
Saber on ARM
CCA-secure module lattice-based key encapsulation on ARM

Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy and
Ingrid Verbauwhede

imec-COSIC, KU Leuven
Kasteelpark Arenberg 10, Bus 2452, B-3001 Leuven-Heverlee, Belgium

{firstname.lastname}@esat.kuleuven.be

Abstract. The CCA-secure lattice-based post-quantum key encapsulation scheme
Saber is a candidate in the NIST’s post-quantum cryptography standardization
process. In this paper, we study the implementation aspects of Saber in resource-
constrained microcontrollers from the ARM Cortex-M series which are very popular
for realizing IoT applications. In this work, we carefully optimize various parts of
Saber for speed and memory. We exploit digital signal processing instructions and
efficient memory access for a fast implementation of polynomial multiplication. We
also use memory efficient Karatsuba and just-in-time strategy for generating the
public matrix of the module lattice to reduce the memory footprint. We also show
that our optimizations can be combined with each other seamlessly to provide various
speed-memory trade-offs. Our speed optimized software takes just 1,147K, 1,444K,
and 1,543K clock cycles on a Cortex-M4 platform for key generation, encapsulation
and decapsulation respectively. Our memory efficient software takes 4,786K, 6,328K,
and 7,509K clock cycles on an ultra resource-constrained Cortex-M0 platform for
key generation, encapsulation, and decapsulation respectively while consuming only
6.2 KB of memory at most. These results show that lattice-based key encapsulation
schemes are perfectly practical for securing IoT devices from quantum computing
attacks.

Keywords: Key encapsulation scheme, post-quantum cryptography, lattice-based
cryptography, efficient software, Saber

Introduction
In as early as 1981, famous physicist Richard Feynman in a lecture titled ‘Simulating
physics with computers’ [21] delineated the use of Superposition principle of quantum
mechanics to build powerful computers. This is widely considered as laying the bedrock
of modern quantum computers. While a powerful quantum computer opens the door for
multitude of philanthropic activities like accelerated drug search for various diseases, DNA
sequencing, powerful artificial intelligence etc., we cannot ignore the other side of the coin
where an entity utilizes these massively powerful computers for malicious use. Especially,
security of our current public-key infrastructure is highly vulnerable as the two most widely
used hard problems in public-key cryptography namely integer factorization and elliptic
curve discrete logarithm can be solved with a quantum computer running Shor’s [40] and
Proost and Zalka’s [35] algorithm respectively. The most recent breakthrough came in
March, 2018 when google announced its 72-qubit quantum computer [28]. Though this is
too small to pose any real danger, the research and development in quantum computing is
advancing at a rapid scale.

mailto:{firstname.lastname}@esat.kuleuven.be


2 iacrtans class documentation

Post-quantum cryptography is a branch of cryptography that focuses on designing
schemes that are secure against quantum computing attacks. Recently, several hard
problems from the lattice theory have become popular for constructing post-quantum
public-key cryptographic schemes. These problems are presumed to be computationally
extremely hard even for a powerful quantum computer. In 2016, the National Institute of
Standards and Technology (NIST) recommended a gradual shift towards post-quantum
cryptography and took a prudent step by calling for proposals [16] for standardizing post-
quantum cryptography protocols to maintain the security of our digital world in the event
of the arrival of quantum computers. Incidentally, a large number of proposals submitted
in the NIST’s standardization process are based on hard problems over lattices. Lattice-
based cryptography offers wide applicability, computational efficiency, strong security, and
relatively shorter key sizes; yet its real deployment in a wide variety of computing devices
and applications faces several challenges. One such platform is the resource constrained
microcontrollers such as ARM Cortex-M0 and Cortex-M4. These two platforms are very
popular for realizing Internet of Things (IoT) applications. The IoT devices are increasingly
infiltrating our daily lives and it is imperative to secure these devices from a wide range of
attacks.

Our paper is aimed at implementing the chosen ciphertext attack (CCA) resistant
lattice-based key encapsulation mechanism (KEM) Saber [17] on resource-constrained
microcontrollers. The primary reason for our choice is the simplicity of Saber. It uses
power-of-two modulus which avoids modular reduction and rejection sampling during the
generation of the public matrix entirely. Using the power of 2 modulus precludes the
use of the asymptotically faster number theoretic transform (NTT) based polynomial
multiplication. But as the polynomials are of small dimensions, we show that this does not
cause large degradation in performance. Moreover, Saber uses the ‘Learning with rounding
(LWR)’ problem which halves the amount of randomness compared to the ‘Learning with
Errors (LWE)’ based schemes (e.g., Kyber [11]) and additionally reduces the bandwidth
of communication. Another attractive feature of the Saber scheme is the use of ‘Module’
lattices instead of more commonly used ideal or standard lattices. The usage of modules
facilitates scaling up or down to a higher or lower security as required by the application
with minimum change in the code. This feature is also very useful for IoT applications.
Furthermore, optimized software implementations of these KEM schemes on high-end
processors, such as Intel processors with SIMD support, have been proposed and have
been shown to be very efficient. But, to the best of our knowledge there are no published
implementations of post-quantum KEM schemes on resource-constrained platforms. Due
to these features we chose of Saber KEM scheme to investigate its implementation aspects
in resource-constrained microcontrollers. However, we would like to remark that other post-
quantum schemes could also be interesting for design and analysis on resource-constrained
microcontrollers.

Our Contributions: In this paper, we present an efficient implementation of the
module-LWR based KEM scheme Saber on the ARM Cortex-M0 and Cortex-M4 micro-
controllers1. We achieve high speed on Cortex-M4 and a record minimum in the stack
memory consumption in Cortex-M0. Our contributions are as follows:

1. We provide a full CCA-secure implementation of KEM operations namely keypair
generation, encapsulation, and decapsulation on these microcontrollers. To the best
of our knowledge these are the first published implementations of a CCA-secure post-
quantum KEM on such resource-constrained microcontrollers. Our implementation
on Cortex-M0 targets low memory footprint, and our implementation on Cortex-
M4 aims for high-speed. Moreover, our design is very modular in nature i.e the
optimization methods can be swapped with each other with little code rewrite to adapt

1The source codes are available in https://github.com/KULeuven-COSIC/SABER/tree/master/SABER_
ARM

https://github.com/KULeuven-COSIC/SABER/tree/master/SABER_ARM
https://github.com/KULeuven-COSIC/SABER/tree/master/SABER_ARM


Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy and Ingrid
Verbauwhede 3

the implementations for a different microcontroller according to its computational
capabilities or use case.

2. Due to the use of module-lattice, Saber consumes more memory in comparison
to ideal-lattice based schemes. For e.g., the public matrix of Saber contains nine
polynomials each having 256 coefficients, a total of 3.66 KB. Whereas in ideal-lattice
based schemes with similar level of security only one polynomial with 768 coefficients
need to be stored. In this work, we exploit the modular structure of the public
matrix in Saber and propose a just-in-time strategy to perform the computations
involving the public matrix without storing the matrix fully in the memory. We need
only 0.5 KB of memory instead of 3.66 KB using this strategy. Furthermore, we
reduce memory requirement during the generation of the secret vector.
At the low-level, we minimize memory requirement for polynomial multiplications.
The public domain implementation of Saber [17] uses the Toom-Cook method [29]
combined with the Karatsuba method [27] for polynomial multiplication. These two
algorithms are recursive and not in-place, resulting in large memory footprint. We
use a less known in-place version of the Karatsuba multiplication algorithm [38] that
only requires extra space for n/4 additional coefficients, where n is the number of
coefficients in the polynomials. Though, the algorithm is slower than the Toom-Cook
or the normal Karatsuba multiplication, we show that due to our optimization the
performance remains within the admissible practical range for low-power processors.
Our most memory efficient implementation in Cortex-M0 takes 4, 786K, 6, 328K,
and 7, 509K clock cycles for key pair generation, encapsulation, and decapsulation
respectively using at most 6.2 KB of memory.

3. Polynomial multiplication based on the NTT is believed to be the most efficient
multiplication method due to its O(n logn) complexity and hence, parameters in most
lattice-based schemes are chosen so that NTT can be used. However, in this paper
we prove that a combination of Toom-Cook, Karatsuba and low-degree schoolbook
multiplications can outperform optimized NTT-based polynomial multiplications.
Since a polynomial is stored in a sequential addressable memory which is an SRAM
in our platform, the overhead of memory access plays a critical role in the overall
performance and is not captured in the asymptotic notion of the algorithmic com-
plexity. We propose optimization techniques that carefully use the ALU-registers to
accommodate several coefficients of the polynomials at once and then compute as
much as possible involving the local coefficients, thus effectively reducing the number
of sequential memory accesses.
Furthermore, to achieve high speed, we effectively use DSP (digital signal process-
ing) instructions of the Cortex-M4 platform to optimize the most frequently used
schoolbook multiplication routine. This is possible due to the parameter choices of
Saber. By utilizing these DSP instructions we reduce the number of multiplication
instructions by approximately 34% in each execution of the schoolbook multiplication
routine. Our polynomial multiplication competes with state-of-the-art NTT-based
polynomial multiplications [6] and is even faster than the assembly-optimized im-
plementation in [18, 33] by 1.6 and 3.4 times respectively for the same polynomial
degree and on the same platform. Our fastest implementation in Cortex-M4 takes
1, 147K, 1, 444K, and 1, 543K clock cycles for key pair generation, encapsulation, and
decapsulation respectively.

Furthermore, we stress that as the reference implementation of Saber our implementation
does not have any data dependent branches and always runs on constant-time.

Organization of the paper: In Sec. 1 we provide a brief background on the lattice
problems, the Saber KEM scheme, and methods for efficient polynomial multiplication.



4 iacrtans class documentation

In Sec. 2 we show how we optimized the building blocks used in Saber for achieving
fast computation and reducing memory footprint. Experimental results using different
combinations of these optimizations on Cortex-M0 and Cortex-M4 are provided in the
next section. The final section draws the conclusions.

1 Background
In this section, we present a brief overview of the module-LWR problem, the Saber scheme
that we will be optimizing, the platforms used in our implementation and the other
cryptographic primitives that we will be using in our implementation.

1.1 LWE, LWR and module-LWR problem
The ‘Learning With Errors’ (LWE) problem, introduced by Regev [36], serves as a founda-
tion of many lattice-based cryptographic schemes. The decisional LWE problem states
that it is extremely hard to distinguish with non-negligible advantage between uniformly
random samples from U(Zl×1

q × Zq) and the same number of samples (aaa, b) of the form(
aaa, b = aaaTsss+ e

)
∈ Zl×1

q × Zq , (1)

where sss ∈ Zl×1
q is a fixed secret vector, aaa← U(Zl×1

q ) are fresh uniformly random vectors
and e ← βµ(Zq) are fresh and small error terms sampled from an appropriate error
distribution.

The ‘Learning With Rounding’ (LWR) problem was first introduced by Banerjee et
al. [9] to create pseudo-random functions using lattices. Unlike the LWE problem, where
the small error terms e are sampled from an error distribution, the error terms in LWR
come from the rounding errors that are introduced inherently by scaling the samples from
Zq to Zp where p < q. A decision-LWR problem is distinguishing samples of the following
form, (

aaa, b =
⌊p
q

(aaaTsss)
⌉)
∈ Zl×1

q × Zp (2)

from the same number of samples drawn from U(Zl×1
q × Zp) for a fixed secret vector

sss ← βµ(Zl×1
q ) and fresh uniform random vectors aaa. The computational LWR problem

asks to recover the secret sss from the LWR samples in Eq. 2. Reduction from LWE to
LWR by Banerjee et al. [9] required q to be exponential in p, which was not suitable for
cryptographic protocol constructions, but later works by Alwen et al. [8], Bogdanov et
al. [10] and, Alperin-Sheriff et al. [7] required q to be polynomial in p, thus making the
LWR problem convenient for construction of cryptographic schemes.

However both LWE and LWR-based constructions are inefficient due to matrix-vector
arithmetic and require large memory. Following Lyubashevsky et al [32], faster computation
and compact key can be achieved by using the ring-LWE and ring-LWR problems that
use ideal lattices. There is plenty of theoretical research that have used the ring-LWE
problem to construct a wide range of schemes such as public-key encryption [31, 32], key
exchange [5, 13, 12], digital signature [19, 4] and homomorphic encryption [22, 15, 14];
as well as practical research that have implemented these schemes in hardware and
software [39, 34, 25, 37]. However, the improvements come at a cost that the corresponding
worst-case problem is now restricted to ideal lattices only, making the ring-LWE or
ring-LWR-based schemes potentially susceptible to more avenues of attacks in the future.

Module-LWE [30] interpolates between standard lattice-based LWE and ideal lattice-
based ring-LWE; elements are now polynomials in Rq = Zq/(xn + 1) unlike LWE where
the elements are integers, and there is more than one polynomial unlike ring-LWE where



Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy and Ingrid
Verbauwhede 5

Algorithm 1: Saber.KeyGen() [17]
1 seedAAA ← U({0, 1}256)
2 AAA← gen(seedAAA) ∈ Rl×lq

3 sss← βµ(Rl×1
q )

4 bbb = bits(AAAsss+ hhh, εq, εp) ∈ Rl×1
p

5 return (pk := (bbb, seedAAA), sk := sss)

Algorithm 2: Saber.Enc(pk = (bbb, seedAAA),m ∈M; r) [17]
1 AAA← gen(seedAAA) ∈ Rl×lq

2 s′s′s′ ← βµ(Rl×1
q )

3 bbb′ = bits(AAATsss′ + hhh, εq, εp) ∈ Rl×1
p

4 v′ = bbbT bits(sss′, εp, εp) + h1 ∈ Rp
5 cm = bits(v′ + 2εp−1m, εp, εt + 1) ∈ R2t
6 return c := (cm, b′b′b′)

only one polynomial is used. The security of a module-LWE instance is determined by the
dimension l of the vectors and the degree of the polynomials. Thus, module-LWE offers a
flexible combination of LWE and ring-LWE. Recently, the module-LWE problem has been
used to design the CCA-secure post-quantum key-encapsulation mechanism Kyber [11]
and the signature scheme Dilithium [20]. The security of Saber relies on the module-LWR
problem, which is similar to the module-LWE problem but uses rounding to introduce the
errors.

1.2 The Saber KEM

The IND-CPA key generation, encryption and decryption algorithms used in Saber [17]
are shown in Alg. 1, 2 and 3. During key generation, a 32 byte random seed seedAAA
is generated, then it is expanded using the extendable output function SHAKE-128 to
construct the pseudorandom public matrix AAA of dimension l × l. The secret sss is a vector
of dimension l and is sampled from a centered binomial distribution βµ with parameter
µ. The vector bbb is computed by performing a matrix-vector multiplication of AAA and sss
followed by an addition of a constant vector hhh and then bit-selection (using the bits)
from the result. The public-key consists of bbb and the seed. The encryption operation
uses matrix generation, binomial sampling, matrix-vector multiplication and bit selection.
The decryption operation is rather simple and uses vector-vector multiplication and bit
selection.

A IND-CCA KEM scheme [17] is achieved by applying a post-quantum variant of the
Fujisaki-Okamoto transform [24] that comes with post-quantum reduction from Jiang et
al. [26]. In App. A we provide the encapsulation and decapsulation algorithms used in
the CCA-secure Saber KEM. The readers may follow the original paper [17] for detailed
description and provable security of these algorithms.

Parameter set: For around 180-bit of quantum-security, Saber uses matrix or vector
dimension l = 3 and ring-dimension n = 256. The two moduli p and q are 210 and 213

respectively. The parameter of the binomial error distribution is µ = 8.



6 iacrtans class documentation

Algorithm 3: Saber.Dec(sk = sss, cm, b
′b′b′) [17]

1 v = bbb′T bits(sss, εp, εp) + h1 ∈ Rp
2 m′ = bits(v − 2εp−εt−1cm + h2, εp, 1) ∈ R2
3 return m′

1.3 Polynomial multiplication
Saber performs polynomial arithmetic in the ring Rq = Zq[x]/〈x256 + 1〉. Polynomial
multiplication is very costly and needs special care. Since q is not a prime number in
Saber, we cannot use NTT-based polynomial multiplication as done in [33, 18, 2, 6, 39, 34].
Instead, we use a combination of Toom-Cook and Karatsuba polynomial multiplication
algorithms. The algorithms are described as follows.

1.3.1 Karatsuba polynomial multiplication

The Karatsuba multiplication algorithm [27] uses a divide-and-conquer approach to achieve
O(nlog2 3) time complexity. The input polynomials f(x) and g(x) are split into half-sized
polynomials as f(x) = f0 + f1 · xn/2 and g(x) = g0 + g1 · xn/2 and then the product is
computed as f(x) ∗ g(x) = f0 · g0 +

(
(f0 + f1) · (g0 + g1)− f0 · g0− f1 · g1

)
·xn/2 + f1 · g1 ·xn.

The algorithm is applied recursively. We refer to this algorithm as the classical Karatsuba
in the rest of this paper.

1.3.2 Memory-efficient Karatsuba polynomial multiplication

The classical Karatsuba algorithm requires an additional O(n) memory at each recursive call.
Thus it is rather “memory hungry” for multiplying large polynomials on resource constrained
microcontrollers such as Cortex-M0. In 2009, Roche [38] proposed a modification of
Karatsuba’s algorithm that requires only O(logn) additional memory per recursion. For
the input polynomials f (0)(x), f (1)(x) and g(x) the algorithm computes h(x) = h(x) +(
f (0)(x) + f (1)(x)

)
· g(x). It works by performing rearrangements of the output array

between each of the three recursive calls so that all write back operations can be performed
only on the output array of length 2n− 1, as shown in Algorithm 4. The objective of these
rearrangements is to prepare the arrays for the next recursive call as well as to cancel the
terms that were added in the previous calls as a consequence of the multiply-and-accumulate
nature of this algorithm.

1.3.3 Toom-Cook polynomial multiplication.

The Toom-Cook method [29] is a generalization of the Karatsuba method: each multiplicand
polynomial is split into w polynomials each having n/w coefficients. This is known as w-way
Toom-Cook multiplication. A Toom-Cook multiplication essentially consists of three main
steps: splitting, evaluation, and interpolation. In [17], the authors of Saber used a four-way
Toom-Cook multiplication (see Alg. 5) to split a 256 multiplication into seven 64 × 64
multiplications. In the splitting stage, each multiplicand polynomial A and B is split into
four equal polynomials each having 64 coefficients as A(y) = A3 ·y3 +A2 ·y2 +A1 ·y +A0 ·y,
(and similarly for B) where y = x64. In the evaluation phase, these polynomials are
evaluated at the points {0,±1,± 1

2 , 2,∞} resulting in weighted sums of polynomials Ai’s
and Bi’s. These weighted sums are then multiplied with each other to create polynomials
w1 to w7 (steps 3− 9 in Alg. 5). In the interpolation stage (steps 10− 24) these values are
further processed to produce the result C.



Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy and Ingrid
Verbauwhede 7

Algorithm 4: Memory efficient Karatsuba kara_mem [38]
Input: Three polynomials f (0)(x), f (1)(x) and g(x) and their degree n
Output: h(x) = h(x) +

(
f (0)(x) + f (1)(x)

)
· g(x) of degree 2n− 1

1 k = n/2
2 h[k : 2k − 1] = h[0 : k − 1] + h[k : 2k − 1]
3 h[3k − 1 : 4k − 2] = f (0)[0 : k − 1] + f (1)[0 : k − 1] + f (0)[k : 2k − 1] + f (1)[k : 2k − 1]
4 recursive call: h[k :] =kara_mem(g[0 :], g[k :], h[3k − 1 :], k);
5 h[3k − 1 : 4k − 2] = h[k : 2k − 1] + h[2k : 3k − 2]
6 recursive call: h[0 :] =kara_mem(f (0)[0 :], f (1)[0 :], g[0 :], k);
7 h[2k : 2k − 2] = h[2k : 3k − 2]− h[k : 2k − 2]
8 h[k : 2k − 1] = h[3k − 1 : 4k − 2]− h[0 : k − 1]
9 recursive call: h[2k :] =kara_mem(f (0)[k :], f (1)[k :], g[k :], k);

10 h[k : 2k − 1] = h[k : 2k − 1]− h[2k : 3k − 1]
11 h[2k : 3k − 2] = h[2k : 3k − 2]− h[3k : 4k − 2]
12 return h(x);

1.4 Platforms
The ARM Cortex-M family offers a wide range of microcontroller-oriented processors
suitable for single chip embbedded applications (MCU), Application Specific Standard
Product (ASSP) and System-on-Chip (SoC) applications. Their lowest cost processor
is the ARM Cortex-M0 which is designed for low power and has a reduced instruction
set architecture (ISA), the ARMv6-M. General data processing instructions only operate
on 8 registers and most commercial instantiations of this processors are produced with
either 8KB or 16KB of RAM, so it is a very resource constrained device. Therefore, we
target this microcontroller for our low memory implementation of Saber. A more powerful
microcontroller of the same family is the ARM Cortex-M4, which is designed for Digital
Signal Control (DSC) and has the ARMv7-M ISA. This processor includes a Digital Signal
Processing (DSP) unit that gives support for different variants of multiply-accumulate
instructions to run in a single clock cycle as well as SIMD capabilities for data sizes
smaller than the word size. Therefore, we target this microcontroller with our high speed
implementation of Saber.

1.5 SHAKE-128 extended output function
SHAKE-128 is an extended output function standardized in FIPS 202 [3]. It follows a
sponge construction. It uses keccak_absorb() to absorb the input into its internal state.
Then it uses keccak_squeezeblocks() on this state repeatedly to provide pseudorandom
output of arbitrary length. The keccak_squeezeblocks() returns pseudorandom bytes
in the multiples of 168 bytes.

2 Implementation
In this section we describe how we have implemented Saber in the resource-constrained
microcontrollers Cortex-M0 and M4. As described in Alg. 1, 2 and 3, the building blocks
that we need are as follows:

1. The extendable output function SHAKE-128 for generating pseudorandom bytes.

2. A sampler to generate the secret vector sss from a centered binomial distribution βµ,
where the parameter µ = 8.



8 iacrtans class documentation

Algorithm 5: Toom-Cook Algorithm [17]
Input: Two polynomials A(x) and B(x) of degree n = 256
Output: C(x) = A(x) ∗ b(x)
// Splitting A(x) into four polynomials of size 64

1 A(y) = A3 · y3 +A2 · y2 +A1 · y +A0 where y = x64

// Splitting B(x) into four polynomials of size 64
2 B(y) = B3 · y3 +B2 · y2 +B1 · y +B0

// Evaluation of the polynomials at y = {0,±1,± 1
2 , 2,∞}.

3 w1 = A(∞) ∗B(∞) = A3 ∗B3
4 w2 = A(2) ∗B(2) = (A0 + 2 ·A1 + 4 ·A2 + 8 ·A3) ∗ (B0 + 2 ·B1 + 4 ·B2 + 8 ·B3)
5 w3 = A(1) ∗B(1) = (A0 +A1 +A2 +A3) ∗ (B0 +B1 +B2 +B3)
6 w4 = A(−1) ∗B(−1) = (A0 −A1 +A2 −A3) ∗ (B0 −B1 +B2 −B3)
7 w5 = A( 1

2 ) ∗B( 1
2 ) = (8 ·A0 + 4 ·A1 + 2 ·A2 +A3) ∗ (8 ·B0 + 4 ·B1 + 2 ·B2 +B3)

8 w6 = A(−1
2 ) ∗B(−1

2 ) = (8 ·A0 − 4 ·A1 + 2 ·A2 −A3) ∗ (8 ·B0 − 4 ·B1 + 2 ·B2 −B3)
9 w7 = A(0) ∗B(0) = A0 ∗B0

// Interpolation
10 w2 = w2 + w5
11 w6 = w6 − w5
12 w4 = (w4 − w3)/2
13 w2 = w5 − w1 − 64 · w7
14 w3 = w3 + w4
15 w5 = 2 · w5 − w6
16 w2 = w2 − 65 · w3
17 w3 = w3 − w7 − w1
18 w2 = w2 + 45 · w3
19 w5 = (w5 − 8 · w3)/24
20 w6 = w6 + w2
21 w2 = (w2 + 16 · w4)/18
22 w4 = −(w4 + w2)
23 w6 = (30 · w2 − w6)/60
24 w2 = w2 − w6
25 return C(y) = w1 · y6 + w2 · y5 + w3 · y4 + w4 · y3 + w5 · y2 + w6 · y + w7;

3. A routine to generate the public matrix AAA or its transpose in Alg. 1 and 2.

4. Routines for computing polynomial arithmetic namely addition and multiplication.
These routines could be used to realize matrix-vector or vector-vector arithmetic
calculations.

5. Bit-level manipulation routines for reconciliation-data generation during encryption
and for reconciliation during decryption

6. For the final IND-CCA Saber KEM, we need SHA3-256 and SHA3-512.

For implementing the symmetric primitives, namely SHAKE-128, SHA3-256 and SHA3-512,
we used the Keccak code package by Bertoni et al. [23]. The bit-level manipulation routines
that are used in Saber during rounding, reconciliation data generation and reconciliation are
cheap and have little computation overhead. For the remaining building blocks, we perform
two categories of optimizations by taking care of the constraints of the underlying platforms:
for Cortex-M0 we optimize the memory footprint and for Cortex-M4 we optimize the
number of computation cycles. In the following sub-sections, we describe our optimization
strategies.



Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy and Ingrid
Verbauwhede 9

2.1 Speed optimization
Polynomial arithmetic is a computationally critical part in Saber. The polynomials are
stored in the memory of the microcontroller as arrays of 16-bit half-words, each half-
word containing a coefficient of the polynomial. For fast computation of polynomial
multiplication, we first apply the Toom-Cook method to split a 256-coefficient polynomial
multiplication into seven 64× 64 polynomial multiplications. Then each such polynomial
multiplication is performed using the Karatsuba method [27] until the number of coefficients
in the operand polynomials becomes 16. Each 16-coefficient polynomial multiplication
is computed using the quadratic-complexity schoolbook method. Since the coefficients
are stored in the sequential addressable memory which is SRAM in our implementation,
the overhead of memory accesses plays a critical role in the overall performance, and
is not counted in the notion of asymptotic complexity of the polynomial multiplication
algorithms. In this paper, we show how we minimize the memory access overhead by
designing efficient algorithms.

2.1.1 Memory access optimization in Toom-Cook evaluation and interpolation

In the evaluation phase of the four-way Toom-Cook algorithm (Alg. 5), weighted sums of
the polynomials A0 to A3 and B0 to B3 are computed to construct the multiplicands of
the next-level polynomial multiplications. If the evaluations are computed horizontally,
i.e., compute the polynomials A(y) and B(y) for the particular evaluation point and then
compute A(y) ∗ B(y), then the cost of memory access will be huge. This is because for
each weighted sum we have to read all the coefficients of A0 to A3 and B0 to B3 from the
memory.

Algorithm 6: Toom-Cook 4-way evalu-
ation
Input: Two polynomials A(x) and

B(x)of degree n = 256
Output: Evaluation polynomials w1 to

w7 as in Alg. 5
1 for j = 0 to 63 do
2 r0 = A0[j];
3 r1 = A1[j];
4 r2 = A2[j];
5 r3 = A3[j];
6 r4 = r0 + r2;// A0 +A2
7 r5 = r1 + r3;// A1 +A3
8 r6 = r4 + r5; r7 = r4 − r5;
9 aws3[j] = r6;

10 aws4[j] = r7;
11 r4 = 2∗ (r0 ∗4+r2);// 8∗A0 +2∗A2
12 r5 = r1 ∗ 4 + r3;// 4 ∗A1 +A3
13 r6 = r4 + r5; r7 = r4 − r5;
14 aws5[j] = r6;
15 aws6[j] = r7;
16 r4 = 8 ∗ r3 + 4 ∗ r2 + 2 ∗ r1 + r0;
17 aws2[j] = r4; aws7[j] = r0;
18 aws1[j] = r3;
19 Repeat the above steps to generate

weighted sums bws1 to bws7;
20 for i = 1 to 7 do
21 wi = awsi ∗ bwsi;
22 return w1 to w7;

Algorithm 7: Toom-Cook 4-way inter-
polation
Input: Evaluation polynomials w1 to

w7 as in Alg. 5
Output: C(x) = A(x) ∗B(x) as in

Alg. 5
1 C ← 0;
2 for j = 0 to 126 do
3 r1 = w2[i]; r4 = w5[i];
4 r5 = w6[i]; r0 = w1[i];
5 r2 = w3[i]; r3 = w4[i];
6 r6 = w7[i];
7 r1 = r1 + r4; r5 = r5 − r4
8 r3 = (r3 − r2)/2; r1 = r4 − r0
9 r8 = −64 · r6; r1 = r1 − r8

10 r4 = 2 · r4 − r5; r2 = r2 + r3
11 r1 = r1 − 65 · r2; r2 = r2 − r6
12 r2 = r2 − r0; r1 = r1 + 45 · r2
13 r4 = (r4 − 8 · r2)/24; r5 = r5 + r1
14 r1 = (r1 + 16 · r3)/18; r3 = −(r3 + r1)
15 r5 = (30 · r1 − r5)/60; r1 = r1 − r5
16 C[i] = (C[i] + r6);
17 C[64 + i] = (C[64 + i] + r5);
18 C[128 + i] = (C[128 + i] + r4);
19 C[192 + i] = (C[192 + i] + r3);
20 C[256 + i] = (C[256 + i] + r2);
21 C[320 + i] = (C[320 + i] + r1);
22 C[384 + i] = (C[384 + i] + r0);
23 return C;

To minimize the number of memory accesses, we adapt a vertical coefficient scanning



10 iacrtans class documentation

method. The jth coefficients of the four polynomials A0 to A3 are read in a batch from
the memory and loaded in the registers of the processor. Then these registers are used to
compute the jth coefficients of all of the weighted sums as required in the lines 4 to 8 in
Alg. 5. We can do this easily as there are 14 usable general purpose registers in Cortex-M4
and this approach needs only 8 registers as shown in Alg. 6. In the algorithm, r∗ represent
the general purpose registers and aws∗[ ] represent the arrays of the weighted sums that
are stored in the memory. In Alg. 6, special care has been taken to minimize the number of
arithmetic operations during this process. We repeat the same procedure to compute the
weighted-sum arrays from B0 to B3. Unlike the horizontal method, the vertical method
accesses each of the 64 coefficients of A0 to A3 and B0 to B3 only once. The overhead
of this approach is that it requires ten additional arrays each of length 64 to store the
weighted sums.

During the interpolation phase of the Toom-Cook algorithm, we apply a similar vertical
technique: we load the jth coefficients of all of w1 to w7 in the internal registers and
perform the arithmetic operations on the registers. Having multiple consecutive loads
also helps to decrease the latency since atomic load instructions take three clock cycles,
whereas batch loading of three coefficients takes only four cycles thanks to the pipelined
datapath of Cortex-M4. The optimized steps are shown in Alg. 7.

To validate that this algorithm is more efficient, we have implemented both algorithms
on C prior to realize any assembly optimization on the Toom-Cook function. In this setting,
the horizontal algorithm executes a 256 coefficient multiplication in 83, 550 clock cycles
while the vertical algorithm only requires 78, 633 clock cycles for the same multiplication,
using both algorithms the same combination of two level Karatsuba and schoolbook behind
Toom-Cook. Then, we have also carried out assembly optimizations to achieve our cycle
counts as shown in Table 4.

2.1.2 Speeding up School book multiplication using DSP instructions

As Saber uses LWR, it needs multiplication for two different rings. Hence, the coefficients
of each polynomials can be of either 10 or 13 bits long. We pack each coefficient of a
polynomial in a 16-bit half-word. Two coefficients are then loaded in a single 32-bit full-
word of the processor. Let ri be a full-word register. We represent the bottom half-word
by ri0 and the top half-word by ri1. We use the DSP multiply-and-accumulate instruction
SMLA available in Cortex-M4 for multiplying two half-words and accumulating the result.
The flags B or T in the instruction are used for choosing the bottom or top half-word
respectively.

SMLAB/TB/T(ra, rb, rc, rd) := ra ← rb0/1 ∗ r
c
0/1 + rd

We use this instruction multiply two coefficients or to compute the halfword multiplications
like a0b0, a2b0 as shown in Fig. 1.

Now, consider again the example shown in Fig. 1 where we multiply four coefficients of
polynomial A(x) and four coefficients of polynomial B(x) and accumulate the result in the
polynomial C(x). In the naive way, we have to use 16 SMLA instructions in this computation.
We use the DSP instruction SMLADX that facilitates cross multiplication between half-words
of registers and perform two multiply-and-accumulate operations (marked in blue dashed
rectangles) simultaneously.

SMLADX(ra, rb, rc, rd) := ra ← rb0 ∗ rc1 + rb1 ∗ rc0 + rd

This effectively reduces the total number of multiplication instructions in Fig. 1 from 16 to
12. For multiplying two polynomials with 16 coefficients we need only 192 multiply-and-
accumulate operations instead of 256. Further, with some arrangements of the coefficients
we can do even better. In the beginning of each inner loop of a multiplication, we pack
two adjacent coefficients that are in different registers (e.g., coefficients b1 and b2) in a



Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy and Ingrid
Verbauwhede 11

b1 b0

b0
a 0b0

a 1

a 0b1

b3 b2

b0
a 2b0

a 3

b1
a 3 b1

a 2 b1
a 1

b2
a 3 b2

a 2 b2
a 1 b2

a 0

b3
a 3 b3

a 2 b3
a 1 b3

a 0

a 3 a 2

c 0c 1c 2c 3
c 4c 5c 6

a 1 a 0

X

Figure 1: Reducing the number of multiply-and-accumulate instructions in schoolbook
multiplication.

spare register using PKHBT instruction and then perform cross multiplication using SMLADX
instruction as explained above(marked in green dashed rectangles). In our assembly
routine for schoolbook multiplication, we are able to fit a maximum of eight coefficients of
one multiplicand polynomial and four coefficients of the other multiplicand polynomial
at a time due to our optimized usage of internal registers. As the input polynomials
to our schoolbook multiplication routine are always of 16 coefficients, the inner loop of
our schoolbook multiplication runs only eight times. Thus in each inner loop we can
save four instructions due to the rearrangement of coefficients at the cost of one extra
PKHBT for the rearrangement. Hence, we can save three instructions per iteration of
the inner loop. So, ultimately we need only 168 multiply-and-accumulate instructions
instead of 256 instructions resulting in approximately 34% less multiply-and-accumulate
instructions. Our assembly-optimized schoolbook multiplication takes only 587 clock cycles
for a 16× 16 polynomial multiplication. It should be noted that this method can not be
used in microcontrollers without similar DSP instructions, for example Cortex-M0.

2.2 Memory optimization
The reference C implementation of Saber submitted for NIST PQC standardization
process [1] consumes 16.3 KB of stack memory when compiled for the Cortex-M4 platform.
In this section, we describe the optimization tricks that we applied in our implementation
to reduce the memory footprint to only 6.2 KB at most.

2.2.1 Generation of the public matrix AAA

In Saber, the matrix is composed of nine polynomials, each having 256 coefficients of 13
bits each. In the reference implementation of Saber [17], SHAKE-128 is used to generate a
total of 9 · 256 · 13/8 = 3, 744 pseudorandom bytes in a byte-bank. Next, the polynomials
of AAA are generated in the row-major order by packing the bytes into 13-bit coefficients.
In this way, the generation of AAA during the key-pair generation, or the generation of AAAT
during the encryption operation requires roughly 3.8 KB of memory. We reduce this
memory requirement using a just-in-time approach which is explained as follows.

In Alg. 1, following the generation of AAA, a matrix-vector multiplication with sss is
performed and the result is stored in the vector bbb. In a matrix-vector multiplication, an
element which in this case is a polynomial in Rq from the matrix, is used only once. Hence,
we generate the required polynomial just-in-time, use it in the polynomial multiplication,
and then reuse the space occupied by it for the next polynomial. Thus, the memory
requirement reduces from 9 polynomials to just one polynomial. However, this requires a
major book keeping in the SHAKE-128 function.



12 iacrtans class documentation

The keccak_squeezeblocks() function inside SHAKE-128 outputs 168 bytes at a time.
When the goal is to minimize the memory requirement, the best approach would be to
call keccak_squeezeblocks() once, then pack the output bytes into the coefficients of
the target polynomial, and repeat this process until the target polynomial is constructed.
But this approach results in two types of leftovers.

To construct a polynomial in Rq, we require 468 bytes, which is not a multiple of
168. Hence there are bytes that are leftover after constructing a polynomial. The second
leftover is at the bit-level. From 168 bytes, we can construct 103 coefficients and thus
there are 168 · 8 − 103 · 13 = 5 bits of leftover. Now these leftover bits need to be
placed in the start position of the byte-bank before storing the next 168 bytes from the
next keccak_squeezeblocks() call. This incurs costly bit-level manipulation. Another
problem is that the number of leftover bits and bytes change in every step. In Table 1,
we have shown the number of leftover bits and bytes during the construction of the first
polynomial of AAA. Such an implementation requires major book-keeping and a fully unrolled
implementation of it would significantly increase the code size.

Steps Polynomial Leftover Leftover
coefficients bits bytes

Squeezeblocks0()→ 168 bytes 103 5 0
Squeezeblocks1()→ 168 bytes 103 2 1
Squeezeblocks2()→ 168 bytes 50 0 88

Table 1: Leftover bits and bytes during the construction of the first polynomial of AAA

To avoid bit-level manipulation, we pack the maximum number of available bytes, say
m, that is a multiple of 13. Thus the packing outputs m · 8/13 coefficients of the target
polynomial. The leftover bytes are then moved to the initial portion of the byte-bank.
Next, keccak_squeezeblocks() is called again and the output of it is written in the
byte-bank just after the leftover bytes. Now, the bytes in the byte-bank are packed into the
next coefficients of the target polynomial following the same way. The steps are explained
in Fig. 2. Following this approach, the size of the byte-bank is set to 280 bytes, since the
number of leftover bytes during the construction of AAA could be at most 112.

Keccak Squeeze

168 bytes

.Pack to m  8/13 coefficients

Left over bytes

m bytes

Previous left over bytes

Step 2

Step 1

Step 3
Movement of bytes

Figure 2: Use of byte-bank during generation of polynomials of AAA. Turquoise blue color is
used to indicate the bytes that will be used.



Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy and Ingrid
Verbauwhede 13

2.2.2 Secret generation

The reference implementation of Saber uses a byte-bank of length 768 to store all the
required pseudorandom bytes obtained from SHAKE-128 for generating the three polyno-
mials of the secret vector sss. To save memory, we use a just-in-time method similar to the
method used in the generation of the public matrix AAA. We call keccak_squeezeblocks()
to produce 168 bytes at a time in the byte-bank, and then we use the pseudorandom bytes
for constructing the binomially distributed coefficients of the target secret vector. Similar
to the generation of the public matrix, we have leftover bytes since the output length of
keccak_squeezeblocks() is not a multiple of 256. We post-process the leftover bytes in
a similar way that we followed during the generation of the public matrix. Since there
can be at most 80 bytes of leftover, the length of the byte-bank is only 248. Thus we save
approximately 0.5 KB of memory w.r.t the reference implementation.

Beside these two major optimizations, we performed optimizations in the high-level
source code to reuse memory as much as possible. These small scale optimizations
contributed in maximum reduction of the overall stack memory.

2.2.3 Memory efficient Karatsuba

The memory efficient version of Karatsuba introduced in Section 1.3.2 has two disadvantages.
First, the performance suffers a penalization in terms of latency with respect to the classical
Karatsuba because of the continuous arrangements between multiplications. To illustrate
this, a plain C version of that algorithm performs a 64 coefficient multiplication within
17, 743 clock cycles while a multiplication of the same magnitude only takes 12, 482 when
utilizing a version of the classical Karatsuba algorithm. Second, the reduction from O(n)
to O(logn) in the extra memory requirements might not be enough to make the algorithm
suitable for low memory platforms. To mitigate these disadvantages, we implement an ad
hoc version of this algorithm adapted for our parameters.

For the sake of modularity, we decided to keep the depth of Karatsuba’s recursion a
multiple of two, so we unrolled two levels of iteration of Karatsuba into one. This routine
consists of nine calls to a multiplication routine with polynomials one fourth of size of its
original input polynomials and some corresponding arrangements before and after each
of these calls. This is shown in Alg. 8. In each of these arrangements, we can combine
and reorganize the array scans to reduce the number of memory accesses by adopting
the vertical coefficient scanning method as used in the Toom-Cook algorithm described
in Sec. 2.1.1. Moreover, some of these arrangements between the original recursive calls
in Alg. 4 can be merged and this also leads to eliminate certain redundancy on these
arrangements.

This is illustrated in Alg. 9, which represents arrangements_7() as an example. These
arrangements lie between the end of the second recursive call and the beginning of the
third recursive call according to the original algorithm in Alg. 4. If we consider a two-level
Karatsuba then this arrangement is equivalent to perform two subtractions over k/2
coefficients, followed by two subtractions over k coefficients, and five additions over k/2
coefficients. Without the unroll and merge approach, this translates into 22× k/2 load
operations and 11 × k/2 store operations. If we analyze Alg. 9, then the same can be
achieved using only 14×k/2 loads and 7×k/2 stores, thus reducing memory access by 36.4%.
A detailed description of the full algorithm can be found in App. C. As an experiment, we
measured the clock cycles required by the actual memory efficient Karatsuba (Alg. 4) and
our modified version of it on a Cortex-M4 for 64-coefficient polynomials and two levels of
recursions. We found that the cycle counts decreased from 17, 473 to only 6, 203 excluding
the cost of threshold-level schoolbook multiplications in both cases. This speedup is indeed
remarkable considering the recursive nature of the Karatsuba algorithm where even a small
reduction in every recursion would result in big reduction in the overall multiplication.



14 iacrtans class documentation

To reduce the memory requirements, we consider f (0)(x) = f(x) and f (1) = 0 on the
top level as well as in all recursive calls and perform the additions f (0)(x)+f (1)(x) in-place
before each call to a multiplication algorithm. Thus, our Karatsuba algorithm does not
compute h(x) = h(x) + (f (0)(x) + f (1)(x)) ∗ g(x) but h(x) = h(x) + f(x) ∗ g(x) saving an
entire polynomial of memory space. The extra memory required by Karatsuba, which is
used for the in-place additions before each call to a multiplication routine, is now allocated
on each recursive call. Considering that the function was called to perform a multiplication
of n coefficients, the extra memory will be a space for n/4 coefficients This is enough
because the recursive call will be applied over n/4. For our parameters, Algorithm 4
require 512 bytes of extra memory for storing the 256 coefficients of f (1)(x), while we only
need 128 bytes to store 64 coefficients saving 384 bytes of stack. For our implementation on
Cortex-M0 we use 4 levels of Karatsuba recursion i.e two of our 2-level unrolled Karatsuba.
We found experimentally that this is the optimal choice for multiplying two 256 coefficient
polynomials using Karatsuba algorithm.

Algorithm 8: High-level description of un-
rolled memory efficient Karatsuba
Input: Pointers to f(x) and g(x) and their

degree n
Output: h(x) = h(x) + f(x) ∗ g(x) of

degree 2n− 1
1 extra memory tmp[n/4]
2 k = n/2
3 arrangements_1(f, g, h, k)
4 poly_mul(tmp, h[2k + k/2], h[k + k/2], k/2)
5 arrangements_2(f, g, h, k)
6 poly_mul(tmp, h[3k − 1], h[k], k/2)
7 arrangements_3(f, g, h, k)
8 poly_mul(tmp, h[3k + k/2− 1], h[2k], k/2)
9 arrangements_4(f, g, h, k)

10 poly_mul(tmp, h[k + k/2− 1], h[k/2], k/2)
11 arrangements_5(f, g, h, k)
12 poly_mul(f, g, h, k/2)
13 arrangements_6(f, g, h, k)
14 poly_mul(f [k/2], g[k/2], h[k], k/2)
15 arrangements_7(f, g, h, k)
16 poly_mul(tmp, h[3k + k/2− 1], h[2k], k/2)
17 arrangements_8(f, g, h, k)
18 poly_mul(f [k], g[k], h[2k], k/2)
19 arrangements_9(f, g, h, k)
20 poly_mul(f [k + k/2], g[k + k/2], h[2k], k/2)
21 arrangements_10(f, g, h, k)
22 return h[x];
23 (∗) skip last iteration

Algorithm 9: Exam-
ple:arrangements_7

Input: Pointers to f(x), g(x),
h(x) and value of k

Output: Modifies parts of h(x)
and tmp

1 for i = 0 to k/2 do
2 h[k/2+i] = h[k/2+i]−h[k+i];

3 h[2k + i] = h[2k + i]− h[k +
i] + h[k + k/2 + i][∗];

4 h[k + i] = h[3k − 1 + i]− h[i];
5 h[2k + k/2 + i] = h[2k + i] +

h[2k+k/2+i]−h[k+k/2+i][∗];

6 h[k + k/2 + i] =
h[3k+k/2−1+ i]−h[k/2+ i];

7 h[3k + k/2− 1 + i] =
f [k + i] + f [k + k/2 + i];

8 tmp[i] = g[k+i]+g[k+k/2+i];

2.2.4 High-level optimization: Saber#

As specified in Saber [17], the public matrix AAA is generated in row-major order during key
generation Alg. 1 and in column-major order (i.e., transpose) during encryption Alg. 2.
In the previous section, we showed that using a just-in-time strategy we can reduce the
memory footprint of the public matrix. Since the matrix is generated in row-major order
during the matrix-vector multiplication AAAsss, we get the polynomials of the result vector



Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy and Ingrid
Verbauwhede 15

one by one. With this we need to store just one result-polynomial since the polynomial
can be immediately rounded and packed into the target public-key. However, during the
encryption operation we need to assign memory for all three result-polynomials of the
matrix-vector multiplication AAATsss′ since the matrix is generated in column-major order.
The two situations are explained in Fig. 3. As encryption is the most complex operation and
memory usage touches the peak, we could lower the peak by generating the public matrix
in row-major order during encryption and in column-major order during key generation.
This modification of course changes the scheme, hence we call it Saber#.

1

2

3

=

A
T

1 2 3 rounding

=

A s

Row−major generation of matrix

packing

s’

Column−major generation of matrix

Intermediate 

polynomials

Figure 3: Matrix-vector multiplications during key generation and encryption. The
numbers are used to indicate just-in-time generation of the polynomials of the matrices.

3 Results
We used the ARM-GCC toolchain to compile our source code with the flags -O3 both for
the Cortex-M0 the Cortex-M4. The clock-cycles are measured with inbuilt functions using
a clock running at the same frequency as the processor. We executed the software 10, 000
times and found that each execution requires the same number of cycles thus supporting
our claim that our implementation is indeed a constant-time implementation. We used
a STM32F4-discovery board from STMicroelectronics to evaluate the performance on
Cortex-M4 platform and a XMC2Go board from Infineon to evaluate the performance
on Cortex-M0 platform. Both platforms are equipped with random number generators
which we also use in our implementation to generate the seed bytes as specified in the
Saber scheme.

As we mentioned earlier, our implementation is highly modular in nature. The
optimizations described in Sec. 2.1 and Sec. 2.2 can be swapped easily with minimum
amount of code rewriting. This provides great flexibility to trade-off between speed and
memory usage. Therefore, in the first part of this section we show results on Cortex-M0
and Cortex-M4 with different combinations of our optimizations. In the later part of
this section we will compare our implementation with other reported implementations.
Fig. 4 and Fig. 5 show the variations in time and memory for different combinations of
the proposed optimizations in Cortex-M0 and Cortex-M4 respectively. In the figures, the
abbreviation TC refers to Toom-Cook, kara_mem to memory efficient Karatsuba and
kara_classic to the classical Karatsuba algorithm, respectively.

Table 2 shows the time memory trade-off between Saber and Saber#. We can see that
the optimization described in Sec. 2.2.4 decrease the memory consumption by more than
one kilobytes in encapsulation and decapsulation.

Cortex-M0 (4-kara_mem) Cortex-M4 (TC + kara_mem + memory opts.)
Keypair Encaps. Decaps. Keygen Encaps. Decaps.

Saber 4, 786/5, 031 6, 328/5, 119 7, 509/6, 215 1, 165/6, 932 1, 530/7, 019 1, 635/8, 115
Saber# 4, 782/5, 007 6, 325/4, 079 7, 507/5, 175 1, 162/6, 923 1, 528/5, 987 1, 633/7, 163

Table 2: Speed/memory requirements for Saber and Saber#. Table entries are in
cycles×103/memory (bytes).



16 iacrtans class documentation

4,500 5,000 5,500 6,000 6,500 7,000 7,500

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

key generation

encapsulation

decapsulation

TC + 2-kara_mem

4-kara_mem

Memory usage [KB]

T
im

e
 [

C
lo

c
k
 c

y
c
le

s
]

Figure 4: Time vs memory for different combinations of optimizations in Cortex-M0.

6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000

1,000,000

1,100,000

1,200,000

1,300,000

1,400,000

1,500,000

1,600,000

1,700,000

Memory usage [KB]

T
im

e
[C

lo
c
k
 c

y
c
le

s
]

key generation

encapsulation

decapsulation

+ memory optimizations
TC + 2-kara_mem

TC + 2-kara_classic

TC + 2-kara_mem

Figure 5: Time vs memory for different combinations of optimizations in Cortex-M4.

Comparisons
In Table 3, we compare our speed-optimized and memory-optimized implementations of
Saber with other lattice based key exchange and encryption schemes in ARM Cortex-
M series microcontrollers. Since NIST announced the list of submitted post-quantum
cryptography proposals very recently, we could compare with only a limited number of
optimized software implementations available in the concurrent work pqm4 project [2] on
similar resource-constrained platforms for the schemes NewHope-CCA, Frodo and Kyber.
From the table we see that the speed-optimized implementation of Saber is faster than
NewHope-CCA and Frodo in all aspects. Saber is faster than Kyber in key generation and
encapsulation, but marginally slower in decapsulation. In a computationally asymmetric
(e.g. RFID tag and server) key establishment, the weaker party computes the encapsulation
and the powerful server computes the key generation and decapsulation. Hence, faster
encapsulation which happens in Saber, is beneficial for computationally asymmetric key
establishment. As can be seen from the table, our memory-optimized implementation
achieves a very low memory consumption with only 6.2 KB in the XMC2Go board which
has Cortex-M0 processor and 16 KB of memory. Yet, the implementation takes at most
7509K clock cycles for the most expensive decapsulation operation. These results show
that Saber is very efficient on resource-constrained platforms.

We remark that such comparisons with different cryptosystems are nearly impossible
as they are very different from each other in many ways like underlying hard problems on



Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy and Ingrid
Verbauwhede 17

Platform Key generation Encapsulation Decapsulation

Frodo
Cortex-M4 94,191K cycles 111,688K cycles 112,156K cycles

36,536 bytes 58,328 bytes 68,680 bytes

NewHope-CCA
Cortex-M4 1,246K cycles 1,966K cycles 1,977K cycles

11,160 bytes 17,456 bytes 19,656 bytes

Kyber
Cortex-M4 1,200K cycles 1,497K cycles 1,526K cycles

10304 bytes 13464 bytes 14624 bytes

Saber-speed Cortex-M4 1,147K cycles 1,444K cycles 1,543K cycles
13,883 bytes 16,667 bytes 17,763 bytes

Saber-memory Cortex-M4 1,165K cycles 1,530K cycles 1,635K cycles
6,931 bytes 7,019 bytes 8,115 bytes

Saber-memory Cortex-M0 4,786K cycles 6,328K cycles 7,509K cycles
5,031 bytes 5,119 bytes 6,215 bytes

Table 3: Comparisons with other reported implementations of lattice-based schemes in
ARM Cortex-M microcontrollers in terms of of time and memory requirements.

which they are based, choice of parameters, levels of security etc. We should also mention
that for our optimized version we only optimized the polynomial multiplication. The
memory efficient optimization on Cortex-M0 does not have any assembly optimization so
we think the speed will improve further upon careful optimization. But we leave that for
future research.

Table 4 shows the number of clock cycles required to perform a single 256 × 256
polynomial multiplication. Since [33, 6] report results for NTT-based multiplications of
512 and 1024-coefficient polynomials, we scaled down the cycle counts by factor 2.25 and 5
respectively considering the asymptotic O(n logn) complexity of the NTT. Here we can see
that our fastest multiplication outperforms the NTT-based multiplications in [33, 18, 2].
To the best of our knowledge we gain this advantage over NTT-based multiplications firstly
because our modulus is a power-of-two and thus we do not spend any time for modular
reduction. Secondly, NTT has a complex butterfly structure which requires access of
non-consecutive memory words. Whereas, our combination of Toom-Cook, Karatsuba and
schoolbook methods access memory in a consecutive fashion and hence we can use the
DSP instructions in a better way than the NTT based multiplications. These expensive
memory access and modular reduction operations counteract the asymptotical advantage
of the NTT-based polynomial multiplication.

4 Conclusions
In this paper, we proposed a speed optimized and a memory optimized software implemen-
tations of the CCA-secure lattice-based key encapsulation scheme Saber targeting resource-
constrained platforms Cortex-M0 and Cortex-M4. Our memory optimized implementation
shows that lattice-based cryptography, which is known for large memory requirements and
relatively larger key sizes, can be practical on extremely resource-constrained Cortex-M0
platforms typically having only 8 KB of memory. This implementation takes 7,509K clock
cycles which is less than a quarter of a second assuming 32 MHz frequency for the most
time consuming decapsulation operation. Our speed optimized implementation running in
the Cortex-M4 just takes 1,543K clock cycles and thus spends only 9 miliseconds assuming
168 MHz frequency to compute a decapsulation operation.

We have also shown that with suitable choice of parameters, asymptotically slower
Toom-Cook and Karatsuba multiplications can get very competitive and even sometime
outperform NTT-based multiplications. We believe our results will empower cryptographers



18 iacrtans class documentation

Implementations Polynomial multiplication
Cortex-M4F [33]† 226, 055
Cortex-M4F [18]‡ 108, 147
Cortex-M4 [2, 11] . ≈73705
Cortex-M4 [6]∗ ≈54447
Our ⊕ 65, 459
Our ? 66, 692

† Reported 508,624 cycles for polynomial degree 512 and prime modulus 12289.
‡ Reported 108,147 cycles for polynomial degree 256 and prime modulus 7681.
∗ Reported ≈ 272,235 cycles for polynomial degree 1024 and prime modulus 12289.
. Polynomial degree 256 and prime modulus 7681
⊕ Speed-optimized implementation. Toom-Cook+classical Karatsuba+schoolbook
? Speed-optimized implementation. Toom-Cook+memory-efficient Karatsuba+schoolbook

Table 4: Comparison of clock cycles for 256× 256 polynomial multiplications with scaling
when necessary. The cycle counts for NTT based multiplications are calculated as cycle
count for 2*Forward NTT + Inverse NTT.

to select parameters for their lattice-based schemes from a wider range of choices, which were
earlier limited to prime moduli and power-of-two polynomial rings due to the restrictions
posed by the NTT. We conclude with the hope that this paper will be useful for the
ongoing NIST standardization process to select scheme(s) for the post-quantum world.

5 Acknowledgements
This work was supported in part by the Research Council KU Leuven: C16/15/058. In
addition, this work was supported by the European Commission through the Horizon 2020
research and innovation programme under grant agreement Cathedral ERC Advanced
Grant 695305 and by EU H2020 project FENTEC (Grant No. 780108) and by the Hercules
Foundation AKUL/11/19.

References
[1] Nist post-quantum cryptography round 1 submissions. https://csrc.nist.gov/

Projects/Post-Quantum-Cryptography/Round-1-Submissions, 2017. [Online; ac-
cessed 12-April-2018].

[2] pqm4 post-quantum crypto library for the arm cortex-m4. https://github.com/
mupq/pqm4, 2018. [Online; accessed 15-April-2018].

[3] National Institute of Standards and Technology. 2015. SHA-3 standard: Permutation-
Based Hash and Extendable-Output Functions. FIPS PUB 202, 2015.

[4] S. Akleylek, N. Bindel, J. Buchmann, J. Krämer, and G. A. Marson. An efficient
lattice-based signature scheme with provably secure instantiation. In D. Pointcheval,
A. Nitaj, and T. Rachidi, editors, Progress in Cryptology – AFRICACRYPT 2016: 8th
International Conference on Cryptology in Africa, Fes, Morocco, April 13-15, 2016,
Proceedings, pages 44–60. Springer International Publishing, Cham, 2016.

[5] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange –
a new hope. In USENIX Security 2016, 2016.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4


Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy and Ingrid
Verbauwhede 19

[6] E. Alkim, P. Jakubeit, and P. Schwabe. Newhope on arm cortex-m. In C. Carlet,
M. A. Hasan, and V. Saraswat, editors, Security, Privacy, and Applied Cryptography
Engineering, pages 332–349, Cham, 2016. Springer International Publishing.

[7] J. Alperin-Sheriff and D. Apon. Dimension-preserving reductions from lwe to lwr.
Cryptology ePrint Archive, Report 2016/589, 2016.

[8] J. Alwen, S. Krenn, K. Pietrzak, and D. Wichs. Learning with rounding, revisited -
new reduction, properties and applications. In CRYPTO 2013, pages 57–74, 2013.

[9] A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom Functions and Lattices, pages
719–737. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[10] A. Bogdanov, S. Guo, D. Masny, S. Richelson, and A. Rosen. On the hardness of
learning with rounding over small modulus. In 13th International Conference on
Theory of Cryptography, pages 209–224, 2016.

[11] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe,
and D. Stehlé. Crystals – kyber: a cca-secure module-lattice-based kem. Cryptology
ePrint Archive, Report 2017/634, 2017. http://eprint.iacr.org/2017/634.

[12] J. W. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghu-
nathan, and D. Stebila. Frodo: Take off the ring! practical, quantum-secure key
exchange from LWE. In CCS 2016, pages 1006–1018. ACM, 2016.

[13] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange for
the tls protocol from the ring learning with errors problem. In 2015 IEEE Symposium
on Security and Privacy, pages 553–570, May 2015.

[14] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical
gapsvp. In R. Safavi-Naini and R. Canetti, editors, Advances in Cryptology – CRYPTO
2012: 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings, pages 868–886. Springer Berlin Heidelberg, Berlin, Heidelberg,
2012.

[15] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, pages 97–106, Oct 2011.

[16] L. Chen, S. P. Jordan, Y.-K. Liu, D. Moody, R. C. Peralta, R. A. Perlner, and D. C.
Smith-Tone. Report on post-quantum cryptography. 2016.

[17] J.-P. DÁnvers, A. Karmakar, S. S. Roy, and F. Vercauteren. Saber: Module-lwr
based key exchange, cpa-secure encryption and cca-secure kem. Cryptology ePrint
Archive, Report 2018/230, 2018. https://eprint.iacr.org/2018/230 to appear in
Africacrypt 2018.

[18] R. de Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede. Efficient software
implementation of ring-lwe encryption. In Proceedings of the 2015 Design, Automation
&#38; Test in Europe Conference &#38; Exhibition, DATE ’15, pages 339–344, San
Jose, CA, USA, 2015. EDA Consortium.

[19] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and
bimodal gaussians. In R. Canetti and J. A. Garay, editors, Advances in Cryptology
– CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I, pages 40–56. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

http://eprint.iacr.org/2017/634
https://eprint.iacr.org/2018/230


20 iacrtans class documentation

[20] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehle. Crystals
– dilithium: Digital signatures from module lattices. Cryptology ePrint Archive, Report
2017/633, 2017. https://eprint.iacr.org/2017/633.

[21] R. P. Feynman. Simulating physics with computers, 1981. https://people.eecs.
berkeley.edu/~christos/classics/Feynman.pdf.

[22] C. Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford, CA,
USA, 2009. AAI3382729.

[23] Guido Bertoni and Joan Daemen and Michaël Peeters and Gilles Van Assche and
Ronny Van Keer. Keccak implementation overview. https://github.com/gvanas/
KeccakCodePackage, 2012. [Online; accessed 12-April-2018].

[24] D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the fujisaki-
okamoto transformation. Cryptology ePrint Archive, Report 2017/604, 2017. http:
//eprint.iacr.org/2017/604.

[25] J. Howe, C. Rafferty, A. Khalid, and M. O’Neill. Compact and provably secure
lattice-based signatures in hardware. In IEEE International Symposium on Circuits
and Systems, ISCAS 2017, Baltimore, MD, USA, May 28-31, 2017, pages 1–4, 2017.

[26] H. Jiang, Z. Zhang, L. Chen, H. Wang, and Z. Ma. Post-quantum ind-cca-secure
kem without additional hash. Cryptology ePrint Archive, Report 2017/1096, 2017.
https://eprint.iacr.org/2017/1096.

[27] A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by automatic
computers. Proceedings of USSR Academy of Sciences, 145(7):293–294, 1962.

[28] J. Kelly. A preview of bristlecone, google’s new quantum processor, 2018. [Online;
accessed 10-April-2018].

[29] D. Knuth. The Art of Computer Programming, Volume 2. Third Edition. Addison-
Wesley, 1997.

[30] A. Langlois and D. Stehlé. Worst-case to average-case reductions for module lattices.
Designs, Codes and Cryptography, 75(3):565–599, Jun 2015.

[31] R. Lindner and C. Peikert. Better key sizes (and attacks) for lwe-based encryption.
In A. Kiayias, editor, Topics in Cryptology – CT-RSA 2011: The Cryptographers’
Track at the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011.
Proceedings, pages 319–339. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[32] V. Lyubashevsky, C. Peikert, and O. Regev. On Ideal Lattices and Learning with
Errors over Rings, pages 1–23. Springer Berlin Heidelberg, 2010.

[33] T. Oder, T. Pöppelmann, and T. Güneysu. Beyond ecdsa and rsa: Lattice-based
digital signatures on constrained devices. In 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC), pages 1–6, June 2014.

[34] T. Pöppelmann, L. Ducas, and T. Güneysu. Enhanced lattice-based signatures
on reconfigurable hardware. In L. Batina and M. Robshaw, editors, Cryptographic
Hardware and Embedded Systems – CHES 2014: 16th International Workshop, Busan,
South Korea, September 23-26, 2014. Proceedings, pages 353–370. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014.

[35] J. Proos and C. Zalka. Shor’s discrete logarithm quantum algorithm for elliptic curves.
eprint arXiv:quant-ph/0301141, Jan. 2003.

https://eprint.iacr.org/2017/633
https://people.eecs.berkeley.edu/~christos/classics/Feynman.pdf
https://people.eecs.berkeley.edu/~christos/classics/Feynman.pdf
https://github.com/gvanas/KeccakCodePackage
https://github.com/gvanas/KeccakCodePackage
http://eprint.iacr.org/2017/604
http://eprint.iacr.org/2017/604
https://eprint.iacr.org/2017/1096


Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy and Ingrid
Verbauwhede 21

[36] O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC ’05, pages 84–93. ACM, 2005.

[37] C. P. Renteria-Mejia and J. Velasco-Medina. High-throughput ring-lwe cryptoproces-
sors. IEEE Trans. VLSI Syst., 25(8):2332–2345, 2017.

[38] D. S. Roche. Space- and time-efficient polynomial multiplication. In Symbolic and
Algebraic Computation, International Symposium, ISSAC 2009, Seoul, Republic of
Korea, July 29-31, 2009, Proceedings, pages 295–302, 2009.

[39] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede. Compact
ring-lwe cryptoprocessor. In Proceedings of the 16th International Workshop on
Cryptographic Hardware and Embedded Systems — CHES 2014 - Volume 8731, pages
371–391, New York, NY, USA, 2014. Springer-Verlag New York, Inc.

[40] P. W. Shor. Polynomial time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM J. Sci. Statist. Comput., 26:1484, 1997.



22 iacrtans class documentation

A CCA secure Saber KEM

Algorithm 10: Saber.Encaps(pk = (bbb, seedAAA)) [17]
1 m← U({0, 1}256)
2 (K̂, r) = G(pk,m)
3 c = Saber.Enc(pk,m; r)
4 K = H(K̂, c)
5 return (c,K)

The encapsulation and decapsulation operations used in the Saber KEM are described
in Alg. 10 and 11 respectively. Two hash functions G and H, which are implemented using
SHA3-512 and SHA3-256 respectively, are used in the CCA transformation along with the
IND-CPA Saber.Enc and Saber.Dec functions.

Algorithm 11: Saber.Decaps(sk = (sss, z), pk = (bbb, seedAAA), c) [17]
1 m′ = Saber.Dec(sss, c)
2 (K̂ ′, r′) = G(pk,m′)
3 c′ = Saber.Enc(pk,m′; r′)
4 if c = c′ then
5 return K = H(K̂ ′, c)
6 else
7 return K = H(z, c)

B Figure explaining memory efficient Karatsuba algorithm

Karatsuba’s algorithm splits each of the input polynomials into two and then allows to
compute the resulting product by performing only three polynomial multiplications instead
of four as shown in (3). a(x), b(x) and c(x) are the three products that we have to calculate.
The straightforward implementation of this algorithm consists of storing each of these
three polynomials in extra memory and lastly add them up in the space for the 2N − 2
coefficients of the result. Since this algorithm can be applied recursively this leads to an
excessive extra memory required. Instead, we use Algorithm 4 where all operations are
performed over the output space. Figure 6 shows how the output is arranged between
each of the three calls to the multiplication to be able to reutilize the space while getting
the correct result. The left most chunk in the figure represents the lower k coefficients of
the result, the next left chunk represent the coefficients that will be multiplied by xk in
the final result, and the next two those which will be multiplied by x2k. Also, we consider
all polynomials of N coefficients as p(x) = p0 + p1 · xk. The result of the algorithm is
accumulated with the initial value h(x).

f(x) ∗ g(x) = (f0 + f1x
k) · (g0 + g1x

k) = f0g0 + (f0g1 + f1g0) · xk + f1g1 · x2k

= f0g0 + ((f0 + f1)(g0 + g1)− f0g0 − f1g1) · xk + f1g1 · x2k

= a+ (c− a− b) · xk + b · x2k

(3)



Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy and Ingrid
Verbauwhede 23

h0 h1

h0

c0 c1

h0

a0

c1 h0+h1+c0+c1

a1

h0+a0
h0+h1+c0+c1

-h0-a1

b1

c1-a1

b0

b1h0+a0
h1+c0+a1
-a0-b1

c1+b0
-a1-b1

+

+

+

- -

- -

Figure 6: Details of the arrangements carried out over the output vector for Algorithm 4.



24 iacrtans class documentation

C Unrolled memory efficient Karatsuba
Algorithm 12: Memory efficient Karatsuba kara_mem
Input: Two polynomials f(x) and g(x) and their degree n
Output: h(x) = h(x) + f(x) ∗ g(x) of degree 2n− 1

1 extra memory tmp[n/4];
2 k = n/2
3 for i = 0 to k/2 do
4 h[k + i] = h[i] + h[k + i];
5 h[k + k/2 + i] = h[k/2 + i] + h[k + i] + h[k + k/2 + i];
6 h[3k − 1 + i] = f [i] + f [k + i];
7 h[3k + k/2− 1 + i] = f [k/2 + i] + f [k + k/2 + i];
8 for i = 0 to k/2 do
9 tmp[i] = h[3k − 1 + i] + h[3k + k/2− 1 + i];

10 h[2k + k/2 + i] = g[i] + g[k/2 + i] + g[k + i] + g[k + k/2 + i];
11 poly_mul(tmp, h[2k + k/2], h[k + k/2], k/2)
12 for i = 0 to k/2 do
13 h[2k + k/2− 1 + i] = h[k + k/2 + i] + h[2k + i];
14 tmp[i] = g[i] + g[k + i];
15 poly_mul(tmp, h[3k − 1], h[k], k/2)
16 for i = 0 to k/2 do
17 h[2k + i] = h[2k + i]− h[k + k/2 + i](∗);
18 h[k + k/2 + i] = h[2k + k/2− 1 + i]− h[k + i];
19 tmp[i] = g[k/2 + i] + g[k + k/2 + i];
20 poly_mul(tmp, h[3k + k/2− 1], h[2k], k/2)
21 for i = 0 to k/2 do
22 h[k/2 + i] = h[i] + h[k/2 + i];
23 h[2k + i] = h[2k + i]− h[2k + k/2 + i](∗);
24 h[3k − 1 + i] = h[2k + i] + h[k + i];
25 h[3k + k/2− 1 + i] = h[k + k/2 + i]− h[2k + i];
26 for i = 0 to k/2 do
27 h[k + k/2− 1 + i] = f [i] + f [k/2 + i];
28 tmp[i] = g[i] + g[k/2 + i];
29 poly_mul(tmp, h[k + k/2− 1], h[k/2], k/2)
30 for i = 0 to k/2− 1 do
31 h[k + k/2− 1 + i] = h[k/2 + i] + h[k + i];
32 poly_mul(f, g, h, k/2)
33 for i = 0 to k/2 do
34 h[k + i] = h[k + i]− h[k/2 + i](∗);
35 h[k/2 + i] = h[k + k/2− 1 + i]− h[i];
36 poly_mul(f [k/2], g[k/2], h[k], k/2)
37 for i = 0 to k/2 do
38 h[k/2 + i] = h[k/2 + i]− h[k + i];
39 h[2k + i] = h[2k + i]− h[k + i] + h[k + k/2 + i](∗);
40 h[k + i] = h[3k − 1 + i]− h[i];
41 h[2k + k/2 + i] = h[2k + i] + h[2k + k/2 + i]− h[k + k/2 + i](∗);
42 h[k + k/2 + i] = h[3k + k/2− 1 + i]− h[k/2 + i];
43 h[3k + k/2− 1 + i] = f [k + i] + f [k + k/2 + i];
44 tmp[i] = g[k + i] + g[k + k/2 + i];
45 poly_mul(tmp, h[3k + k/2− 1], h[2k], k/2)
46 for i = 0 to k/2− 1 do
47 h[3k + k/2− 1 + i] = h[2k + k/2 + i] + h[3k + i];
48 poly_mul(f [k], g[k], h[2k], k/2)
49 for i = 0 to k/2 do
50 h[3k + i] = h[3k + i]− h[2k + k/2 + i](∗);
51 h[2k + k/2 + i] = h[3k + k/2− 1 + i]− h[2k + i];
52 poly_mul(f [k + k/2], g[k + k/2], h[2k], k/2)
53 for i = 0 to k/2 do
54 h[2k + k/2 + i] = h[2k + k/2 + i]− h[3k + i];
55 h[3k + i] = h[3k + i]− h[3k + k/2 + i](∗);
56 h[k + i] = h[k + i]− h[2k + i];
57 h[2k + i] = h[2k + i]− h[3k + i];
58 h[k + k/2 + i] = h[k + k/2 + i]− h[2k + k/2 + i];
59 h[2k + k/2 + i] = h[2k + k/2 + i]− h[3k + k/2 + i](∗);
60 return h(x);
61 (∗) skip last iteration


	Background
	LWE, LWR and module-LWR problem
	The Saber KEM
	Polynomial multiplication
	Platforms
	SHAKE-128 extended output function

	Implementation
	Speed optimization
	Memory optimization

	Results
	Conclusions
	Acknowledgements
	CCA secure Saber KEM
	Figure explaining memory efficient Karatsuba algorithm
	Unrolled memory efficient Karatsuba

