
Efficient Collision Attack Frameworks for
RIPEMD-160

Fukang Liu

Shanghai Key Laboratory of Trustworthy Computing, School of Computer Science
and Software Engineering, East China Normal University, Shanghai, China

liufukangs@163.com

Abstract. In this paper, we re-consider the connecting techniques to
find colliding messages, which is achieved by connecting the middle part
with the initial part. To obtain the best position of middle part, we
propose two principles even when the case is not ideal.
Then, we reviewed the searching strategy to find a differential path pre-
sented at Asiacrypt 2017, we observe some useful characteristics of the
path which is not used in their work. To fully capture the characteris-
tics of the differential path discovered by the searching strategy, we find
an efficient attack framework under the guidance of the two principles,
which in turn helps improve the searching strategy. Under our efficien-
t attack framework, we easily improve the collision attack on 30-step
RIPEMD-160 by a factor of 213. And we believe that the collision attack
can be further improved under this efficient framework if the differential
path is discovered by taking the new strategies into consideration.
For some interest, we also consider an opposite searching strategy and
propose another efficient attack framework special for the differential
path discovered by the new searching strategy. Under this new frame-
work, we find we can control one more step than that special for the
original searching strategy. Therefore, we expect that we can obtain bet-
ter collision attack by adopting the new searching strategy and attack
framework.
Moreover, combining with the searching tool, we may give a tight upper
bound of steps to mount collision attack on reduced RIPEMD-160 when
adopting the two searching strategies.

Keywords: RIPEMD-160, collision, hash function, attack framework,
searching strategy

1 Introduction

A cryptographic hash function is a function which takes arbitrary long messages
as input and output a fixed-length hash value. Collision resistance and (second-
)preimage resistance are three basic requirements for a secure hash function.
For most standardized hash functions, they are based on the Merkle-Damg̊ard
paradigm[Dam89,Mer89] which iterates a compression function with fixed-size
input to compress arbitrarily long messages.



The history of the great progress on MD-SHA hash family is impressive when
Wang et al. published a series of results as well as some message modification
techniques [WLF+05,WY05,WYY05b,WYY05a]. These results greatly threaten
the security of design strategy for hash functions by utilization of additions,
rotations, xor and boolean functions in an unbalanced Feistel network. On the
other hand, it also provides a generic framework to evaluate the security of these
hash functions. More specifically, whether does there exist a good differential
path as well as a efficient method to control the probability of the differential
path? Therefore, there are also two directions for cryptanalysis of hash functions.
One is to invent automatic tools for searching good differential path. The other
is to design strategies to make the discovered differential path hold with as a
high probability as possible.

The searching tool for differential path progresses very well in recent years.
At Asiacrypt 2011, Mendel et al. invented a searching tool to find good character-
istics for SHA-2 [MNS11]. Since then, the similar (improved) tool was utilized to
find good differential characteristics for several hash functions and a series of re-
sults on RIPEMD-128, RIPEMD-160, SHA-2, SM3 were published [MNS12,MNSS12]
[MPS+13,LMW17,MNS13b,EMS14,DEM15,MNS13a].

On the other hand, the strategies to make the discovered differential path
hold with a high probability also progress well recently. In [MNSS12], Mendel
et al. proposed a method to find semi-free-start collisions for reduced RIPEMD-
160. More specifically, they invent a method by firstly fixing the dense part in
the middle and then compute backward to achieve merging. Such a method was
later used to mount full round semi-free-start collision attack on RIPEMD-128
at Eurocrypt 2013 [LP13]. Later, such a method was also applied to improve the
semi-free-start collision attack on reduce RIPEMD-160 [MPS+13,LMW17]. For
SHA2, [DEM15] also discovered a method to match IV and achieve the practical
collision attack on 27-step SHA-512/224, SHA-512/256 and SHA-512/256. The
technique to match IV is to adopt the idea by firstly fixing the heavy internal
states in the middle of the first round and then connecting it with the initial
part using free message words. In fact, similar method by connecting the initial
part with the middle part has been used several years ago [Leu07]. However,
according to our understanding of the method presented in [DEM15,Leu07],
we find they only consider the ideal case. To be more accurate, suppose the
are t internal states (S0, S1, ..., St−1) to be connected and they are updated by
message words mk0 ,mk1 , ...,mkt−1

, then mk0 ,mk1 , ...,mkt−1
must be set free. In

this way, it is quite straight forward to achieve connection. In this paper, we
don’t consider the ideal case since it can’t help improve the efficiency to find
colliding messages. Therefore, we have to confirm the position of middle part
with some principles. Following the principles, we can finally confirm an attack
framework for RIPEMD-160 by capturing the characteristics of differential path.

Since our paper focus on the collision attack for RIPEMD-160, we also intro-
duce some related results on RIPEMD-160. We have to stress that it is still mean-
ingful to analyze the security of RIPEMD-160 since it is still an ISO/IEC stan-
dard. Moreover, since SHA-1 has been proven to be not secure [SBK+17,WYY05a]

2



and SHA-3 doesn’t provide the 160-bit digest, RIPEMD-160 may be used in the
future to provide 160-bit digest.

Boomerang attack on RIPEMD-128/160 [SW12]. The framework of
boomerang attack on RIPEMD-160/128 is illustrated in Fig. 1. The attacker
tries to find out four pairs (IV , M), (IV +∆, M +∆0), (IV +∇, M +∇0) and
(IV +∇+∆, M +∇0 +∆0), supposing the compression function is denoted by
H(IV , M), then a distinguishing property is obtained:

H(IV,M) +H(IV +∇+∆,M +∇0 +∆0)−
H(IV +∆,M +∆0)−H(IV +∇,M +∇0) = 0.

Fig. 1. Boomerang attack on RIPEMD-128/160

Semi-free-start collision attack on RIPEMD-160 [MPS+13,LMW17].
The framework of semi-free-start collision attack on RIPEMD-160 is illustrated
in Fig. 2. The attacker firstly fixes some heavy middle parts in both branches
and then compute backward to merge both branches by leveraging the remaining
free message words. At last, the uncontrolled part is verified probabilistically.

Fig. 2. Semi-free-start collision attack on RIPEMD-160

Collision attack on RIPEMD-160 [LMW17]. The framework of collision
attack on RIPEMD-160 is illustrated in Fig. 3. The attacker applies single-step
modification and multi-step modification only on the dense branch in the first

3



two rounds to make as many as bit conditions hold. Then, the conditions can’t be
satisfied with message modification on the dense branch and all the bit conditions
on the other sparse branch hold probabilistically. The computation starts from
the first step.

Fig. 3. Collision attack on RIPEMD-160

We recall the strategy presented at Asiacrypt 2017 to find differential path
for RIPEMD-160 [LMW17]. Since it is difficult to ensure the conditions in both
branches, the authors let one branch remain fully probabilistic. Therefore, they
choose the message word used to update the last internal state X16 in the first
round to generate a difference. Then, they utilize the searching tool to find a good
differential characteristic. Since only m15 is chosen to generate the difference,
there won’t be bit conditions on Yi (1 ≤ i ≤ 8). In some cases, it is also possible
there won’t be conditions on Y9. The reason is that to update Y12, we have

to control the difference generated by Y11 ⊕ (Y10
∨
Y≪10
9 ). Since there is no

difference in Y10 and Y9, we control the bit i with difference in Y11 always flip
by adding Y10,i = 1. In this way, Y9 can also fully free. We will use such an
observation in our attack framework.

1.1 Our Contributions

In this paper, we recall the strategy to find a differential path for RIPEMD-160
presented at Asiacrypt 2017 [LMW17].

Firstly, we observe that the very initial part in the right branch is fully free
if adopting such a searching strategy. Then, we try to capture such a character-
istic of the differential path and find the most efficient way to make the most
conditions hold. Then, the problem comes how to fully use such an observed
characteristic. Inspired by the idea to mount collision attack through connecting
the initial part with the middle part, we finally come up with an efficient attack
framework for such a searching strategy. However, the previous constraint to
choose the position of middle part to be connected is too strict and they only
consider the ideal case [DEM15,Leu07], which is explained in previous part. Ac-
cording to our trial, we find it is impossible to reach the ideal case if we want to
achieve the highest efficiency for the attack framework. Therefore, we propose
two principles to guide us to choose the optimal position of middle part.

The two principles are quite straight forward. Since we don’t consider the
idea case, after we find a candidate of the position of middle part, we have to

4



check whether we can achieve connection with a low cost. And this is the first
principle. To make the uncontrolled probability hold with the highest probability,
we have to ensure that after the middle part is fixed, we can have an efficient
method to make as many as bit conditions hold. And this is the second principle.

Following the two principles, we finally find an efficient attack framework
special for the searching strategy to find differential path in [LMW17]. Our
attack framework can also provide some other useful searching strategies to find
an optimal differential path utilizing the searching tool.

Then, we apply such an attack framework to the 30-step differential path
in [LMW17] and achieve a very simple and efficient way to find colliding mes-
sages. The time complexity is improved by a factor of 213. For some results on
RIPEMD-160, they are listed in Table 1.

For some interest, we also try to find whether there exists an efficient attack
framework in the left branch if we have the right branch holding probabilistic.
That’s, we consider an opposite case to [LMW17]. It is interesting that we find
the new searching strategy [LMW17] may be better than the original strategy.

Moreover, combining with the searching tool, we may give a tight upper
bound of steps to mount collision attack on reduced RIPEMD-160 when adopting
the strategy in [LMW17] and the new strategies.

Table 1. Summary of preimage and collision attack on RIPEMD-160.

Target Attack Type Steps Complexity Ref.

comp. function preimage 31 2148 [OSS12]

hash function preimage 31 2155 [OSS12]

comp. function semi-free-start collision 36a low [MNSS12]

comp. function semi-free-start collision 36 270.4 [MPS+13]

comp. function semi-free-start collision 36 255.1 [LMW17]

comp. function semi-free-start collision 42a 275.5 [MPS+13]

comp. function semi-free-start collision 48a 276.4 [WSL17]

hash function collision 30 270 [LMW17]

hash function collision 30 257 new
a An attack starts at an intermediate step.

2 Description of RIPEMD-160

RIPEMD-160 is a 160-bit hash function that uses the Merkle-Damg̊ard con-
struction as domain extension algorithm: the hash function is built by iterating
a 160-bit compression function H which takes as input a 512-bit message block
Mi and a 160-bit chaining variables CVi :

CVi+1 = H(CVi,Mi)

5



where a message M to hash is padded beforehand to a multiple of 512 bits and
the first chaining variable is set to the predetermined initial value IV , that is
CV0 = IV . We refer to [DBP96] for a detailed description of RIPEMD-160.

2.1 Notations

For a better understanding of this paper, we introduce the following notations.

1. �, ≪, ≫, ⊕, ∨, ∧ and ¬ represent respectively the logic operation: shift
left, rotate left, rotate right, exclusive or, or, and, negate.

2. � and � represent respectively the modular addition and modular substrac-
tion on 32 bits.

3. M = (m0, m1, ..., m15) and M ′ = (m′0, m′1, ..., m′15) represent two 512-bit
message blocks.

4. Kl
j and Kr

j represent the constant used at the left and right branch for round
j.

5. Φlj and Φrj represent respectively the 32-bit boolean function at the left and
right branch for round j.

6. sli and sri represent respectively the rotation constant used at the left and
right branch during step i.

7. π1(i) and π2(i) represent the index of the message word used at the left and
right branch during step i.

8. Xi,j , Yi,j represent respectively the j-th bit of Xi and Yi, where the least
significant bit is the 0th bit and the most significant bit is the 31st bit.

9. [Z]i represents the i-th bit of the 32-bit Z.
10. [Z]j∼i (0 ≤ i < j ≤ 31) represents the i-th bit to the j-th bit of the 32-bit

word Z (include bit i and j).

2.2 RIPEMD-160 Compression Function

The RIPEMD-160 compression function is a wider version of RIPEMD-128,
which is based on MD4, but with the particularity that it consists of two dif-
ferent and almost independent parallel instances of it. We differentiate the two
computation branches by left and right branch. The compression function con-
sists of 80 steps divided into 5 rounds of 16 steps each in both branches.

Initialization The 160-bit input chaining variable CVi is divided into five 32-
bit words hi (i=0,1,2,3,4), initializing the left and right branch 160-bit internal
state in the following way:

X−4 = h≫10
0 , X−3 = h≫10

4 , X−2 = h≫10
3 , X−1 = h2, X0 = h1.

Y−4 = h≫10
0 , Y−3 = h≫10

4 , Y−2 = h≫10
3 , Y−1 = h2, Y0 = h1.

Particularly, CV0 corresponds to the following five 32-bit words:

X−4 = Y−4 = 0xc059d148,X−3 = Y−3 = 0x7c30f4b8,X−2 = Y−2 = 0x1d840c95,
X−1 = Y−1 = 0x98badcfe, X0 = Y0 = 0xefcdab89.

6



The Message Expansion The 512-bit input message block is divided into 16
message words mi of size 32 bits. Each message word mi will be used once in
every round in a permuted order π for both branches.

The Step Function At round j, the internal state is updated in the following
way.

Xi = X≪10
i−4 � (X≪10

i−5 � Φ
l
j(Xi−1, Xi−2, X

≪10
i−3 )�mπ1(i) �K

l
j)

≪sli ,

Yi = Y≪10
i−4 � (Y≪10

i−5 � Φrj(Yi−1, Yi−2, Y
≪10
i−3 )�mπ2(i) �K

r
j )≪sri ,

Qi = Y≪10
i−5 � Φrj(Yi−1, Yi−2, Y

≪10
i−3 )�mπ2(i) �K

r
j ,

where i = (1, 2, 3, ..., 80) and j = (0, 1, 2, 3, 4). The details of the boolean
functions and round constants for RIPEMD-160 are displayed in Table 2. As for
other parameters, you can refer to [DBP96].

Table 2. Boolean Functions and Round Constants in RIPEMD-160

Round j φl
j φr

j Kl
j Kr

j Function Expression

0 XOR ONX 0x00000000 0x50a28be6 XOR(x,y,z) x⊕y⊕z

1 IFX IFZ 0x5a827999 0x5c4dd124 IFX(x,y,z) (x∧y)⊕(¬x∧z)

2 ONZ ONZ 0x6ed9eba1 0x6d703ef3 IFZ(x,y,z) (x∧z)⊕(y∧¬z)

3 IFZ IFX 0x8f1bbcdc 0x7a6d76e9 ONX(x,y,z) x⊕(y∨¬z)

4 ONX XOR 0xa953fd4e 0x00000000 ONZ(x,y,z) (x∨¬y)⊕ z

The Finalization A finalization and a feed-forward is applied when all 80 steps
have been computed in both branches. The five 32-bit words h

′

i composing the
output chaining variable are computed in the following way.

h
′

0 = h1 �X79 � Y
≪10
78 ,

h
′

1 = h2 �X
≪10
78 � Y≪10

77 ,

h
′

2 = h3 �X
≪10
77 � Y≪10

76 ,

h
′

3 = h4 �X
≪10
76 � Y80,

h
′

4 = h0 �X80 � Y79.

3 Connecting Techniques

In this section, we give a brief description of the connecting techniques used to
find colliding messages. For most hash functions in MD-SHA hash family, the

7



internal states Si is updated by a function f with a message word wi and t con-
secutive internal states Si−1, ..., Si−t as input. Besides, we can always compute
wi through another function g with Si, Si−1, ..., Si−t as input. Formally, we can
express it as in the following equation.

Si = f(wi, Si−1, ..., Si−t). (1)

wi = g(Si, Si−1, ..., Si−t). (2)

After Wang et al. presented some impressive attack on MD4/MD5/SHA-0/SHA-
1, the procedure to find colliding messages also developed. Specifically, Wang et
al. start computation from the first step and then apply single-step and multi-
step modification. Then, some cryptologists firstly fix some middle part and
then connect it with the initial part as shown in [DEM15,Leu07]. Formally,
their methods share some similarities. Suppose they choose Si−1, ..., Si−t to be
connected, then wi−1, ..., wi−t are all set free. Since at the phase of connection,
all the internal states and the middle part are known, they can trivally calculate
wi−1, ..., wi−t to achieve connection.

However, what will happen if one or two of wi−1, ..., wi−t are not free? The
probability of successful connection is then dramatically decreased if without any
strategy to solve it. Specifically, if one of wi−1, ..., wi−t is fixed and the message
word is an n-bit value, then the success probability of connection becomes 2−n.
This fact may prevent cryptologists from considering the case which is not ideal.
However, we claim that this can be changed to one principle to finally determine
the position of middle part.

Now, we give the first principle to guide us to choose the position of middle
part.

Principle 1. When we consider a candidate of the position of middle part,
we firstly consider whether it is efficient to achieve connection in the first t
consecutive internal states located in the middle part when the case is not ideal.
If not, we shorten the length of the middle part and repeat until we can find a
solution.

Since the middle part is fixed and therefore some message words are fixed.
Suppose wi is fixed in the middle part, and then wi is also used to update the
internal state St which is not in the middle part and there are some conditions
on it. Then, these conditions is hard to ensure. We have to stress that this may
seem to be the case which can be solved by multi-step modification, it actually
is hard to solve since wi is already fixed and can’t be changed. If we want to
change it, we have to restart finding a solution for the middle part, which success
with some probability. Therefore, we can hardly ensure these bit conditions. This
will provide the second principle to guide us to determine the position of middle
part.

Principle 2. When we consider a candidate of the position of middle part,
we have to record the message words being fixed. Then, we observe the internal
states not in the middle part and check whether these fixed message words will
greatly decrease the probability. If so, we have to extend the middle part until
the state which are also updated using the recorded message words.

8



I have to stress that the two principles should be considered simultaneously
when considering a candidate of the position of middle part. Besides, we can
also find that Principle 1 is used to shorten the middle part and Principle 2
is used to extend the middle part. The final determined position of middle part
should be a tradeoff between two principles.

4 Optimizing the Attack Framework

In the above section, we propose two principles to guide us to find optimal
position of middle part. In this section, combing the principles with the searching
strategy proposed in [LMW17], we present how to obtain an efficient attack
framework and also provide some strategies to find an optimal differential path
when using the searching tool.

4.1 Searching Strategy in Previous Research

At Asiacrypt 2017, [LMW17] proposed a searching strategy to find a differen-
tial path for reduced RIPEMD-160. More specifically, they choose m15 as the
message word to generate a difference. In this way, the first internal state with d-
ifference is X16 and Y11 in the left/right branch respectively. Due to the difficulty
to modify both branches simultaneously, they only apply message modification
on one branch. Therefore, the left branch is set very sparse and fully probabilis-
tic. For the right branch, it is very dense and advanced message modification
techniques are applied to ensure as many bit conditions as possible. However, the
authors in [LMW17] didn’t fully capture the potentially useful characteristics of
the differential path obtained by using such a searching strategy and directly
applied a tradition attack framework (start modification from the first step) to
find colliding messages.

Now, we give some important observations when adopting such a searching
strategy.

Observation 1. There are not conditions on Yi (1 ≤ i ≤ 8).
Observation 2. The first internal state with difference in the right branch

is Y11. When considering the difference propagates to Y12, we are actually con-

sidering the differential propagation of Y11 ⊕ (Y10
∨
Y≪10
9 ) where only Y11 has

difference. If we have all the bits (pi, pi+1, ..., pj) with difference in Y11 flipped
by adding conditions Y10,pi = 1, Y10,pi+1

= 1, ..., Y10,pn = 1 when searching the
differential path, there won’t be conditions on Y9 either.

4.2 Determining the Position of Middle Part

To well illustrate the procedure of determining the position of middle part, we
give partial information of order of the message words used in RIPEMD-160 in
Table 3.

According to the searching strategy in [LMW17], the left branch is set fully
probabilistic and they only apply message modification techniques in the dense

9



Table 3. Order of the Message Words in the First Two round

i

Xi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

mi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Xi 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

mi 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8

Yi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

mi 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12

Yi 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

mi 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2

right branch. We also only consider how to ensure as many bit conditions as pos-
sible hold in the dense right branch. Based on our observations in above section,
the first internal state with conditions is Y10 if we also use Observation 2 to
find a differential path. Therefore, we firstly choose Y10 as the starting position
of middle part. In this case, the five consecutive internal states to be connected is
Yi (10 ≤ i ≤ 14) and the corresponding message word are m6,m15,m8,m1,m10.

After choosing the starting position, we also choose a candidate ending posi-
tion. We only consider the case that one or two of m6,m15,m8,m1,m10 are fixed
at the middle part since the success probability of connection will be dramati-
cally decreased if more than three of m6,m15,m8,m1,m10 are fixed. Therefore,
we choose Y25 as a candidate ending position.

Now, we explain the procedure to find an optimal middle position to achieve
the most efficient attack framework.

Case 1: Choose Y25 as the ending position of middle part. Then, m10 will be
fixed in the middle part. In this case, Y9 is known according to m10

and Yi (10 ≤ i ≤ 14). Thus, the starting position becomes Y9 and the
internal states to be connected become Yi (9 ≤ i ≤ 13). Since two of
the message words (m6,m13) used to update these 5 internal states are
fixed, we have to consider whether there is an efficient way to achieve
connection in such a bad case. It easy to achieve connection in Y9 since
m4 is free. However, it will be difficult to achieve connection in Y10.
Therefore, the success probability of connection is 2−32. Since the cost
to connect is tow high, we have to shorten the length of middle part
based on Principle 1.

Case 2: Choosing Y24 as the ending position will be the same with Case 1 apart
from m14 becomes free in the initial part, which can’t be used to achieve
an efficient connection. In this case, the success probability of connection
is also 2−32.

Case 3: Choose Y23 as the ending position of middle part. In this case, the start-
ing position won’t be changed since m10 won’t be fixed in the middle

10



part. Then, only one of the message words (m6) used to update the 5
internal states to be connected is fixed. Next, we consider whether there
exists an efficient method to achieve connection in Y10. And we actually
find an efficient method to make it. After choosing Y23 as the ending
position, m14, m9, m2, m4 are free in the initial part. In other words,
we can consider whether there is method to achieve connection in Y10
by leveraging there free message words.
Considering the calculation of Y10 as follows.

Y10 = Y≪10
6 � ((Y9 ⊕ (Y8

∨
Y≪10
7 ))� Y≪10

5 +m6 �K
r
0)≪7.

If we make Y7 = 0, then the above equation becomes

Y10 = Y≪10
6 � ((Y9 ⊕ 0xffffffff)� Y≪10

5 �m6 �K
r
0)≪7.

Then, after we have computed until Y7, we can efficiently find the solu-
tion of Y9 to achieve connection in Y10 by using the freedom of m4. The
details are shown below:

Y9 = ((Y10 � Y
≪10
6 )≫7 � (Y≪10

5 �m6 �K
r
0))⊕ 0xffffffff.

Y8 = ((Y9 � Y
≪10
5 )≫7 � (Y≪10

4 �m13 �K
r
0))⊕ (Y7

∨
Y≪10
6 ),

m4 = (Y8 � Y
≪10
4 )≫5 � (ONX(Y7, Y6, Y

≪10
5 )� Y≪10

3 �Kr
0).

Then, the problem becomes how to ensure the condition Y7 = 0. Suppose
we have computed until Y5, and then this condition can be solved as
follows by using the freedom of m2.

Y6 = ((Y7 � Y
≪10
3 )≫15 � (m11 �K

r
0))⊕ (Y5

∨
Y≪10
4 ).

m2 = (Y6 � Y
≪10
2 )≫15 � (ONX(Y5, Y4, Y

≪10
3 )� Y≪10

1 �Kr
0).

In a word, by using the freedom ofm2 andm4, we can achieve connection
with probability 1. Therefore, we find a possible good position of middle
part in this case. However, is it the optimal position? We have to further
consider this question.
Observe that m7, m0, m13 and m5 are only used once to update the
internal states in the middle part. The conditions on Yi (20 ≤ i ≤ 23)
can be easily satisfied by single-step modification. In other words, we
don’t necessarily fix their values in the middle part and this will provide
more freedom to find collisions. Therefore, we consider Case 4.

Case 4: Choose Y19 as the ending position of middle part. After fixing the values
in the middle part, we use single-step modification to ensure the condi-
tions on Yi (20 ≤ i ≤ 23). Then we deal with the connection for the not
ideal case in the same way with Case 3.
A natural question is whether it is possible to further shorten the length
of the middle part to provide more freedom. Then, we follow Principle
2 to answer such an question.

11



If we further shorten the length of the middle part, thenm3 is fixed in the
middle part while m3 is also used to update Y19, which is not included
in the middle part. Perhaps, one may try to use idea like multi-step
modification techniques to ensure the conditions on Y19 and this may
be feasible. However, it differs for different discovered differential path
and requires a lot of sophisticated manual work. Moreover, in some
bad cases, the modification techniques can’t ensure all the conditions
on Y19. Why not sacrifice the freedom of m3 to achieve a simple attack
framework? Therefore, we finally choose Yi (10 ≤ i ≤ 19) as the position
of middle part.

4.3 Formalizing the Optimal Attack Framework

In this section, we formalize the optimal attack framework corresponding to the
optimal position of middle part found based on the two principles, which fully
uses the two observations of the searching strategy.

The attack framework is illustrated in Fig. 4. It contains four 4 steps.

Fig. 4. Attack Framework for RIPEMD-160

Step 1: Fix the internal states located in the middle part from Y10 to Y19, which
can be easily done using single-step modification since only m3 is used
twice to update the internal states.

Step 2: Apply single-step modification to ensure the conditions on Y20 to Y23
since their corresponding message words haven’t been fixed in the middle
part.

Step 3: Compute from the first step until Y5 and then achieve connection in Y10
as follows:

Y7 = 0.

Y6 = ((Y7 � Y
≪10
3 )≫15 � (m11 �K

r
0))⊕ (Y5

∨
Y≪10
4 ).

m2 = (Y6 � Y
≪10
2 )≫15 � (ONX(Y5, Y4, Y

≪10
3 )� Y≪10

1 �Kr
0).

Y9 = ((Y10 � Y
≪10
6 )≫7 � (Y≪10

5 �m6 �K
r
0))⊕ 0xffffffff.

Y8 = ((Y9 � Y
≪10
5 )≫7 � (Y≪10

4 �m13 �K
r
0))⊕ (Y7

∨
Y≪10
6 ),

m4 = (Y8 � Y
≪10
4 )≫5 � (ONX(Y7, Y6, Y

≪10
5 )� Y≪10

3 �Kr
0).

12



Step 4: All message words have been fixed after connection. Then we verify the
probabilistic part in both branches. If they don’t hold, go to Step 2 until
we find colliding messages. The freedom is provided by m0, m5, m7, m9,
m13 and m14.

Based on this attack framework, it is quiet simple and efficient to find col-
liding messages. The reason is Step 3 can succeed with a probability close to
1 if the differential path is discovered based on Observation 2. Besides, only
single-step modification technique is enough to fix the middle part and only one
solution for the middle part is sufficient. For Step 2, only single-step modification
techniques are applied and therefore is simple and efficient. The only thing we
need to concern about is whether the freedom of message words is sufficient to
find collisions after the middle part is fixed.

4.4 Improving the Searching Strategies

Based on our efficient framework to mount collision attack on RIPEMD-160, we
also add some constraints to find an optimal differential path in the searching
phase.

Strategy 1. The number of conditions on the internal states Yi (i ≥ 24)
should be as small as possible.

Strategy 2. According to Observation 2, we should make all the bits with
difference in Y11 flip. In this way, there will be no conditions on Y9.

Combining the two strategies, we may obtain a better collision attack and
give a tight upper bound of steps to mount collision attack on reduced RIPEMD-
160 when adopting the strategy to find a differential path.

5 Application on 30-Step RIPEMD-160

We apply this efficient framework on the 30-step differential path found in
[LMW17] as shown in Table 4. Firstly, we find a solution for the middle part,
which is marked in red in Table 5. To make some conditions on Y25 hold, we
extend the middle part to Y20. The details are as follows.

5.1 Slight Improvement to Make More Conditions Hold

Since m14 is fully free in the initial part and it is used to update Y25.

Y25 = Y≪10
21 � (IFZ(Y24, Y23, Y

≪10
22 )� Y≪10

20 �m14 �K
r
1)≪7.

According to Table 4, we can find that there are two bit conditions on Y25,0 and
Y25,1, which are Y25,1 = 0 and Y25,0 = 1. After the middle part is fixed, Y≪10

20

is known. Besides, we also know the pattern of Y≪10
21 as follows:

Y≪10
21 = 1-----11 111-101- ------1- 1-----101.

13



Table 4. 30-step Differential Path, where m′15 = m15 � 224, and ∆mi = 0 (0 6
i 6 14). Note that the symbol n represents that a bit changes to 1 from 0, u
represents that a bit changes to 0 from 1, and - represents that the bit value is
free.

Xi π1(i)Yi π2(i)
-4 -------- -------- -------- -------- -4 -------- -------- -------- --------
-3 -------- -------- -------- -------- -3 -------- -------- -------- --------
-2 -------- -------- -------- -------- -2 -------- -------- -------- --------
-1 -------- -------- -------- -------- -1 -------- -------- -------- --------
00 -------- -------- -------- -------- 00 00 -------- -------- -------- -------- 05
01 -------- -------- -------- -------- 01 01 -------- -------- -------- -------- 14
02 -------- -------- -------- -------- 02 02 -------- -------- -------- -------- 07
03 -------- -------- -------- -------- 03 03 -------- -------- -------- -------- 00
04 -------- -------- -------- -------- 04 04 -------- -------- -------- -------- 09
05 -------- -------- -------- -------- 05 05 -------- -------- -------- -------- 02
06 -------- -------- -------- -------- 06 06 -------- -------- -------- -------- 11
07 -------- -------- -------- -------- 07 07 -------- -------- -------- -------- 04
08 -------- -------- -------- -------- 08 08 -------- -------- -------- -------- 13
09 -------- -------- -------- -------- 09 09 -----1-1 -1------ -------- -------- 06
10 -------- -------- -------- -------- 10 10 ----0000 00-1--1- --0000-- 1-001010 15
11 -------- -------- -------- -------- 11 11 -0--0--- 00001101 10010000 000nuuuu 08
12 -------- -------- -------- -------- 12 12 nuuuuuuu uuuuuuuu u0n0n00- ---01100 01
13 -------- -------- -------- -------- 13 13 0unn1uu- 111-1-1- -nuunn11 011011un 10
14 -------- -------- -------- -------- 14 14 -1000011 11----1- 10nu1010 1-nu1-11 03
15 -------- -------- -------- -------- 15 15 00---011 11-0u-u- 101000-u ----0-01 12
16 -------- -------- -------- -------n 07 16 111-n1uu 000n1n-- 0001n--- -nuuuuuu 06
17 -------- -------- -------- -------0 04 17 1u1-1--u n--0111- 00u10unn n-nnn01- 11
18 -------- -------- -----1-- -------1 13 18 01------ 0n-011-- 1n0000-- --0-00-1 03
19 -------- -------- -----0-- -------- 01 19 1u------ 1--100-- 010----- -----1-1 07
20 -------- -------- -----n-- -------- 10 20 -0------ --1----- ----0nu1 1---11-0 00
21 -------- -------- -----0-- -------- 06 21 -1-----1 011----- 11111-10 1------- 13
22 -------- ---1---- -----1-- -------- 15 22 u-----00 1-u----- ------1u ------00 05
23 n------- ---0---- -------- -------- 03 23 1------- -------0 -----01- ------n- 10
24 0------- ---n---- -------- -------- 12 24 1------- -------1 ----0-1- ------00 14
25 1------- ---0---- ------1- -------- 00 25 1----n-- ---0---- ----1--- ------01 15
26 -1------ ---1---- ------0- -------- 09 26 -------- ---0---- ----unn- -------- 08
27 -0------ -------- ------n- -------- 05 27 -u------ -------- -------- -------- 12
28 -n------ -------- ------0- -------- 02 28 -------- -------- -------- -------- 04
29 -0------ ----1--- -------- -------- 14 29 -------- -------- -------- -------- 09
30 -------- -------- -------- -------- 11 30 -------- -------- -------- -------- 01

Other Conditions
Y11,31

∨
¬Y10,21 = 1, Y11,29

∨
¬Y10,19 = 1, Y11,28

∨
¬Y10,18 = 1, Y11,26

∨
¬Y10,16 = 1, Y11,25

∨
¬Y10,15 = 1, Y11,24

∨
¬Y10,14 = 1.

Y14,21 = 1, Y14,20 = 1, Y14,19 = 1 (We use the three conditions); Or Y15,21 = 1, Y14,21 = 0, Y14,20 = 0, Y14,19 = 0.
Y15,6 = 1, Y14,6 = 0, Y15,5 = 1; Or Y14,6 = 1, Y15,5 = 0 (We use the two conditions).
Y15,29 = 0, Y15,28 = 0, Y15,27 = 1.
Y18,28 = Y17,28, Y18,21 = Y17,21, Y18,16 = Y17,16.
Y19,17 = Y18,17, Y19,8 = Y18,8, Y19,1 = Y18,1.
Y20,24 = Y19,24.
Y22,19 = Y21,19, Y22,20 = Y21,20.
Y24,18 = Y23,18.
Y27,4 = Y26,4.
Y28,19 = Y27,19, Y28,20 = Y27,20, Y28,21 = Y27,21.
Y29,8 = Y28,8.
X15,0 = X14,22.
X22,31 = X21,21.

14



Therefore, if [Q≪7
25 ]0 = 0 and [Q≪7

25 ]1 = 0 can hold, Y25,1 = 0 and Y25,0 = 1 will
hold with probability 1. Then, our goal is to ensure [Q≪7

25 ]0 = 0 and [Q≪7
25 ]1 =

0. After fixing the middle part as shown in Table 5, Y≪10
20 is known and we can

compute that

Temp = Y≪10
20 �Kr

1 = 0xf45c8129.

0xf45c8129 = 11110100 01011100 10000001 00101001.

Consider the calculation of IFZ(Y24, Y23, Y≪10
22 ).

IFZ(Y24, Y23, Y
≪10
22 ) = (Y24

∧
Y≪10
22 )⊕ (Y23

∧
Y≪10
22 )

We write Y24, Y23, Y≪10
22 in binary according to Table 4 as follows for a better

understanding.

Y24 = 1------- -------1 ----0-1- ------00.

Y23 = 1------- -------0 -----01- ------n-.

Y≪10
22 = u------- ----1u-- ----00u- ----001-.

Add the following bit conditions on Y23 and Y22 marked in red.

Y24 = 1------- -------1 ----0-1- ------00.

Y23 = 1----000 -------0 -----01- ------n-.

Y≪10
22 = u----000 ----1u-- ----00u- ----001-.

Let F = IFZ(Y24, Y23, Y
≪10
22 ) and then we can know [F ]26∼24 = 000. Next, we

add some conditions on m14 when randomly choosing its value. Consider the
following pattern of m14.

m14 = -----100 0------- -------- --------.

In this way, we consider the calculation of Q25.

Q25 = F� Temp�m14.

We have known the pattern of F, Temp and m14. More specifically, they are as
follows:

F = -----000 -------- -------- --------.

Temp = 11110100 01011100 10000001 00101001.

m14 = -----100 0------- -------- --------.

Q25 = -----00- -------- -------- --------.

Therefore, as shown in the above equation, [Q≪7
25 ]0 = 0 and [Q≪7

25 ]1 = 0 can
always hold. In other words, by adding three bit conditions on Y23 and three bit
conditions on Y22 (Y23,24 = 0, Y23,25 = 0, Y23,26 = 0, Y22,14 = 0, Y22,15 = 0 and
Y22,16 = 0) and by adding four bit conditions on m14 when randomly choosing
its value, for the solution of the middle part in Table 5, Y25,1 = 0 and Y25,0 =
1 will hold with probability 1. All these newly-added conditions can be satisfied
with probability 1 using single-step modification.

15



5.2 Verification

After adding some additional conditions as above, we can finally know the con-
ditions on the internal states and message word. Then, under our attack frame-
work, we find a solution for the right branch as shown in Table 5.

Table 5. One Instance on the Right Branch, where m′15 = m15 � 224, and
∆mi = 0 (0 6 i 6 14).

Yi π2(i)
-4 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0
-3 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0
-2 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1
-1 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0
00 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1 5

1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 14
2 0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 7
3 1 0 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0
4 1 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 9
5 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 2
6 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 11
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
8 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 13
9 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 6
10 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 15
11 1 0 1 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 n u u u u 8
12 n u u u u u u u u u u u u u u u u 0 n 0 n 0 0 1 0 0 0 0 1 1 0 0 1
13 0 u n n 1 u u 0 1 1 1 1 1 0 1 0 0 n u u n n 1 1 0 1 1 0 1 1 u n 10
14 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 n u 1 0 1 0 1 1 n u 1 1 1 1 3
15 0 0 0 0 1 0 1 1 1 1 0 0 u 1 u 1 1 0 1 0 0 0 0 u 1 1 0 1 0 1 0 1 12
16 1 1 1 1 n 1 u u 0 0 0 n 1 n 1 1 0 0 0 1 n 1 1 1 1 n u u u u u u 5
17 1 u 1 0 1 1 1 u n 1 1 0 1 1 1 1 0 0 u 1 0 u n n n 0 n n n 0 1 1 11
18 0 1 0 0 1 0 0 0 0 n 1 0 1 1 1 1 1 n 0 0 0 0 1 0 0 1 0 0 0 0 0 1 3
19 1 u 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 1 7
20 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 n u 1 1 0 1 0 1 1 0 0 0
21 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 13
22 u 1 0 1 1 1 0 0 1 1 u 0 1 1 0 0 0 0 0 0 1 1 1 u 0 0 1 0 0 0 0 0 5
23 1 1 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 0 0 n 1 10
24 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 14
25 1 0 0 0 0 n 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 15
26 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 u n n 0 0 0 1 0 0 1 1 0 8
27 1 u 1 0 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 0 0 1 1 12
28 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 0 0 4
29 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 9
30 0 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1

Message Words m0 m1 m2 m3

Value 0x284ca581 0x55fd6120 0x694b052c 0xd5f43d9f

Message Words m4 m5 m6 m7

Value 0xa064a7c8 0xb9f7b3cd 0x1221b7bb 0x42156657

Message Words m8 m9 m10 m11

Value 0x121ecfee 0xce7a7105 0xf2d47e6f 0xf567ac2e

Message Words m12 m13 m14 m15

Value 0x20d0d1cb 0x9d928b7d 0x5c6ff19b 0xc306e50f

5.3 Complexity Evaluation

As described in [LMW17], the left branch holds with probability 2−29.

16



For Yi (24 ≤ i ≤ 30), since we can ensure two bit conditions on Y25, there are
21 bit conditions on them remaining uncontrolled. In addition, Qi (24 ≤ i ≤ 30)
satisfy their corresponding equations with probability about 2−3.

For the initial part, Y7 = 0 will always make the condition on Q11 hold.
Different from [LMW17], we don’t control characteristics of Q12 and Q13. Q12

satisfies its corresponding equations with probability close to 1 and therefore can
be neglected. Q13 satisfies its corresponding equation with probability of about
2−1. In addition, we can’t ensure the three bit conditions on Y9. Hence, the right
branch holds with probability of 2−21−3−1−4 = 2−28.

Totally, the success probability to find colliding messages using the 30-step
differential path found in [LMW17] is 2−57. Therefore, under our efficient attack
framework, we improve the original time complexity by a factor of 213.

6 Opposite Searching Strategy

For some interest, we also consider an opposite searching strategy and the corre-
sponding attack framework which captures the characteristics of the differential
path found by such a searching strategy. We hope the readers can refer to Table
3 for a better understanding when reading this part.

The opposite searching strategy is that the right branch is set sparse and
fully free and only apply modification on the dense left branch. Therefore, we
choose m12 as the message word to generate difference. In this way, X13 is
the first internal state with difference. To propagate the difference in X13 to

X14, we are actually propagating the difference of X13 ⊕ X12 ⊕ X≪10
11 . Since

there is no difference in X11 and X12 and it is an XOR operation, there will
be always conditions on X11 and X12. However, there won’t be conditions on
Xi (1 ≤ i ≤ 10). This seems quiet good compared with the original searching
strategy where Yi (1 ≤ i ≤ 8) are fully free.

Then, we capture this characteristics of the differential path and find the
corresponding attack framework under the guidance of the two principles. The
optimal position of middle part we finally determined is Xi (11 ≤ i ≤ 23). In this
case, the 5 consecutive internal states to be connected become Xi (11 ≤ i ≤ 15).
However, two of message words (m10,m13) used to update these internal states
are fixed in the middle part. Now, we describe how to use an efficient method to
achieve connection in X11 and X14.

Observe that m8 and m9 is fully free. Consider the calculation of X14, which
is fixed in the middle part.

X14 = X10
≪10 � (XOR(X13, X12, X11

≪10)�X9
≪10 �m13 �K

l
0)≪7.

Since m13 and Xi (11 ≤ i ≤ 14) are all fixed in the middle part, we can exhaust
all 232 possible values of X9 and obtain 232 possible pairs (X9, X10) satisfying
the above equation.

Consider the calculation of X11, which is also fixed in the middle part.

X11 = X≪10
7 � (XOR(X10, X9, X

≪10
8 )�X≪10

6 �m10 �K
l
0)≪14.

17



Let

var = ((X11 �X
≪10
7 )≫14 � (X≪10

6 �m10 �K
l
0))⊕X≪10

8 .

X10 ⊕X9 = var.

Suppose we have computed until X8 in the initial part, we then compute the
value of var and then find a solution of (X9, X10) from the pre-computed solution
set which will make the connection in X11 and X14 succeed. It is expected that
we can find one solution for a random var since there are 232 solutions in the
pre-computed solution set. Besides, we can obtain the solution quickly by storing
it in a table in memory.

Now, we give the attack framework illustrated in Fig. 5 to mount collision
attack on RIPEMD-160 whose differential path follows the new searching strat-
egy.

Fig. 5. Attack Framework for RIPEMD-160

Step 1: Fix the internal states located in the middle part from X11 to Y23, which
can be easily done using single-step modification since only m15 is used
twice to update the internal states. Then, pre-compute the solution set
S for (X9, X10) based on the following equation.

X14 = X10
≪10 � (XOR(X13, X12, X11

≪10)�X9
≪10 �m13 �K

l
0)≪7.

Step 2: Apply single-step modification to ensure the conditions on Y24 since their
corresponding message word m3 hasn’t been fixed in the middle part.

Step 3: Compute from the first step until X8 and then achieve connection in Y11
and Y14 as follows:

var = ((X11 �X
≪10
7 )≫14 � (X≪10

6 �m10 �K
l
0))⊕X≪10

8 .

Find solutions of (X9, X10) from S and then compute m8 and m9.

m8 = (X9 �X
≪10
5 )≫11 � (XOR(X8, X7, X

≪10
6 )�X≪10

4 �Kl
0).

m9 = (X10 �X
≪10
6 )≫13 � (XOR(X9, X8, X

≪10
7 )�X≪10

5 �Kl
0).

Step 4: All message words have been fixed after connection. Then we verify the
probabilistic part in both branches. If they don’t hold, go to Step 2 until
we find colliding messages. The freedom is provided by m0, m2, m3 and
m5.

18



Comparing this attack framework with that presented in previous part special
for the original searching strategy in [LMW17], we find that we can extend one
more step that can be controlled. Therefore, we expect to obtain a better collision
attack under our attack framework if the differential path is found by taking
Strategy 3 into consideration when using the tool.

Strategy 3. The number of conditions on the internal states Xi (i ≥ 25)
should be as small as possible.

7 Conclusion

In this paper, we re-consider the connecting techniques used to find colliding
messages, which is achieved by connecting the middle part with the initial part.
To obtain the most efficient attack framework, we don’t consider the ideal case
to achieve connection. Motivated by this, we propose two principles which will
guide us to find an optimal position of middle part even though the case is
not ideal. Following the two principles, we find an optimal position of middle
part and the corresponding attack framework which works quite efficiently for
the differential path discovered by using the strategy in [LMW17]. Under this
attack framework, the 30-step collision attack is improved by a factor of 213.

Following our efficient attack framework, we also propose another two strate-
gies when adopting the original strategy in [LMW17] to find a differential path.
And we believe that it is possible to obtain a better collision attack on 30-step
RIPEMD-160 and extend it to more steps.

For some interest, we also consider an opposite searching strategy to [LMW17].
To capture the characteristics of the differential path discovered using the new
strategy, we also propose another efficient attack framework. This framework
also provides one more strategy when searching differential path. Besides, we
observe that we can control one more step than the framework special for the
original searching strategy and therefore we believe it is potential to obtain a
better collision attack on reduced RIPEMD-160.

In conclusion, we propose two efficient attack frameworks special for two
different searching strategies to find a differential path. Then, we also give some
additional strategies to help find an optimal differential path, which may help
improve existing attack. Combining with the searching tool, we may give a tight
upper bound of steps to mount collision attack on reduced RIPEMD-160 when
adopting the two strategies.

References

Dam89. Ivan Damg̊ard. A design principle for hash functions. In Advances in Cryp-
tology - CRYPTO ’89, 9th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 1989, Proceedings, pages
416–427, 1989.

19



DBP96. Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A
strengthened version of RIPEMD. In Fast Software Encryption, Third In-
ternational Workshop, Cambridge, UK, February 21-23, 1996, Proceedings,
pages 71–82, 1996.

DEM15. Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Analysis of
SHA-512/224 and SHA-512/256. In Advances in Cryptology - ASIACRYP-
T 2015 - 21st International Conference on the Theory and Application of
Cryptology and Information Security, Auckland, New Zealand, November
29 - December 3, 2015, Proceedings, Part II, pages 612–630, 2015.

EMS14. Maria Eichlseder, Florian Mendel, and Martin Schläffer. Branching heuris-
tics in differential collision search with applications to SHA-512. In Fast
Software Encryption - 21st International Workshop, FSE 2014, London,
UK, March 3-5, 2014. Revised Selected Papers, pages 473–488, 2014.

Leu07. Gaëtan Leurent. Message freedom in MD4 and MD5 collisions: Applica-
tion to APOP. In Fast Software Encryption, 14th International Workshop,
FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected
Papers, pages 309–328, 2007.

LMW17. Fukang Liu, Florian Mendel, and Gaoli Wang. Collisions and semi-free-
start collisions for round-reduced RIPEMD-160. In Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I, pages 158–186, 2017.

LP13. Franck Landelle and Thomas Peyrin. Cryptanalysis of full RIPEMD-128. In
Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings, pages 228–244, 2013.

Mer89. Ralph C. Merkle. One way hash functions and DES. In Advances in Cryp-
tology - CRYPTO ’89, 9th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 1989, Proceedings, pages
428–446, 1989.

MNS11. Florian Mendel, Tomislav Nad, and Martin Schläffer. Finding SHA-2 char-
acteristics: Searching through a minefield of contradictions. In Advances
in Cryptology - ASIACRYPT 2011 - 17th International Conference on
the Theory and Application of Cryptology and Information Security, Seoul,
South Korea, December 4-8, 2011. Proceedings, pages 288–307, 2011.

MNS12. Florian Mendel, Tomislav Nad, and Martin Schläffer. Collision attacks on
the reduced dual-stream hash function RIPEMD-128. In Fast Software
Encryption - 19th International Workshop, FSE 2012, Washington, DC,
USA, March 19-21, 2012. Revised Selected Papers, pages 226–243, 2012.

MNS13a. Florian Mendel, Tomislav Nad, and Martin Schläffer. Finding collisions for
round-reduced SM3. In Topics in Cryptology - CT-RSA 2013 - The Cryp-
tographers’ Track at the RSA Conference 2013, San Francisco,CA, USA,
February 25-March 1, 2013. Proceedings, pages 174–188, 2013.

MNS13b. Florian Mendel, Tomislav Nad, and Martin Schläffer. Improving local col-
lisions: New attacks on reduced SHA-256. In Advances in Cryptology -
EUROCRYPT 2013, 32nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Athens, Greece, May 26-30,
2013. Proceedings, pages 262–278, 2013.

MNSS12. Florian Mendel, Tomislav Nad, Stefan Scherz, and Martin Schläffer. Dif-
ferential attacks on reduced RIPEMD-160. In Information Security - 15th

20



International Conference, ISC 2012, Passau, Germany, September 19-21,
2012. Proceedings, pages 23–38, 2012.

MPS+13. Florian Mendel, Thomas Peyrin, Martin Schläffer, Lei Wang, and Shuang
Wu. Improved cryptanalysis of reduced RIPEMD-160. In Advances in
Cryptology - ASIACRYPT 2013 - 19th International Conference on the
Theory and Application of Cryptology and Information Security, Bengaluru,
India, December 1-5, 2013, Proceedings, Part II, pages 484–503, 2013.

OSS12. Chiaki Ohtahara, Yu Sasaki, and Takeshi Shimoyama. Preimage attacks
on the step-reduced RIPEMD-128 and RIPEMD-160. IEICE Transactions,
95-A(10):1729–1739, 2012.

SBK+17. Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov. The first collision for full SHA-1. In Advances in Cryptology -
CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I, pages 570–596,
2017.

SW12. Yu Sasaki and Lei Wang. Distinguishers beyond three rounds of the
RIPEMD-128/-160 compression functions. In Applied Cryptography and
Network Security - 10th International Conference, ACNS 2012, Singapore,
June 26-29, 2012. Proceedings, pages 275–292, 2012.

WLF+05. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu.
Cryptanalysis of the hash functions MD4 and RIPEMD. In Advances in
Cryptology - EUROCRYPT 2005, 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Aarhus, Den-
mark, May 22-26, 2005, Proceedings, pages 1–18, 2005.

WSL17. Gaoli Wang, Yanzhao Shen, and Fukang Liu. Cryptanalysis of 48-step
RIPEMD-160. IACR Trans. Symmetric Cryptol., 2017(2):177–202, 2017.

WY05. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash func-
tions. In Advances in Cryptology - EUROCRYPT 2005, 24th Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, pages 19–35,
2005.

WYY05a. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the
full SHA-1. In Advances in Cryptology - CRYPTO 2005: 25th Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August
14-18, 2005, Proceedings, pages 17–36, 2005.

WYY05b. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search
attacks on SHA-0. In Advances in Cryptology - CRYPTO 2005: 25th An-
nual International Cryptology Conference, Santa Barbara, California, USA,
August 14-18, 2005, Proceedings, pages 1–16, 2005.

21


	Efficient Collision Attack Frameworks for RIPEMD-160
	Fukang Liu

