about M = 2m memory (which is the
input size, up to the constant K).2

The list sum problem is related to the well-known K-SUM problem, which
searches for a single solution

∑K
i=1 yi = 0 in one input set, as opposed to several

lists. Moreover, typically the distribution of words in the input set of the K-SUM
problem is arbitrary and it is a worst case problem (whereas we are interested
in average case complexity).

Naming Conventions and Notations for List Sum Algorithms An algo-
rithm that finds all solutions to the list sum problem is called an exhaustive list
sum algorithm. Otherwise, we name algorithms that output a limited number of
solutions (with a bound on S) according to their internal structure: in general
we have basic algorithms and layered algorithms that compose basic algorithms
in a tree structure (similarly to the K-tree algorithm).

We refer to a list sum algorithm that solves the list sum problem for a specific
value of K as a K-way list sum algorithm. However, when referring to specific list
sum algorithms we mostly need more refined notation that distinguishes them
according to the values of K and S (the number of required solutions) and also
the type of basic algorithms composed in layered algorithms (which determine
the arity of the tree). These parameters are sufficient to uniquely identify each
list sum algorithm considered in this paper.

The (unique) non-layered list sum algorithm with parameters K,S is denoted
by AK,S , where S is the number of solutions it produces. In case the algorithm
is exhaustive (outputs all solutions), we simply write AK . For example, A4 is an
exhaustive 4-way list sum algorithm, while A4,1 produces only a single solution
(and hence can be naturally used to solve GBP with K = 4).3 In general, we will
be interested in exhaustive AK algorithms, basic AK,1 algorithms that output
a single solution and basic AK,2m algorithms that produce S = 2m solutions,
allowing to compose basic algorithms and form layered ones.

The (unique) layered list sum algorithm with S = 1 and arity P is denoted
by APK (we do not consider layered algorithms with S > 1 in this paper). For
example, the K-tree algorithm is denoted by A2

K , as it merges its input lists in
pairs. We note that layered algorithms can be uniquely distinguished by their
arity P , while K is left is symbolic form (unlike basic algorithms). We also
remark that for any specific value of K, the algorithm AKK has a single layer and
is actually the basic algorithm AK,1 (which is our preferred notation).

When composing basic list sum algorithms in layers, the LSBs of the words in
the input lists to the algorithms may already be zeroed by a previously applied

2 This definition does not capture algorithms (such as Minder and Sinclair’s algo-
rithm [15]) that merge the initial lists into larger ones. However, the restriction
typically does not result in loss of generality, as an initial merge can be considered
as a preparation phase algorithm by defining the function H appropriately.

3 When the number of expected solutions to the list sum problem is S, then AK,S typ-
ically coincides with AK . The more interesting case is when the number of expected
solutions is greater than S and AK,S could potentially be more efficient than AK .
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basic algorithm and the task of the succeeding basic algorithm is to output
solutions where the next sequence of bits is nullified. In such cases, we can ignore
the zero LSBs in the input lists, resulting in a problem that complies with the
above definition of list merge problem (which requires nullifying LSBs).

Complexity Evaluation The time and memory complexities of our algorithms
are functions of the parameters n and K (and also L = 2` for some GBP in-
stances). We assume that K � n and treat it as a constant. In the complexity
analysis, we ignore multiplicative polynomial (and constant) factors in n and K,
which is common practice in exponential-time algorithms. Nevertheless, we note
that these factors are relatively small for the algorithms considered.

On the other hand, when evaluating the complexity of our algorithms on
concrete GBP instances in Section 7, we multiply both of their time and memory
complexities by K in order to allow fair comparison to previous work.

3 Preliminaries and Previous Work

The literature relevant to this work is vast. In this section we summarize it con-
structively so we can build upon it in the rest of this paper. We first describe
general properties of list sum algorithms in Subsection 3.1. Then, we describe
previous exhaustive list sum algorithms AK : in Subsection 3.2 we focus on ex-
haustive symmetric Schroeppel-Shamir variants for several values of K which are
powers of 2 (K ∈ {4, 16} and the basic K = 2), while in Subsection 3.3 we deal
with asymmetric exhaustive dissection algorithms. In Subsection 3.4, we show
how exhaustive algorithms for K = 2 and K = 4 were efficiently adapted to
basic algorithms that output a limited number of solutions. In Subsection 3.5,
we describe the (layered) K-tree algorithm. Next, in Subsection 3.6 we focus
on the preparation phase algorithms parallel collision search (PCS) and clamp-
ing through precomputation (CTP). We end this section by summarizing the
currently best known time-memory tradeoff for GBP in Subsection 3.7.

3.1 General Properties of List Sum Algorithms

From a combinatorial viewpoint, the number of K-tuples {yi}Ki=1 in the K lists
input to the list sum problem is 2Km. Since the problem imposes an n-bit restric-
tion on them, the number of expected solutions is 2Km−n. Hence the list sum
problem is interesting only if m ≥ n/K. If we impose an additional b-bit con-
straint on the tuples (e.g., by requiring that (y1 +y2)[1–b] = c for an arbitrary b-
bit value c), then the number of expected solutions drops4 to S = 2s = 2Km−b−n.
In this paper, we mostly use an equivalent statement, where we view n as a pa-
rameter: if we search for S = 2s solutions to the problem and set an additional

4 Our algorithms will also assume that the number of solutions has low variance, hence
such constraints have to be set carefully for this to hold.
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b-bit constraint on the solutions, then the number of bits we can nullify is

n = Km− b− s. (1)

By default, a list sum algorithm is given the n-bit target value 0, but it
can easily be adapted and applied with similar complexity to an arbitrary n-bit
target value w, such that it outputs K-tuples {yi}Ki=1 where

∑K
i=1 yi[1–n] = w.

This can be done by XORing w to the all the words in L1, resorting it and
solving the problem with a target of 0.

A basic list sum algorithm that searches for a single solution S = 1 for a
certain K value using M memory (such that m ≥ n/K) can be applied with the
same complexity to any K ′ > K. This is done by considering an arbitrary (K ′−
K)-tuple {yi}K

′

i=K+1 from lists {Li}K
′

i=K+1, and applying the given algorithm with

input lists {Li}Ki=1 and target value
∑K′

i=K+1 yi[1–n]. Hence the list sum problem
for S = 1 does not become harder as K grows, in contrast to exhaustive list sum
problems that require all solutions.

We now describe exhaustive list sum algorithms of type AK for several values
of K. We denote by T = 2τKm (for a parameter τK) the time complexity of AK .

3.2 Exhaustive Symmetric List Sum Algorithms AK for K = 2k

A2 The standard list sum algorithm A2 looks for all matches on n bits between
two sorted lists of size 2m. There are 22m−n possible solutions to the problem
and A2 finds them in time T = 2m (τ2 = 1) assuming that their number is at
most 2m, namely, 22m−n ≤ 2m or m ≤ n.

A4 [13] This algorithm was devised in [13] by Howgrave-Graham and Joux as
a practical variant of the Schroeppel-Shamir’s algorithm [17].

1. For all 2m possible values of the m-bit word c:
(a) Apply A2 to the sorted lists L1, L2 with the m-bit word c as the

target value. Namely, look for pairs (y1, y2) ∈ L1×L2 such that (y1+
y2)[1–m] = c. Store the expected number of 22m−m = 2m output
sums y1 + y2 in a new sorted list L′1, along with the corresponding
(y1, y2) ∈ L1 × L2.

(b) Apply A2 to the sorted lists L3, L4 with c as the target value and
build the sorted list L′2.

(c) Apply A2 to the sorted lists L′1, L
′
2 with target value 0.a Trace

the output pairs (y′1, y
′
2) back to solutions to the list sum problem:

(y1, y2, y3, y4) ∈ L1×L2×L3×L4 where (y1+y2+y3+y4)[1–n] = 0.

a Note that for any y′1 ∈ L′1 and y′2 ∈ L′2 we have (y′1 + y′2)[1–m] = 0, hence it
remains to nullify bits [m+ 1–n].

The A4 algorithm enumerates all possible 24m−n solutions (in expectation),
as any specific solution y1 + y2 + y3 + y4 = 0 is output when the value of c is set
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to (y1 + y2)[1–m]. Assuming that the number of solutions is not larger than 22m

(i.e., 24m−n ≤ 22m or m ≤ n/2), then its time complexity is T = 22m, namely
τ4 = 2 (since the time complexity of the loop for each value of c is 2m).

The algorithm may produce up to 22m solutions, but its memory complexity
is only 2m. This is possible since we not required to store the solutions, but may
stream them to another algorithm that will process them on-the-fly. This is an
important property that holds for all list sum algorithms described in this paper.

A16 [2] An extension of the A4 algorithm will allow us to construct algorithms
that find a single solution (S = 1) for a limited range of the memory parameter
M . An extension of the A16 algorithm below will yield algorithms that find
a single solution for a broader range of memory complexities. The exhaustive
A16 algorithm is a recursive variant of the previous A4 algorithm, published by
Becker et al. [2].

1. For all 29m possible values of the four 3m-bit words c1, c2, c3, c4 that
satisfy c1 + c2 + c3 + c4 = 0:
(a) Apply the 4-way list sum algorithm A4 four times to lists {Li}4i=1,
{Li}8i=5, {Li}12i=9 and {Li}16i=13, with c1, c2, c3, c4 as the 3m-bit tar-
get values, respectively. Store the outcomes of these algorithms in
four sorted lists L′1, L

′
2, L
′
3, L
′
4, each of expected size 24m−3m = 2m.

(b) Apply the 4-way list sum algorithm A4 to L′1, L
′
2, L
′
3, L
′
4 (nullifying

bits [3m+1–n]) and from each output 4-tuple, derive a correspond-
ing 16-tuple as a solution to the problem.

We iterate over all possible solutions in time T = 29m+2m = 211m (τ16 = 11),5

assuming the number of solutions satisfies 216m−n ≤ 211m or m ≤ n/5.

3.3 Exhaustive Asymmetric List Sum Algorithms AK [10]

Dissection algorithms [10] in our context can be viewed as memory-efficient
asymmetric list sum algorithms of class AK .

Given a AK′ algorithm, it can be trivially utilized as a AK algorithm for
K > K ′ (with no additional memory) by enumerating all the 2m(K−K′) possible
tuples in the first K−K ′ lists, and applying AK′ on the remaining K ′ lists (with
the target sum set to be the sum of the current (K −K ′)-tuple). However, for
certain values of K we can do better than this trivial algorithm, and dissection
algorithms define a sequence of values of K for which this efficiency gain occurs.

The first dissection algorithm is defined for K = 2 (namely A2), and it looks
for matches in its 2 sorted input lists. The next number in the sequence is K = 4
and this dissection algorithm essentially coincides with A4 described above. Next
is the 7-way dissection algorithm, which utilizes the 3-way list sum algorithm
A3 described below.

5 We note that [2] extended this algorithm to a time-memory tradeoff. However, as it
uses memory larger than 2m (the size of the input lists), we do not consider it in
this paper.
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A3

For each pair (y1, y2) ∈ L1 × L2, compute y1 + y2, and search for a
match y3 ∈ L3 such that y3[1–n] = (y1 + y2)[1–n]. For each match
found, output the triplet (y1, y2, y3).

The algorithm enumerates over all 23m−n solutions in time T = 22m (τ3 = 2)
assuming m ≤ n.

A7 For K ≥ 7, the asymmetry in dissection algorithms becomes more apparent,
as they partition the problem of size K into two subproblems of different sizes.
We begin by describing the K = 7 algorithm.

1. For each possible value of the 2m-bit word c:
(a) Apply the A3 algorithm to L1, L2, L3 with the 2m-bit target value

c, and store the expected number of 23m−2m = 2m outputs (whose
2m LSBs equal to c) in a new sorted list L′. Each word is stored
along with the corresponding triplet of indexes in L1 × L2 × L3.

(b) Apply the A4 algorithm of Section 3.2 to L4, L5, L6, L7 with the
2m-bit target c. For each obtained solution quartet, (y4, y5, y6, y7) ∈
L4×L5×L6×L7 (such that (y4 + y5 + y6 + y7)[1–2m] = c), search
L′ for matches on (y4 + y5 + y6 + y7)[2m + 1–n] and output the
corresponding 7-tuples.

The algorithm enumerates all possible 27m−n solutions (in expectation) to the
problem, since each solution can be decomposed as above. The time complexity
of each 3-way and 4-way list sum steps in the loop is 22m, while we iterate over
22m possible values of c. Hence the expected time complexity is T = 24m (τ7 = 4)
as long as the expected number of solutions is at most 24m, namely, we require
7m− n ≤ 4m or m ≤ n/3.

We also note that the algorithm splits the problem on 7 lists into 2 subprob-
lems of respective sizes 3, 4, while the size 4 problem itself is internally split into
two subproblems of sizes 2, 2 by the A4 algorithm. Altogether, the problem of
size 7 is split into 3 subproblems of respective sizes 3, 2, 2.

General Dissection The details and analysis of general dissection algorithms
are given in Appendix A. For a value of i = 0, 1, 2, . . ., this appendix shows how
to construct a Ki-way list sum algorithm that runs in time τKi

such that Ki =
1 + i(i+ 1)/2 and τKi = 1 + i(i− 1)/2. In particular, after A7 which corresponds
to K3 = 7, τ7 = 4, we have K4 = 11 and τ11 = 7, i.e. the A11 dissection algorithm
has time complexity 27m. Internally, AKi

recursively splits the problem of size
Ki = 1 + i(i + 1)/2 into i subproblems of sizes i, i − 1, i − 2, . . . , 3, 2, 2 and
applies the algorithms Ai, Ai−1, . . . , A3, A2, A2, respectively, for various choices
of intermediate target values (such as the 2m-bit word c in A7).
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3.4 Basic List Sum Algorithms

A2,1 and A2,2m The A2,1 algorithm is an extension of the A2 algorithm of
Section 3.2. It searches for a single solution (S = 2s = 1) to the problem by
looking for an n-bit match in the two lists. According to (1), A2,1 can nullify
n = 2m bits in time T = 2m.

For A2,2m , instead of matching and nullifying 2m bits using A2,1 with S = 1,
we require S = 2m solutions, or s = m. Plugging K = 2, b = 0, s = m into (1),
we conclude that we match and nullify n = m bits (in time complexity T = 2m).

A3,1 This algorithm extends the A3 algorithm of Section 3.3. It searches for a
single solution to the problem and hence can nullify n = 3m bits in time 22m.

A4,1 and A4,2m [13] The A4,1 algorithm is an extension of the A4 algorithm
of Section 3.2, also described in [13]. When we search for a limited number of
solutions to the list sum problem, we can enumerate over fewer values of the m-
bit intermediate target value c in the A4 algorithm. This is equivalent to placing
another constraint on the 4-tuple solutions: for 0 ≤ v ≤ m, we place a (m− v)-
bit constraint by only enumerating over 2v values of c. Setting v = 0 places an
m-bit constraint and reduces the time complexity of the algorithm to 2m, while
nullifying n = 4m −m = 3m bits (according to (1)). In general, we can nullify
n = 4m− (m− v) = 3m+ v bits in time T = 2m+v, giving the tradeoff

TM2 = 2m+v · 22m = 23m+v = 2n = N.

The tradeoff is only applicable for 0 ≤ v ≤ m or T 1/2 ≤M ≤ T .
For A4,2m we apply a similar algorithm, but (according to (1)) since s is

increased by m then n is reduced by m. Denote by n′ the parameter of A4,1,

then n = n′ − m. Using the tradeoff formula above, we obtain TM2 = 2n
′

=
2n+m = NM or TM = N , applicable once again for T 1/2 ≤M ≤ T .

3.5 The K-Tree Algorithm: A2
K [19]

The K-tree algorithm for K = 2k is a A2
K algorithm that works in k layers as

summarized next. For more details, refer to [19].
For any integer 0 ≤ j ≤ k − 1, the input to layer j consists of K/2j sorted

input lists, where for each word in each list the j · m LSBs are zero. At layer
0 ≤ j < k − 1 the algorithm merges the lists in pairs by applying A2,2m and
outputting K/2j+1 new lists, each containing 2m words whose (j + 1) ·m LSBs
are zero (as A2,2m nullifies m bits). These lists are input to the next layer j + 1.

Finally, the input to layer j = k− 1 consists of K/2k−1 = 2 lists of expected
size 2m containing words whose (k− 1) ·m LSBs are zero. The K-tree algorithm
then applies A2,1 to obtain the final solution, nullifying additional 2m bits. Al-
together, n = (k + 1) ·m bits are nullified in T = 2m = 2n/(k+1) = N1/(logK+1)

time and M = 2m = N1/(logK+1) memory.
Note that A4,1 above for M = T is, in fact, the A2

4 algorithm. Indeed, when
M = T , A4,1 is composed of 2 layers of 2-way list sum algorithms.
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3.6 Preparation Phase Algorithms

Parallel Collision Search [18] The parallel collision search (PCS) algorithm
was published by van Oorschot and Wiener [18] as a memory-efficient technique
for finding collisions in an r-bit function F : {0, 1}r → {0, 1}r. The details of
the algorithm are given in Appendix B. It shows that given 2m ≤ 2r words of
memory, PCS finds 2m collisions in time complexity

T = 2(r+m)/2.

Parallel Collision Search in Expanding Functions [18] Assume that our
goal is to find 2m collisions using 2m memory in the expanding function F :
{0, 1}` → {0, 1}r, where (r + m)/2 ≤ ` ≤ r (ensuring that 2m collisions indeed
exist in F ). PCS in expanding functions achieves this goal in time complexity of

T = 2r+(m−`)/2,

as shown in Appendix B.

Clamping through Precomputation [4, 5] The goal here is to find 2m values
xi such that F (xi)[1–r] = 0 for a parameter r, given a function F : {0, 1}` →
{0, 1}n (for m + r ≤ ` ≤ n). This can be done by using clamping through
precomputation (CTP) [4, 5] which simply exhausts about T = 2m+r values of
xi and collects the expected number of 2m+r−r = 2m values that satisfy the
condition F (xi)[1–r] = 0.

3.7 Previous GBP Tradeoff Algorithms for K = 2k [6, 16]

The best known time-memory tradeoff algorithm for GBP was published in-
dependently by Nikolić and Sasaki [6, 16] and also by Biryukov and Khovra-
tovich [6]. The algorithm is described and analyzed in Appendix C and it gives
the time-memory tradeoff

T 2M logK−1 = N.

This algorithm uses PCS in the preparation phase and the K-tree algorithm as
the list sum algorithm that outputs the GBP solution. However, the two steps
of the algorithm are not balanced, as the time complexity of PCS is larger than
the complexity of the K-tree algorithm. In Section 6 we show how to improve
this tradeoff for K ≥ 6 by replacing the K-tree algorithm with our new list sum
algorithms.

4 Construction of New Basic List Sum Algorithms

The first part of our framework transforms exhaustive list sum algorithms (of
type AK) into basic ones of types AK,1 and AK,2m (that are useful for devising
layered algorithms). In this section we transform both exhaustive symmetric
and asymmetric algorithms described in sections 3.2 and 3.3, respectively. The
most relevant basic list sum algorithms obtained in this section and in [13] are
summarized in Table 1.
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Table 1. Basic List Sum Algorithms

Algorithm Time-Memory Tradeoff Range (M vs. T ) Range (M vs. N) Reference

A4,1 TM2 = N T 1/2 ≤M ≤ T N1/4 ≤M ≤ N1/3 [13]

A7,1 TM3 = N T 1/4 ≤M ≤ T 1/2 N1/7 ≤M ≤ N1/5 New

A11,1 TM4 = N T 1/7 ≤M ≤ T 1/2 N1/11 ≤M ≤ N1/6 New

A16,1 TM5 = N T 1/11 ≤M ≤ T 1/2 N1/16 ≤M ≤ N1/7 New

4.1 Preliminary Construction and Analysis of Basic List Sum
Algorithms

Recall that we denote the time complexity of AK by 2τKm for a parameter τK .
As we show next, the time-memory tradeoff for AK,1 is of the form TMαK = N
for αK = K − τK .

The basic idea generalizes the one used to construct A4,1 in Section 3.4. We
deal with an algorithm AK that partitions the problem of size K into several
smaller subproblems, solves each one for various choices of intermediate target
values and for each such choice, merges the outputs, hopefully obtaining a final
solution. When we iterate over a subset that contains a 2−b fraction of the pos-
sible intermediate target values we essentially set an additional b-bit constraint
on the returned solutions. Ideally, this allows to reduce the time complexity of
the algorithm by a factor of 2b to 2τKm−b at the expense of nullifying less bits:
recall from (1) that by setting a b-bit constraint on the solutions, we can nullify
n = Km − b − s = Km − b bits (as s = 0 for AK,1). Therefore, we obtain a
tradeoff of

TMK−τK = N. (2)

Indeed, after setting the b-bit constraint, we hope to reduce the time complexity
to T = 2τKm−b and obtain TMK−τK = 2τKm−b+m(K−τK) = 2Km−b = 2n =
N . We stress that this is an ideal formula which cannot always be achieved
using a concrete algorithm. We carefully design such algorithms below, aiming
to apply the ideal formula to the widest range of parameters possible. This will be
relatively simply for symmetric list sum algorithms, but requires deeper insight
for asymmetric algorithms.

As deduced above in (2), ideally the tradeoff curve of a basic list sum algo-
rithm of type AK,1 is of the form

TMαK = N (3)

for a constant αK = K − τK . When considering the variant AK,2m , we require
2m solutions and the number of bits that can be nullified is reduced from n to
n−m. Consequently, the tradeoff becomes TMαK = N ′ for N ′ = 2n−m, giving

TMαK−1 = N. (4)

As a result, we do not need to analyze AK,2m separately.
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4.2 Basic Symmetric List Sum Algorithms

The algorithms A4,1 and A4,2m for K = 4 (that are applicable in the range
T 1/2 ≤M ≤ T ) were already constructed in Section 3.4, where we showed that
indeed α4 = 4− τ4 = 2. We continue with K = 16.

A16,1 and A16,2m Following the general approach above, we extend the 16-way
list sum algorithm A16 of Section 3.2. Since the time complexity of A16 is 211m,
we have τ16 = 11 and α16 = 16 − τ16 = 5 as given by (2) and (3). Below, we
perform this computation in more detail and calculate the range for which this
tradeoff is applicable.

If we fix all the words c1, c2, c3, c4 in A16 (such that their sum is 0), we cast a
constraint of 9m bits on the 16-tuples and can nullify n = 16m− 9m = 7m bits
in time complexity 22m (which is the time complexity of the A4 algorithms).

More generally, when we vary 2v times the value of c1, c2, c3, c4, we cast a
(9m−v)-bit constraint on the 16-tuples and nullify n = 16m−(9m−v) = 7m+v
bits in time complexity T = 22m+v, giving a tradeoff of

TM5 = N,

namely α16 = 5 as expected. Since we can choose any 0 ≤ v ≤ 9m, the tradeoff
is applicable for T 1/11 ≤M ≤ T 1/2.

Beyond 16-Way List Sum Algorithms In order to extend the tradeoff curve
of A4,1 to smaller memory ranges of M ≤ T 1/2 we squared K. We can continue
to extend the curve to very small memory values in a similar way by defining
AK for K = 162 = 256 and transforming it to AK,1. For even smaller memory
ranges, we use K = 2562 = 216 and so forth.

4.3 Basic Asymmetric List Sum Algorithms

A7,1 and A7,2m We extend the 7-way dissection A7 of Section 3.3, whose time
complexity is 2τ7m = 24m to A7,1. According to the preliminary analysis above,
we have α7 = 7− τ7 = 3, as obtained in more detail below.

If we fix the 2m-bit value c in the loop of A7, we set a 2m-bit constraint and
can nullify 7m−2m = 5m bits in time 24m−2m = 22m. In general, when we vary
2v times the value of c, we nullify n = 5m+ v bits in time T = 22m+v, giving

TM3 = N,

namely α7 = 3 as obtained above. Since we can choose any 0 ≤ v ≤ 2m, the
tradeoff is applicable for T 1/4 ≤ M ≤ T 1/2. The algorithm for the specific
parameters M = 2n/5, T = 22n/5 is sketched in Figure 1.
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L7 L6 L5 L4 L3 L2 L1

a2
pa1 ` a2q “
cr1–n{5s a1 n{5

c c 2n{5

0 4n{5

n{5
zeroed by repeating
with 2n{5 values of a1

1

a1 (along with a2) varies while c is fixed.

Fig. 1. A7,1 with M = 2n/5, T = 22n/5

A11,1 and A11,2m We consider the next value of K = 11 in the dissection
sequence described in Section 3.3, which has time complexity of T = 27m (nul-
lifying 11m bits), i.e., τ11 = 7. The main loop of A11 splits the problem into
subproblem of sizes 4 and 7, while iterating over 3m intermediate target values.
To construct A11,1, we can easily fix these 3m values which reduces the time
complexity to 24m (nullifying only 8m bits). In general, we obtain the tradeoff
TM4 = N (α11 = 11 − τ11 = 4) for T 1/7 ≤ M ≤ T 1/4. Interestingly, we can
recursively fix more values and extend this tradeoff to T 1/7 ≤M ≤ T 1/2, which
is crucial when the number of solutions is large. Below, we describe the algo-
rithm for M = T 1/2 (i.e., M = 2n/6, T = 22n/6). This algorithm is sketched in
Figure 2.

1. For a fixed 3m-bit word c, apply the A4,2m algorithm to {Li}4i=1 with
the target value c, and store the expected number of 24m−3m = 2m

outputs in a new sorted list L′. Each word is stored along with the
corresponding 4-tuple of indexes from {Li}4i=1.

2. Apply a A7,22m algorithm to {Li}11i=5 with the 3m-bit target value c by
recursively fixing (additional) 2m bits (the expected number of solutions
is indeed 27m−3m−2m = 22m). For each returned solution {yi}11i=5, look
for matches with {yi}4i=1 in L′ and obtain an 11-tuple {yi}11i=1 such that∑11
i=1 yi = 0 as required.

The complexity of both steps is 22m, hence T = 22m. Altogether, 3m+2m = 5m
bits are fixed and n = 11m − 5m = 6m bits are nullified. Therefore, M =
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2n/6, T = 22n/6 as claimed. The ability to recursively fix target values (while
maintaining the tradeoff of (3)) is a distinct feature of asymmetric algorithms.
Next, we elaborate on which and how many values can be fixed this way for
general K.

L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1

a2

pa1 ` a2q “
cr1–n{6s a1 n{6a4

pa3 ` a4q “
b2r1–n{6s a3 n{6

b2 b1 2n{6pb1 ` b2q “
cr1–2n{6s

c 3n{6 c
2n{6
n{6

set by repeating

with 2n{6 values of a1

0
zeroed by repeating

with 2n{6 values of a3
5n{6
n{6

1

a1 (along with a2) and a3 (along with a4) vary while b1, b2, c are fixed.

Fig. 2. A11,1 with M = 2n/6, T = 22n/6

Generic Analysis of Basic Asymmetric List Sum Algorithms We ana-
lyze the transformation of the Ki-way dissection algorithm AKi

(mentioned in
Section 3.3) to AKi,1. As described in Section 3.3, AKi for Ki = 1 + i(i + 1)/2
runs in time 2τKi

m for τKi = 1 + i(i − 1)/2. Therefore αKi = Ki − τKi = i,
ideally giving the tradeoff

TM i = N.

Determining the range of parameters for which this tradeoff applies is more
subtle, as demonstrated for A11,1 above. Recall from Section 3.3 that AKi

splits
the problem into subproblems of sizes i, i − 1, i − 2, . . . , 3, 2, 2, and applies the
algorithms Ai, Ai−1, . . . , A3, A2, A2, respectively. Hence, the time complexity of
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the algorithm cannot be reduced below the time complexity of Ai,
6 which is

2τim. In conclusion, the tradeoff is applicable in the range T 1/τKi ≤M ≤ T 1/τi .

For example, for i = 3, we have K3 = 7, τ7 = 4 (as the time complexity
of AK3

= A7 is 24m) and τ3 = 2 (as the time complexity of Ai = A3 is 22m).
Therefore, we obtain the tradeoff TM3 = N , applicable for T 1/4 ≤ M ≤ T 1/2,
which indeed coincides with the A7,1 tradeoff obtained above. For i = 4, we have
K4 = 11 and obtain the tradeoff TM4 = N , applicable for T 1/7 ≤M ≤ T 1/2.

We conclude the analysis with several observations.

– The optimal time complexity in the tradeoff range of basic list sum algo-
rithms is determined by the largest subproblem that they solve. Since sym-
metric algorithms partition the problem evenly, they have an advantage over
asymmetric algorithms in case we are interested only in a small fraction of
many solutions (and hence can fix many intermediate target values) and care
only about time complexity.

– On the other hand, in many practical GBP instances the number of solutions
is limited and asymmetric algorithms may have a significant advantage (as
we show in Section 7) by better exploiting the solution space. Moreover,
asymmetric algorithms offer substantially better time-memory tradeoffs for
many parameters (as demonstrated explicitly in Section 5.3).

– Technically, basic asymmetric list sum algorithms are constructed from ex-
haustive algorithms by recursively fixing intermediate target values. The
values are fixed in the order of recursion from the largest K value to the
smallest until we cannot further improve the time complexity (e.g., for A11,1

we fix values inside the recursive calls with K = 11 and K = 7, but not
K = 4). On the other hand, for symmetric algorithms (such as A16,1), val-
ues are fixed in the main loop in an arbitrary manner.

5 Construction of New Multiple-Layer List Sum
Algorithms

The second part of our framework uses the basic AP,1 and AP,2m algorithms
developed in the previous sections in order to construct multi-layered algorithms
APK .7 The most relevant multi-layer list sum algorithms obtained in this section
and in [19] are summarized in Table 2.

The analysis for APK will use the parameter αP established for AP,1 according
to its tradeoff curve (3).

6 We could try to fix additional intermediate target values that the algorithm Ai
iterates over internally. However, this generally results in a less efficient tradeoff
compared to TM i = N .

7 Note that in this section we rename the parameter of basic algorithms from K to P .
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Table 2. Multiple-Layer List Sum Algorithms

Algorithm Time-Memory Tradeoff Range (M vs. T ) Reference

A2
K T = M = N1/(logK+1) T = M [19]

A4
K T b(logK)/2cMd(logK)/2e+1 = N T 1/2 ≤M ≤ T New

A7
K T log7KM2 log7K+1 = N T 1/4 ≤M ≤ T 1/2 New

A11
K T log11KM3 log11K+1 = N T 1/7 ≤M ≤ T 1/2 New

A16
K T log16KM4 log16K+1 = N T 1/11 ≤M ≤ T 1/2 New

5.1 Generic Construction and Analysis of Multiple-Layer
Algorithms

We assume that K = P k · Q, where 1 ≤ Q < P and P, k,Q are integers (if K
is not of the required form we round it down to K ′ of this form and apply the
algorithm for K ′). In this decomposition, we have k = logP K (the logarithm is
rounded down to the nearest integer). We construct the algorithm APK .

If Q = 1, APK has k − 1 layers of AP,2m (merging the lists in groups of P ,
where each merge outputs a list of 2m inputs into the next layer) and a final
layer of AP,1. If Q > 1, APK has k layers of AP,2m and a final layer of AQ,1.

First, we analyze the case of K = P k (namely, Q = 1), based on the tradeoff
parameter αP for AP,1 (as specified in (3)). Fix a parameter n′ such that each

of the k − 1 layers of AP,2m nullifies n′ bits in time complexity 2n
′−(αP−1)m,

according to the tradeoff curve (4) for AP,2m . Altogether, n′(k − 1) bits are
nullified in these layers and n−n′(k−1) remain to be nullified by the final layer
AP,1 in time 2n−n

′(k−1)−αPm. In order to balance the algorithm, we equate the
time complexities of the layers by setting n′− (αP − 1)m = n−n′(k− 1)−αPm
or n′ = (n−m)/k. Consequently, the time complexity of the layered algorithm
is T = 2n

′−(αP−1)m = 2(n−m)/k−(αP−1)m = 2(n−m(k(αP−1)+1))/k. This gives a
time-memory tradeoff of T kMk(αP−1)+1 = N or

T logP KM logP K·(αP−1)+1 = N. (5)

It is applicable for the same time-memory range as AP,1 (and AP,2m).
For example, in the K-tree algorithm, we have P = 2 and α2 = 2 − τ2 =

1. Hence, the tradeoff of T logP KM logP K·(α2−1)+1 collapses to T logKM = N .
Setting T = M (which is the only point in which the K-tree algorithm is directly
applicable) gives the standard formula of T logK+1 = N or T = N1/(logK+1).

In case K = P k · Q for 1 < Q < P , the generic analysis becomes more
involved and depends on the time-memory tradeoff curve of AQ,1.

In this paper we focus on Q = 2, where the final merge is a basic A2,1

algorithm that runs in fixed time complexity of 2m and nullifies 2m bits. Fix
a parameter n′ such that each of the k layers of AP,2m nullifies n′ bits in time

complexity 2n
′−(αP−1)m. Altogether, n′k bits are nullified in these layers and

n−n′k remain to be nullified by the final layer A2,1 in time 2m. Since the final 2-
way list sum algorithm nullifies 2m bits, we have n−n′k = 2m or n′ = (n−2m)/k.
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The algorithm’s time complexity is dominated by the first k layers and is
therefore T = 2n

′−(αP−1)m = 2(n−2m)/k−(αP−1)m = 2(n−m(k(αP−1)+2))/k. This
gives a time-memory tradeoff of

T logP KM logP K ·(αP−1)+2 = N, (6)

applicable for the same time-memory parameter range as AP,1 (and AP,2m).

5.2 Analysis of Specific Multiple-Layer List Sum Algorithms

We analyze the A4
K algorithm according to the generic approach above. The

analysis of the rest of the layered algorithms APK summarized in Table 2 is
obtained in a similar manner by plugging the relevant αP parameter into (5).

A4
K For arity P = 4, we only analyze values of K which are powers of 2 (as

this allows direct comparison to previous tradeoffs for GBP). For A4,1, we have
α4 = 2, established in Section 4.2.

In case K = 4k, we plug logP K = log4K = logK/2 and αP = α4 = 2
into (5), obtaining

T (logK)/2M (logK)/2+1 = N,

applicable for T 1/2 ≤M ≤ T (as the A4,1 and A4,2m algorithms).

We demonstrate the A4
16 algorithm (that works in two layers) below.

1. Apply the A4,2m algorithm of Section 3.4 four times to lists {Li}4i=1,
{Li}8i=5, {Li}12i=9 and {Li}16i=13, nullifying n′ = (n −m)/2 bits. Obtain
four sorted lists L′1, L

′
2, L
′
3, L
′
4, each of expected size 2m.

2. Apply the A4,1 algorithm of Section 3.4 to L′1, L
′
2, L
′
3, L
′
4, nullifying the

remaining n − n′ = (n + m)/2 bits. Derive a single solution to the list

sum problem
∑16
i=1 yi[1–n] = 0.

In case K = 2 · 4k, we have P = 4, Q = 2 and log4K = (logK − 1)/2.
Plugging these values into (6) we obtain

T (logK−1)/2M (logK−1)/2+2 = N,

applicable for T 1/2 ≤M ≤ T .

Unified formula for powers of 2. Unifying the tradeoff formulas obtained above
to any K = 2k, we obtain

T b(logK)/2cMd(logK)/2e+1 = N,

applicable for T 1/2 ≤M ≤ T .
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5.3 Comparison of Single-Solution List Sum Algorithms

As shown in Table 2, A16
K is applicable in the range T 1/11 ≤ M ≤ T 1/2, while

A7
K is applicable in the range T 1/4 ≤ M ≤ T 1/2. Hence, both algorithms are

applicable in T 1/4 ≤M ≤ T 1/2 and it is interesting the investigate which of the
algorithms is more efficient in this parameter range. The goal of this section is to
compare the efficiency single-solution list sum algorithms (such as A16

K and A7
K)

for any fixed value of K for parameters where the algorithms can be applied.
The efficiency of the algorithms is determined by the tradeoff formula (5).

The difficultly in applying this formula to A16
K is that this algorithm is directly

applicable only for values ofK that are powers of 16. Hence the logarithm log16K
is rounded down in (5) for K = 16. Similarly, A7

K is directly applicable only for
values of K that are powers of 7.

In general, the difficultly in comparing AP1

K and AP2

K for a fixed value of K
(for parameters in which both are applicable), is that we need to round down the
logarithms logP1

K and logP2
K in (5). To simplify the analysis, we assume that

the tradeoffs are continuous and can be evaluated at any positive real number K
with no rounding. Hence, we equate the time and memory complexities T,M of
these algorithms for a fixed value K = K1 = (P1)k1 = (P2)k2 = K2 and compare
the resulting values of N . We then investigate the implications this comparison.

Continuous analysis. According to (5) the tradeoff forAPK is of the form T logP KM logP K·(αP−1)+1 =
N (for a value αP for AP,1). For a parameter x, let T = Mx be a point for which
the tradeoff is applicable. Then, we obtain the equalityMx logP KM logP K·(αP−1)+1 =
N or M logP K(x+αP−1)+1 = N . Converting to base 2, the exponent of M is equal
to logK/ logP · (x+ αP − 1) + 1.

Therefore, in order to compare two tradeoffs T logP1
KM logP1

K·(αP1
−1)+1 = N

and T logP2
KM logP2

K·(αP2
−1)+1 = N (for K = (P1)k1 and K = (P2)k2 , respec-

tively), we can compare their exponents after plugging in T = Mx for a value of
x for which both are applicable.

Hence, the tradeoff for AP1

K is superior if and only if

logK/ logP1 · (x+ αP1 − 1) + 1 > logK/ logP2 · (x+ αP2 − 1) + 1, (7)

or

x > 1 + (αP2
logP1 − αP1

logP2)/(logP2 − logP1). (8)

Note that the last formula does not depend on K.
We say that if the above formulas hold, then AP1

K is weakly superior to AP2

K

(for the relevant parameter range). Indeed, this does not imply that AP1

K is

actually more efficient than AP2

K for a fixed value of K, as we did not round
down the logarithms logP1

K and logP2
K in (5) as required. The consequences

of this comparison are given by the theorem below.

Theorem 1. Assume that AP1

K is weakly superior to AP2

K in a range of T,M
parameters where both tradeoffs are applicable. Then, for this range:
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1. The AP1

K algorithm is more efficient than the AP2

K algorithm for all values of
K = (P1)k for an integer k.

2. There exists a value of K ′ such that the AP1

K algorithm is more efficient than

the AP2

K algorithm for any K > K ′ (including K = (P2)k for an integer k).

For example, we will show that for T 1/4 ≤M ≤ T 1/2.7, A7
K is weakly superior

to A16
K . The theorem implies that for T 1/4 ≤ M ≤ T 1/2.7, A7

K is always more
efficient than A16

K for values of K that are powers of 7. Moreover, for T 1/4 ≤
M ≤ T 1/2.7, there exists a value of K ′ such that A7

K is more efficient than A16
K

for any K > K ′.

Proof. The first part of the theorem follows from the fact that when K = (P1)k,
the AP1

K algorithm can be directly applied with no rounding loss in logP1
K.

Comparing exponents, the left hand side of (7) remains the same forAP1

K , whereas

the right hand side can only decrease for AP2

K due to rounding. As a result, the

value of N for AP1

K remains larger.

The second part of the theorem is obtained by analyzing the efficiency loss
due to rounding, and showing that it becomes negligible as K grows to infinity.
From (7) we get 1/ logP1 · (x+ αP1 − 1) > 1/ logP2 · (x+ αP2 − 1). Therefore,

lim
K→∞

logK · (1/ logP1 · (x+ αP1
− 1)− 1/ logP2 · (x+ αP2

− 1)) =∞.

The rounding loss for AP1

K can decrease the factor logP1
K = logK/ logP1

in (7) by less than 1. To complete the proof we show that (7) holds for all
sufficiently large K even after this loss, namely, (logK/ logP1 − 1) · (x+ αP1

−
1) + 1 > logK/ logP2 · (x+ αP2 − 1) + 1. Equivalently,

logK · (1/ logP1 · (x+ αP1
− 1)− 1/ logP2 · (x+ αP2

− 1)) > x+ αP1
− 1,

which holds for all sufficiently large K as the left hand side approaches infinity,
while the right hand side is constant.

�
We note that the value of K ′ in the second part of the theorem depends on

the actual tradeoffs and the value of x in the proof.

Comparison of Specific Single-Solution List Sum Algorithms Since the
tradeoffs of APK for P ∈ {7, 11, 16} are applicable in intersecting ranges (as shown
in Table 2), we compare their efficiency.

Using (8) by setting P1 = 7 and P2 = 16, we obtain the crossover point of
x7,16 = 1+(5 log 7−3 log 16)/(log 16− log 7) ≈ 2.7. By similar comparison which
takes into account the range for which each tradeoff is applicable, we obtain the
results of Table 3 that lists the weakly best algorithms among the 3 compared
in the range T 1/11 ≤M ≤ T 1/2.
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Table 3. Comparison of List Sum Algorithms

Range Weakly Best Algorithm

T 1/2.7 ≤M ≤ T 1/2 A16
K

T 1/4 ≤M ≤ T 1/2.7 A7
K

T 1/7 ≤M ≤ T 1/4 A11
K

T 1/11 ≤M ≤ T 1/7 A16
K

6 Construction of New Algorithms for the Generalized
Birthday Problem

The third part of our framework combines preparation phase and list sum al-
gorithms (for S = 1) to obtain new GBP algorithms. It combines either PCS
(parallel collision search) or CTP (clamping through precomputation) with a
given list sum algorithm in a generic manner. The generic formulas are then
used to obtain improved tradeoffs for various specific K values (some of which
are specified in Table 4). We focus on values of K that allow direct comparison
to previous tradeoff curves in addition to values that are relevant to Section 7,
where we analyze concrete GBP instances.

Table 4. Time-Memory Tradeoffs of GBP Algorithms

K Time-Memory Tradeoff Range (M vs. T ) Building Blocks

≥ 8 T d(logK)/2e+1Mb(logK)/2c = N T 1/2 ≤M ≤ T PCS + A4
K/2

≥ 8 T 2M3d(logK)/2e−2−(logK) mod 2 = N 1 ≤M ≤ T 1/2 PCS + A4
K/2

8 T 3M = N T 1/2 ≤M ≤ T PCS + A4,1

8 T 2M3 = N 1 ≤M ≤ T 1/2 PCS + A4,1

16 T 3M2 = N T 1/2 ≤M ≤ T PCS + A4
8

16 T 3M2 = N T 1/4 ≤M ≤ T 1/2 PCS + A7,1

16 T 2M6 = N 1 ≤M ≤ T 1/4 PCS + A7,1

32 T 4M2 = N T 1/2 ≤M ≤ T PCS + A4
16

32 T 3M4 = N T 1/11 ≤M ≤ T 1/2 PCS + A16,1

32 T 2M15 = N 1 ≤M ≤ T 1/11 PCS + A16,1

6 T 2M2 = N 1 ≤M ≤ T 1/2 PCS + A3,1

7 T 2M2 = N T 1/4 ≤M ≤ T 1/2 CTP + A7,1

14 T 3M2 = N T 1/4 ≤M ≤ T 1/2 PCS + A7,1

14 T 2M6 = N 1 ≤M ≤ T 1/4 PCS + A7,1

For a parameter K, we construct a GBP algorithm assuming we have a list
sum algorithm A (which can be a basic or layered algorithm) with S = 1 for a
parameter K ′ (whose value will be either K ′ = K or K ′ = K/2). We assume
that the time-memory tradeoff curve of A for K ′ is T βMγ = N for parameters
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β, γ. Our analysis also uses a parameter δ, which specifies the lower range limit
for the tradeoff algorithm of A as M ≥ T 1/δ. For example, we established the
tradeoff TM3 = N for A7,1 in the range T 1/4 ≤ M ≤ T 1/2, hence we have
β = 1, γ = 3, δ = 4. We will derive a basic tradeoff for M ≥ T 1/δ and then
extend it to M < T 1/δ. Furthermore, the tradeoffs depend on the input range size
L = 2` since the complexity of the preparation phase algorithm varies according
on whether or not ` is below some value. For example, when applying PCS with
a small value of `, we have to apply it to an expanding function and adapt the
complexity as specified on Section 3.6.

Altogether, a GBP tradeoff formula depends on a triplet of parameters (prepa-
ration phase algorithm, memory range, input size range) and there are 23 = 8
such possible triplets. However, we only derive and use 6 of these in this paper,
as summarized in Table 5. Due to lack of space, these 6 algorithms and their
analysis are described in Appendix D. Below, we explicitly derive the first 4
tradeoffs for the specific case of K = 14 with the PCS preparation phase.

Table 5. Generic GBP Time-Memory Tradeoffs Formulas

Tradeoff Time-Memory Tradeoff K′ Range (M vs. T ) Range (L) Building Blocks

1 T β+2Mγ−1 = N K/2 M ≥ T 1/δ (same as A) ` ≥ 2n−2mγ−mβ
β+2

PCS + A

2 T 2Mδβ+γ−1 = N K/2 M ≤ T 1/δ ` ≥ n−m(δβ + γ) PCS + A

3 T β+1Mγ−1/2L1/2 = N K/2 M ≥ T 1/δ (same as A) ` ≤ 2n−2mγ−mβ
β+2

PCS + A

4 TMδβ+γ−1/2L1/2 = N K/2 M ≤ T 1/δ ` ≤ n−m(δβ + γ) PCS + A

5 T β+1Mγ−1 = N K M ≥ T 1/δ (same as A) ` ≥ n−mγ+m
β+1

CTP + A

6 T βMγ−1L = N K M ≥ T 1/δ (same as A) ` ≤ n−mγ+m
β+1

CTP + A

6.1 Tradeoff Algorithm for K = 14

For K = 14 with the PCS preparation phase, we use an algorithm A for
K ′ = K/2 = 7, namely A7,1. The tradeoff formula for A7,1 is TM3 = N (i.e.,
its time complexity is T = 2n−3m) in the range T 1/4 ≤ M ≤ T 1/2. The combi-
nation algorithm uses the truncated function H|r,r (as defined in Section 2) for
a parameter r ≥ m, set below to optimize the algorithm.

1. Run PCS on the function H|r,r and look for 2m collisions. For each
collision H(x)[1–r] = H(x′)[1–r], compute y = H(x) +H(x′) and store
all these words in 7 lists {Li}7i=1 of size about 2m (along with the
corresponding x values).

2. Run A on {Li}7i=1 (nullifying bits [r+1–n]). Obtain 7 words yi ∈ Li such

that
∑7
i=1 yi = 0 and use them (based on the first step) to construct a
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solution to GBP by recovering the K words xi such that
∑14
i=1H(xi) =∑7

i=1 yi = 0 as required.

In the first step, we execute PCS with parameter r in time 2(r+m)/2 (ac-
cording to Section 3.6). In the second step we nullify the remaining n′ = n − r
bits by using A7,1 in time complexity 2n

′−3m = 2n−r−3m. Then, to balance the
two steps we require (r + m)/2 = n − r − 3m or r = (2n − 7m)/3, giving time
complexity of T = 2(n−2m)/3 and a tradeoff of

T 3M2 = N.

This matches Tradeoff 1 for K = 14 in Table 5 (recall that for A7,1, β = 1, γ =
3, δ = 4). This tradeoff is valid for T 1/4 ≤M ≤ T 1/2 (as A7,1). The algorithm for
parameters T = N1/4,M = N1/8 (which improves upon the K-tree algorithm)
is sketched in Figure 3.

When M < T 1/4, we can extend the tradeoff by applying A7,1 to nullify less
bits (i.e., with a smaller value of n′), implying that PCS will nullify more bits
and dominate the complexity of the algorithm which becomes T = 2(r+m)/2 =
2(n−n

′+m)/2. In order to calculate n′, we use the tradeoff curve T̂M3 = N ′ of A7,1

at its lower range M = T̂ 1/4 or T̂ = M4 (here, T̂ denotes the time complexity
of A7,1) and obtain N ′ = M7, namely n′ = 7m. Therefore, T = 2(n−n

′+m)/2 =
(n− 6m)/2, giving the tradeoff

T 2M6 = N.

This matches Tradeoff 2 in Table 5.

Restricted Domain Recall from the first tradeoff that r = (2n − 7m)/3. In
case ` < r = (2n − 7m)/3 (the domain size of H is 2` < 2r) we are forced to
use H|`,r which is an expanding function. The time complexity of PCS for the

expanding function H|`,r is 2r+(m−`)/2 (as specified in Section 3.6), while the
time complexity of A7,1 remains T = 2n−r−3m. Balancing the steps in this case
gives r+ (m− `)/2 = n− r− 3m or r = n/2− 7m/4 + `/4 and time complexity
of T = r + (m− `)/2 = n/2− 5m/4− `/4. This gives the formula

T 2M5/2L1/2 = N,

matching Tradeoff 3 in Table 5.
When M < T 1/4, the steps cannot be balanced as above and the time com-

plexity becomes 2r+(m−`)/2 (dominated by PCS). Here, r = n − n′ = n − 7m
(n′ = 7m as in the case where the domain is not restricted). We obtain T =
2n−13m/2−`/2, giving the formula

TM13/2L1/2 = N

and matching Tradeoff 4 in Table 5.
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Fig. 3. GBP Algorithm for K = 14 with M = 2n/8, T = 2n/4

6.2 Tradeoff Formulas for K = 2k (and K ≥ 8)

We now derive improved GBP tradeoffs for K = 2k assuming that K ≥ 8. These
tradeoffs are obtained by combining PCS with multiple layers of the 4-way list
sum algorithm A4

K/2 (described in Section 5) as the generic algorithm A. The
formula is calculated according to Tradeoff 1 in Table 5.

We recall the formula ofA4
K/2 from Table 2, which is T b(logK−1)/2cMd(logK−1)/2e+1 =

N ,8 namely β = b(logK−1)/2c = d(logK)/2e−1 and γ = d(logK−1)/2e+1 =
b(logK)/2c+1. Adding 2 to β and reducing γ by 1 (as in Tradeoff 1 in Table 5),
we obtain

T d(logK)/2e+1Mb(logK)/2c = N,

applicable for T 1/2 ≤M ≤ T .

Extending the Tradeoffs to M < T 1/2 In case M < T 1/2, PCS dominates
the algorithm’s time complexity and the formula is given in Tradeoff 2 in Table 5

8 Note that the evaluation is performed at K/2 rather than K
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as T 2Mδβ+γ−1, where δ = 2. We obtain T 2M2d(logK)/2e−2+b(logK)/2c = N , or

T 2M3d(logK)/2e−2−(logK) mod 2 = N.

The tradeoff is applicable for M ≤ T 1/2.

Tradeoff Formulas for K = 16, K = 32 and Beyond The tradeoff curve
for T 1/2 ≤ M ≤ T above is the best we can obtain for K = 2k. On the other
hand, the curve for M < T 1/2 is only optimal for K = 8 as for larger K values it
is possible to apply more complex list sum algorithms as described in Section 5.
In fact, as described in Section 5.3 (and specifically in Table 3), for large values
of K = 2k and T 1/4 ≤ M ≤ T 1/2.7, the most efficient algorithm will combine
PCS with A7

K/2 (layers of 7-way list sum algorithm).
While we cannot obtain generic optimal formulas that are applicable to all

values of K = 2k and M < T 1/2, we further extend the tradeoffs for K = 16 and
K = 32 in Table 4. The results were obtained using the formulas of the combi-
nation algorithms (Tradeoffs 1,2 in Table 5) after plugging in the parameters of
the relevant list sum algorithms (specified as building blocks in Table 4). The
methods to obtain tradeoffs for K = 64 and beyond are similar.

6.3 Tradeoff Formulas for K ∈ {6, 7, 14, 15}

As for values of K = 2k analyzed above, the results for K ∈ {6, 7, 14, 15} in
Table 4 were obtained using the formulas of the combination algorithms with
the list sum algorithms specified as building blocks in the table.

Restricted Domains Using combination algorithms for restricted domains
L = 2` < N , we derive additional tradeoffs in Table 6.9 These tradeoffs are
applicable to the concrete GBP instances analyzed in the next section.

Table 6. Some GBP Algorithms for Restricted Domains

K Time-Memory Tradeoff Range (M vs. T ) Domain Range Building Blocks

6 TM5/2L1/2 = N 1 ≤M ≤ T 1/2 L ≤ NM−3 PCS + A3,1

7 TM2L = N T 1/4 ≤M ≤ T 1/2 L ≤ N1/2M−1 CTP + A7,1

14, 15 T 2M5/2L1/2 = N T 1/4 ≤M ≤ T 1/2 L ≤ N2/3M−7/3 PCS + A7,1

9 These algorithms are not optimal for a very small domain size close to 2n/K , which is
the minimal value required for a solution to exist with high probability. In such cases
it is more efficient to apply a final layer of random-walk collision search (as done
in [5, 10]). However, the practical relevance of these algorithms is relatively limited
and they are beyond the scope of this paper (as we focus on practical tradeoffs for
GBP instances with limited domain sizes).
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7 Applications to Concrete Generalized Birthday
Problem Instances

We apply our algorithms to concrete GBP instances, recently analyzed by Both
and May [8]. These instances were generated by the parity check problem in
which (using different notation than [8]) we are given an irreducible polynomial
P (x) of degree n over GF (2) and the goal is to find a multiple Q(x) of P (x)
of weight (number of non-zero coefficients) at most K � n and degree smaller
than L � n. As shown in Appendix E the parity check problem has a simple
reduction to GBP with parameters K,n and domain size L = 2`.

The main application of the parity check problem is in fast correlation attacks
on stream ciphers [9, 14]. As noted in [8], in fast correlation attacks it is important
to have a flexible choice of K (which is not necessarily a power of 2) and a low
degree L, and the GBP instances in [8] were chosen accordingly.

Table 7. Complexities for Concrete GBP Instances

K n ` Time/Memory [15] Time/Memory [8] Our Time/Memory Our Tradeoff

(Extended K-tree) (Both and May)

6 120 37 T = M = 248 T = M = 239 T = 248/M = 225 TM5/2L1/2 = N

6 120 32 T = M = 258 T = M = 247 T = 249/M = 224 TM5/2L1/2 = N

7 120 36 T = M = 250 T = M = 238 T = 245/M = 224 TM2L = N

7 120 28 T = M = 266 T = M = 249 T = 249/M = 226 TM2L = N

15 120 14 T = M = 267 T = M = 238 T = 238/M = 220 T 2M5/2L1/2 = N

Analysis of Concrete Instances In general, the best known algorithm for
concrete GBP instances is the extended K-tree algorithm [15], which can be
directly applied to values of K = 2k for any N1/K ≤ L ≤ N1/(logK+1). Both and
May show that for the parity check problem it is possible to improve the extended
the K-tree algorithm for some values of K that are not powers of two, using
approximate matching. Here, we use our GBP tradeoffs derived in Section 6.3
(specified in Table 6) and compare the results for some instances analyzed in [8]
to our results in Table 7. For fair comparison, we multiply the time and memory
complexities obtained by our general formulas above by K. For example, for
K = 6, n = 120, ` = 37 the relevant curve in Table 6 is TM5/2L1/2 = N for
M ≤ T 1/2. To optimize the time complexity we set M = T 1/2, giving T =
N4/9L−2/9 ≈ 245. After multiplication by K = 6, we obtain M ≈ 225, T ≈ 248.

Note that for all instances specified in Table 6 we obtain strict improvements
over the extended K-tree algorithm (which is the best know generic algorithm
for GBP) in both time and memory complexities (except for K = 6, ` = 37 for
which the time complexities are the same).

In comparison with [8], for 3 instances ((K = 6, ` = 37), (K = 6, ` = 32) and
(K = 7, ` = 36)) we obtain sub-linear time-memory tradeoffs. For K = 6, ` = 32
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we reduce the memory complexity by 213 > 8000 while increasing the time
complexity by a small factor of 4, which seems very favorable. For the remaining
two instances (K = 7, ` = 28 and K = 15, ` = 14)10 we significantly improve the
memory complexity while the time complexity remains the same.

For some parameter values (such as K = 4, n = 120, ` = 40), our time-
memory tradeoffs are super-linear and seem to be of less interest. On the other
hand, for many parameter values (such as n = 120,K = 7 and ` < 28) we obtain
an advantage in both time and memory complexities over [8]. For example, for
K = 7, ` = 26, Both and May’s algorithm gives T = M ≈ 254. Using the
tradeoff TM2L = N for M = T 1/2, we obtain M ≈ 226.5 and T ≈ 250, namely,
we reduce the memory complexity by 227.5 and the time complexity by a factor
of 24. Smaller ` values further increase the gap in time and memory complexities.

Generally, our tradeoffs give better results for values of K that are far away
from their nearest smaller power of 2. However, we remark that our algorithms
also gives favorable tradeoffs for some concrete instances with values of K that
are powers of 2. For example, for K = 16, n = 120, ` = 15, the extended K-tree
algorithm gives T = M = 234 (as K is power of 2, it cannot be improved by [8]).
Assume we want to keep the memory close to 215, then we can directly apply
the 16-way list sum algorithm A4

16 of Section 5 (with the tradeoff of T 2M3 = N)
and obtain (after multiplication with K = 16), M = 219 and T ≈ 241.5. Hence
we reduce the memory complexity by a factor of 215 and increase the time
complexity by 27.5, which may be preferable is practical settings.

8 Conclusions

In this paper we developed a framework that allows to construct efficient al-
gorithms for the generalized birthday problem from basic building blocks of
preparation phase and list sum algorithms. We then used this framework to
devise improved GBP algorithms in various settings. In the future it would be
interesting to extend our framework and apply it to solve related problems such
as LPN and LWE and to adapt it to the quantum computation model.
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A Details of General Dissection [10]

In this section we describe the recursive construction of dissection algorithms.
Assume that we have a AK′ algorithm that given M = 2m memory runs in

time complexity T ′ = 2τK′m < 2n (for an integer τK′ ≥ 1). Moreover, the algo-
rithm can be applied in streaming mode (as all list sum algorithms described in
this paper). Namely, given a target of n′ = m(K ′−τK′) bits with arbitrary value,
it finds all the 2n−m(K′−τK′ ) expected solutions in time T ′ = 2τK′m (assuming
that n − m(K ′ − τK′) ≤ τK′m or m ≥ n/K ′). Then, we can construct a AK
algorithm for K = 2K ′ − τK′ + 1 with time complexity T = 2K

′m (τK = K ′)
and memory complexity M = 2m as follows.

1. For each m(K ′ − τK′)-bit value c:

(a) Apply a AK′−τK′+1 algorithm to {Li}K
′−τK′+1

i=1 , with c as the tar-

get, and store the expected number of 2m(K′−τK′+1−(K′−τK′ )) = 2m

outputs (whose m(K ′ − τK′) LSBs equal to c) in a new sorted list
L′. Each word is stored along with the corresponding (K ′−τK′ +1)-

tuple of indexes in {Li}K
′−τK′+1

i=1 .

(b) Apply the given AK′ algorithm to {Li}2K
′−τK′+1

i=K′−τK′+2 (the remaining

K ′ lists) with c as the target. For each obtained K ′-tuple, search
for a match in L′ on the remaining n−m(K ′−τK′) bits and output
the corresponding K-tuples.

The memory complexity of the algorithm is indeed M = 2m. In terms of time
complexity, Since τK′ ≥ 1, then the AK′ algorithm dominates the AK′−τK′+1

algorithm in the inner loop (it is applied to a problem of size at least as large).
Overall, the time complexity is T = 2m(K′−τK′ )+τK′m = 2K

′m as claimed.
The algorithm can be applied in streaming mode and therefore it can be

applied recursively, giving a sequence of dissection algorithms. The dissection
sequence starts with K0 = 1 and τK0

= τ1 = 1 (which is a trivial 1-way list sum
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algorithm). Next, we obtain K1 = 2K0 − τK0
+ 1 = 2 and τK1

= τ2 = K0 = 1,
K2 = 2K1 − τK1

+ 1 = 4 and τK2
= τ4 = K1 = 2. In general, it is easy to

verify that Ki = 1 + i(i + 1)/2 and τKi = 1 + i(i − 1)/2. In particular, after
K3 = 7, we have K4 = 11 and τ11 = 7, i.e. the A11 dissection algorithm has
time complexity 27m. As mentioned in Section 3.3, observe that AKi

recursively
splits the problem of size Ki = 1 + i(i + 1)/2 into i subproblems of respective
sizes i, i− 1, i− 2, . . . , 3, 2, 2.

B Details of Parallel Collision Search [18]

Parallel collision search (PCS) is a memory-efficient algorithm for finding colli-
sions in an r-bit function F : {0, 1}r → {0, 1}r. Given 2m ≤ 2r words of memory,
the algorithm builds a chain structure containing 2m chains, where a chain starts
at an arbitrary point and computed by iteratively applying F . Each chain is ter-
minated after about 2(r−m)/2 evaluations, hence the structure contains a total
of about 2m · 2(r−m)/2 = 2(r+m)/2 distinct points. The fact that the chains are
of length 2(r−m)/2 ensures that each chain collides with a different chain in the
structure with high probability according to the birthday paradox, as the num-
ber of relevant pairs of points is 2(r−m)/2 ·2(r+m)/2 = 2r. Therefore, the structure
contains about 2m collisions.

The collisions can be recovered efficiently by defining a set of 2(r+m)/2 dis-
tinguished points according to an easily verifiable condition (e.g., the (r−m)/2
LSBs of the r-bit word are 0). Each chain in the structure is terminated at a
distinguished point (and hence its expected length is 2r/2(r+m)/2 = 2(r−m)/2 as
required). The PCS algorithm stores the distinguished points sorted in memory
and collisions between chains are detected at their distinguished points. The
actual collisions are obtained by recomputing the colliding chains.

In total, PCS finds 2m collisions in an r-bit function in time complexity

T = 2(r+m)/2.

Parallel Collision Search in Expanding Functions Assume that our goal
is to find 2m collisions in the expanding function F : {0, 1}` → {0, 1}r, where
(r +m)/2 ≤ ` ≤ r (ensuring that 2m collisions indeed exist in F ).

We apply PCS to the truncated function F|`,` to find 2m collisions on ` bits

of F in 2(`+m)/2 time. Each such collision extends to a full r-bit collision with
probability 2`−r. In other words, the PCS execution gives an expected number
of 2m+`−r full collisions in F . To find the required 2m collisions, we repeat the
process 2r−` times, giving time complexity of

T = 2r−` · 2(`+m)/2 = 2r+(m−`)/2.

We note that in order to make the different PCS executions essentially in-
dependent, we have to use a different flavor of F|`,` in each execution (as done
in [18]). For example, we can define the i’th flavor as F i|`,`(x) = F|`,`(x) + i.
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C Details of Previous GBP Tradeoff Algorithm for
K = 2k [6, 16]

We describe the best known time-memory tradeoff algorithm for GBP with K =
2k and M = 2m words of memory, such that m ≤ n/(k + 1).

Given an integer parameter r ≥ m to be determined later, the algorithm uses
the truncated function H|r,r (as defined in Section 2).

1. Run PCS on the function H|r,r and look for 2m collisions. For each
collision H(x)[1–r] = H(x′)[1–r], compute y = H(x) +H(x′) and store

all these words in K/2 lists {Li}K/2i=1 of size about 2m (along with the
corresponding x values).

2. Apply the K-tree algorithm to the K/2 lists (nullifying bits [r + 1–n]).

Obtain K/2 words yi ∈ Li such that
∑K/2
i=1 yi = 0 and use them (based

on the first step) to construct a solution to GBP by recovering the K

words xi such that
∑K
i=1H(xi) =

∑K/2
i=1 yi = 0 as required.

We now calculate the value of r that ensures that the algorithm succeeds
to find a solution (with high probability). The K-tree algorithm is run using
2k

′
= 2k−1 lists, each of size 2m, and it has to zero the remaining n′ = n − r

bits after the PCS is executed. Therefore, according to the analysis of the K-tree
algorithm in Section 3.5 we require m = n′/(k′ + 1) = (n − r)/k. This gives
r = n−mk.

The time complexity of the PCS algorithm is 2(r+m)/2 = 2(n−m(k−1))/2,
while the time complexity of the K-tree algorithm is 2m ≤ 2(r+m)/2 (and can be
neglected).

Therefore, the total time complexity is T = 2(n−m(logK−1))/2. This gives a
time-memory tradeoff of

T 2M logK−1 = N,

assuming that M ≤ N1/(logK+1). Note that when M = N1/(logK+1), the PCS is
similar to the first layer of the K-tree algorithm, as the function H|r,r is iterated
only once.

As already noted in Section 3.7, the two steps of the algorithm are not bal-
anced since the time complexity of PCS is larger than the time complexity of
the K-tree algorithm.

D Details of the New Tradeoff Algorithms for the
Generalized Birthday Problem

Recall from Section 6 that for a parameter K, our goal is to we construct a
GBP algorithm given a list sum algorithm A with S = 1 for a parameter K ′

(either K ′ = K or K ′ = K/2). The time-memory tradeoff curve of A for K ′ is
T βMγ = N for parameters β, γ. We also use a parameter δ, which specifies the
lower range limit for the tradeoff algorithm of A as M ≥ T 1/δ.
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D.1 Combining Parallel Collision Search with a K/2-Way List Sum
Algorithm

We combine PCS with a K/2-way list sum algorithm A in order to solve GBP
with an even parameter K. The algorithm is identical to the one by [6, 16]
(described in Appendix C), with the exception that it invokes a K/2-way list
sum algorithm in the second step to balance the time complexities of the two
steps (instead on the K-tree algorithm).

The GBP algorithm uses the truncated functionH|r,r (as defined in Section 2)
for a parameter r ≥ m, set below to optimize the algorithm.

1. Run PCS on the function H|r,r and look for 2m collisions. For each
collision H(x)[1–r] = H(x′)[1–r], compute y = H(x) +H(x′) and store

all these words in K/2 lists {Li}K/2i=1 of size about 2m (along with the
corresponding x values).

2. Run A on {Li}K/2i=1 (nullifying bits [r + 1–n]). Obtain K/2 words yi ∈
Li such that

∑K/2
i=1 yi = 0 and use them (based on the first step) to

construct a solution to GBP by recovering the K words xi such that∑K
i=1H(xi) =

∑K/2
i=1 yi = 0 as required.

In the first step, we execute PCS with parameter r in time 2(r+m)/2 (accord-
ing to Section 3.6). In the second step we nullify the remaining n′ = n − r bits
by using A. Denote the time complexity of A by 2t

′
. Then, to balance the two

steps, we require (r +m)/2 = t′.
According to the given tradeoff curve of A, we have t′ = (n′−mγ)/β = (n−

r−mγ)/β. The condition (r+m)/2 = t′ reduces to (n−r−mγ)/β = (r+m)/2,
giving

r = (2n− 2mγ −mβ)/(β + 2). (9)

Plugging this value into the time complexity, we obtain T = 2(n−m(γ−1))/(β+2),
giving the tradeoff

T β+2Mγ−1 = N. (10)

In other words, compared to A, the combination algorithm (which solves GBP
for K) increases the exponent of T by 2 and reduces the exponent of M by 1.

The tradeoff is applicable for the same parameter (memory and time) ranges
as the ones for A.

Beyond the basic tradeoff of A. When M is larger than the maximal memory
for which the tradeoff for A is applicable, we can simply use less memory, or if
possible, apply a more efficient tradeoff that can exploit more memory.

When M is smaller than the minimal memory for which the tradeoff for A is
applicable,11 we can reduce the parameter n′ used for A to match its lower range

11 For example, we do not have (efficient) 4-way list sum algorithms for the range
M < T 1/2, but would still like to obtain a GBP algorithm for this range.
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limit on M , implying that A will nullify less bits. Consequently, we have to spend
more time on PCS to nullify the remaining r = n−n′ bits and balancing the time
complexities of the two steps is no longer possible. In this case, PCS dominates
the algorithm’s time complexity which is T = 2(r+m)/2 = 2(n−n

′+m)/2.
In order to calculate n′, we use the parameter δ which specifies the lower

range limit of the tradeoff algorithm A as T̂ = Mδ (where T̂ denotes the time
complexity of the A algorithm, rather than the time complexity of the full algo-
rithm which is higher). Plugging the value of T̂ into the A’s tradeoff T̂ βMγ = N ′,
we obtain Mδβ+γ = N ′ or n′ = m(δβ + γ). Therefore,

r = n− n′ = n−m(δβ + γ). (11)

Since the time complexity of the GBP algorithm is T = 2(n−n
′+m)/2, this gives

T 2Mδβ+γ−1 = N. (12)

The tradeoff is applicable all the way to M = 1 (constant memory), for which
the algorithm reduces to simple memoryless collision search in time complexity
T = N1/2.

Algorithms for Restricted Domain In some concrete GBP instances the
function H has a limited domain size 2` for ` < n. The algorithm above uses
the truncated function H|r,r in the PCS step, for a value of r (given by (9)

or (11)). However, in case ` < r (the domain size of H is 2` < 2r) we are forced
to use H|`,r which is an expanding function. The time complexity of PCS for the

expanding function H|`,r is 2r+(m−`)/2 (as specified in Section 3.6).
Consequently, assuming we can balance the two algorithm steps, we require

t′ = r + (m− `)/2, where 2t
′

denotes the time complexity of A. Otherwise, the
time complexity is 2r+(m−`)/2, dominated by PCS.

We first analyze the case of t′ = r+ (m− `)/2. Writing the tradeoff curve for
A parametrically as above, we obtain t′ = (n − r −mγ)/β, giving the equality
r+(m−`)/2 = (n−r−mγ)/β or r = (2n−2mγ−mβ+`β)/(2β+2). Therefore,
we obtain T = 2(n−mγ+m/2−`/2)/(β+1), giving the tradeoff

T β+1Mγ−1/2L1/2 = N, (13)

where L = 2`. The tradeoff is applicable in the same range as the A algorithm,
and it must be applied whenever ` < (2n − 2mγ − mβ)/(β + 2) implying we
cannot use H|r,r for the r value specified in (9).

In case we cannot balance the algorithm and the domain size is restricted
to ` < n − m(δβ + γ) (we cannot use H|r,r for the r value specified in (11)),

the time complexity is T = 2r+(m−`)/2 for r = n − n′ = n − m(δβ + γ), or
T = 2n−m(δβ+γ)+(m−`)/2. This gives the tradeoff

TMδβ+γ−1/2L1/2 = N. (14)
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D.2 Combining Clamping through Precomputation with a K-Way
List Sum Algorithm

In general, PCS is a more efficient preparation phase algorithm than clamping
through precomputation (CTP), essentially because (partial) collision search is
more efficient than (partial) preimage search. However, in some cases where K
is odd it is more efficient to apply CTP, as PCS searches for partial collisions on
pairs and forces us to run the GBP algorithm for K − 1 (which is even) rather
than for K. Therefore, we describe and analyze the combination of CTP with
a K-way list sum algorithm A. The algorithm uses a parameter r, optimized
below.

1. Run CTP on H(x) and look for 2m values x such that H(x)[1–r] = 0.
Store all these images of H in K lists {Li}Ki=1 of size about 2m (along
with the corresponding x values).

2. Run A on {Li}Ki=1 (zeroing bits [r+1–n]). Obtain K words yi ∈ Li such

that
∑K
i=1 yi = 0, which give K words xi such that

∑K
i=1H(xi) = 0.

In the first step, we execute CTP with parameter r in time 2r+m (according to
the analysis of Section 3.6). In the second step we nullify the remaining n′ = n−r
bits using A. Denoting the time complexity of A by 2t

′
, we balance the two steps

by requiring r +m = t′.
The tradeoff curve for A gives t′ = (n−r−mγ)/β and the condition r+m = t′

reduces to (n−r−mγ)/β = r+m, implying r = (n−mγ−mβ)/(β+1). Therefore,
we obtain T = 2(n−m(γ−1))/(β+1), giving the tradeoff

T β+1Mγ−1 = N, (15)

applicable for the same parameter (memory and time) ranges as A.
Finally, as specified in Section 3.6, CTP requires a domain size of

` ≥ r +m = (n−mγ +m)/(β + 1). (16)

Algorithms for Restricted Domain In case ` < r+m, CTP can only nullify
r = `−m bits in time complexity 2` (assuming m ≤ `). This leaves n′ = n−`+m
bits to be nullified by A and its time complexity dominates the algorithm. The
tradeoff curve obtained in this case is T βMγ = N ′ for N ′ = NM/L, namely

T βMγ−1L = N.

E Reduction from the Parity Check Problem to the
Generalized Birthday Problem

Recall from Section 7 that the input to the parity check problem is an irreducible
polynomial P (x) of degree n over GF (2) and the goal is to find a multiple Q(x)
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of P (x) of weight at most K � n and degree smaller than L� n. We describe
the reduction from the parity check problem to GBP.

The function H(a) : {0, 1}` → {0, 1}n for GBP maps the `-bit string a to an
n-bit string by reducing the polynomial xa (of degree smaller than L = 2`) mod-
ulo P (x) (of degree n), namely H(a) = xa mod P (x). Any polynomial of degree
less than n over GF (2) can be represented by an n-bit word that specifies the val-
ues of its n coefficients. In this representation H(a) ∈ {0, 1}n as required. Next,
assume we solve GBP with parameter K on the defined instance, namely, we find
a K-tuple {ai}Ki=1, such that

∑K
i=1H(ai) = 0. Then, define Q(x) =

∑K
i=1 x

ai .
We show that Q(x) is a solution to the parity check problem. First, Q(x)

mod P (x) =
∑K
i=1 x

ai mod P (x) =
∑K
i=1(xai mod P (x)) =

∑K
i=1H(ai) = 0,

where the third equality follows since the addition of polynomials is performed
by adding their corresponding coefficients over GF (2). Moreover, the polynomial
Q(x) is of degree smaller than L since all of its monomials xai are of degrees
smaller than L. Finally, the number of non-zero coefficients of Q(x) is K as
required.

F Tradeoff Curves for the Generalized Birthday Problem

We plot our GBP tradeoff curves for K ∈ {8, 16, 32} in Figure 4 and our GBP
tradeoff curves for K ∈ {8, 16, 32} in Figure 5, while comparing them to the best
known ones [6, 16]. The time-memory tradeoff curve for an algorithm should
be interpreted as follows: if the point (m′, t′) = (m/n, t/n) is on the curve,
then given 2m

′n = 2m memory the algorithm solves GBP in time 2t
′n = 2t.

Consider for example K = 8, where the point (1/7, 2/7) is on the curve of our
algorithm. This implies that it solves GBP in memory and time complexities of
M = 2n/7 = N1/7 and T = 22n/7 = N2/7, respectively.
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Fig. 4. GBP Time-Memory Tradeoff Curves for K ∈ {8, 16, 32}
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Legend: (K � 6)
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Legend: (K � 14)
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Fig. 5. GBP Time-Memory Tradeoff Curves for K ∈ {6, 14}
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