
Side-Channel Analysis of SM2:
A Late-Stage Featurization Case Study

Nicola Tuveri

Tampere University of Technology

Tampere, Finland

nicola.tuveri@tut.fi

Sohaib ul Hassan

Tampere University of Technology

Tampere, Finland

sohaibulhassan@tut.fi

Cesar Pereida García

Tampere University of Technology

Tampere, Finland

cesar.pereidagarcia@tut.fi

Billy Bob Brumley

Tampere University of Technology

Tampere, Finland

billy.brumley@tut.fi

ABSTRACT
SM2 is a public key cryptography suite originating from Chinese

standards, including digital signatures and public key encryption.

Ahead of schedule, code for this functionality was recently main-

lined in OpenSSL, marked for the upcoming 1.1.1 release. We per-

form a security review of this implementation, uncovering various

deficiencies ranging from traditional software quality issues to

side-channel risks. To assess the latter, we carry out a side-channel

security evaluation and discover that the implementation hits every

pitfall seen for OpenSSL’s ECDSA code in the past decade. We carry

out remote timings, cache timings, and EM analysis, with accom-

panying empirical data to demonstrate secret information leakage

during execution of both digital signature generation and public

key decryption. Finally, we propose, implement, and empirically

evaluate countermeasures.

KEYWORDS
software engineering; applied cryptography; public key cryptog-

raphy; side-channel analysis; timing attacks; cache-timing attacks;

power analysis; TVLA; SM2; OpenSSL

1 INTRODUCTION
SM2

1
is a suite of elliptic curve public key cryptosystems, stan-

dardized as a part of Chinese commercial cryptography mandates.

Support for SM2 in OpenSSL landed in the public GitHub reposi-

tory through pull request (PR) #4793,
2
created in November 2017

by external contributors. During the review process, in January

2018, the OpenSSL team assigned the PR to the Post-1.1.1 milestone,

marking functionality intended to be merged after the upcoming

1.1.1 release of OpenSSL.

Due to this, SM2 support was excluded from the two alpha re-

leases for OpenSSL 1.1.1. But in March 2018, just before the release
of the first 1.1.1 beta — and the associated feature freeze — the

OpenSSL development team decided to merge the PR into the 1.1.1

beta development cycle, to have a chance to work on it and pos-

sibly include SM2 support as part of the upcoming minor release

rather than waiting for the next one. Considering that new features

can only be added with a new minor release and that the current

one (OpenSSL 1.1.0) was released on August 2016, it is likely that

1
https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02

2
https://github.com/openssl/openssl/pull/4793

a similar — if not longer — development cycle might be required

before the SM2 functionality could be added to OpenSSL. The SM2

functionality has thus been part of the beta development cycle since

the release of OpenSSL 1.1.1-pre3 (beta 1).

At the time of beta 1 release, the release timetable
3
for OpenSSL

1.1.1 envisioned four beta releases, aiming at 15th May 2018 as the

first possible final release date. As such, the addition of SM2 sup-

port into the active development branch occurred at an extremely

late stage to be included in the upcoming release cycle, giving a

remarkably short window for public review before the final release.

Motivation and goal. The first contribution of our work, our ini-

tial security review revealed that the late-stage featurization process

resulted in various deficiencies, ranging from code quality issues to

traditional software defects, and hinted at significant side-channel

analysis (SCA) risks based on previous SCA results targeting ECC

within OpenSSL. The goal of this research consists in empirically

verifying these SCA deficiencies, and then responsibly mitigate

them, aiming at intersecting the upcoming OpenSSL 1.1.1 release

to ensure these vulnerabilities do not affect released versions of the

library.

Furthermore, taking SM2 as a case study, we criticize the cur-

rent status of the project. It demonstrates that implementing new

functionality without reintroducing previously fixed vulnerabilities

proves to be unnecessarily challenging, requiring intimate familiar-

ity with internal details of lower level library modules (e.g. where,

when, and how constant-time flags must be re-/enabled, which

codepaths in the lower EC and BIGNUM modules require to use im-

plementations with SCA mitigations, etc.). Hence, as a secondary

goal, we also aim at reviewing the abstraction level at which current

SCA countermeasures are implemented, and push for a secure-by-
default approach — within the boundaries the project enforces for

a minor release — so that future implementations will by default

benefit from them.

Structure and our contributions. Section 2 reviews relevant back-

ground and previous work. We present our security analysis related

to the integration of the SM2 functionality in the OpenSSL code-

base in Section 3, offering an overview of the issues uncovered. In

Section 4, Section 5, and Section 6, respectively, we evaluate SCA

defects in the SM2 implementation related to remote timings, cache

3
https://mta.openssl.org/pipermail/openssl-project/2018-March/000372.html

https://github.com/openssl/openssl/pull/4793
https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
https://github.com/openssl/openssl/pull/4793
https://mta.openssl.org/pipermail/openssl-project/2018-March/000372.html

timings and EM analysis. We propose, implement and empirically

evaluate appropriate mitigations in Section 7. Finally, we conclude

in Section 8.

2 BACKGROUND
This section describes SM2, various SCA techniques that potentially

apply to SM2 implementations, and summarizes previous work on

SM2 implementation attacks.

2.1 SM2: Chinese Cryptography Standards
SM2 consists of a digital signature scheme (SM2DSA), a public key

encryption scheme (SM2PKE), and a key agreement protocol. In

this work, we restrict to SM2DSA and SM2PKE.

Elliptic curves and SM2. While the RFC contains cryptosystem

test vectors for several different curves in simplified Weierstrass

form (over both prime and binary fields), one required curve
4
con-

sists of all the (x,y) points (x,y ∈ GF (p)) satisfying the equation

E : y2 = x3 + ax + b

overGF (p) along with the point-at-infinity (group identity element).

The domain parameters are consistent with legacy ECC, setting p a

256-bit Mersenne-like prime, a = −3 ∈ GF (p), both b ∈ GF (p) and
generator pointG ∈ E seemingly random, and prime group order n
(i.e. co-factor h = 1) slightly below 2

256
.

SM2DSA digital signatures. The user’s private-public keypair

is (dA,QA) where dA is chosen uniformly from [1 . .n − 1) and

QA = [dA]G holds. Denote ZA the personalization string (hash)

andm the message. Digital signatures compute as follows.

(1) Compute the digest h = H (ZA ∥ m).

(2) Select a secret nonce k uniformly from [1 . .n).
(3) Compute (x,y) = [k]G.
(4) Compute r = h + x mod n.
(5) Compute s = (1 + dA)

−1(k − rdA) mod n.
(6) If any of r = 0, s = 0, or s = k hold, retry.

(7) Return the SM2 digital signature (r , s).

Hash function H can be any “approved” function, including SM3
5

standardized in a parallel effort. Verification is not relevant to this

work, hence we omit the description.

SM2PKE public key encryption. SM2PKE is roughly analogous to

ECIES [2, Sec. 5.1]. Denote the ciphertext C = C1 ∥ C2 ∥ C3 where,

at a high level,C1 represents the sender’s ephemeral Diffie-Hellman

public key (point), C2 is the One-Time-Pad (OTP) ciphertext (with

length |C2 |), and C3 is the authentication tag. The recipient with

private-public keypair (dB ,QB) recovers the plaintext from C as

follows.

(1) Convert C1 to a point on E. If C1 is not on the curve or does

not have order n, return an error.

(2) Compute (x,y) = [dB]C1, the shared ECDH point.

(3) Compute z = KDF (x ∥ y, |C2 |), the OTP key; |z | = |C2 |.

(4) Computem′ = z ⊕ C2, i.e. OTP decryption.

(5) Compute t ′ = H (x ∥ m′ ∥ y), the purported tag.

(6) If t ′ , C3 holds, return an error.

4
OID 1.2.156.10197.1.301

5
https://tools.ietf.org/html/draft-oscca-cfrg-sm3-02

(7) Return the plaintextm′
.

Encryption is not relevant to this work, hence we omit the descrip-

tion.

2.2 Remote Timing Attacks
Timing attacks exploit differences in the time required by a specific

implementation to perform an operation on different inputs. In

the case of hardware or software cryptosystem implementations, if

there is a correlation between the timing of an operation and some

secret inputs, the leaked information might be used to mount an

attack to recover secret material.

In his seminal work, Kocher [49] introduces a number of simple

timing attacks on modular exponentiation and modular reduction

implementations, affecting implementations of public key cryp-

tosystems with a static key such as RSA and static Diffie-Hellman

or DSA implementations that precompute the ephemeral part.

Brumley and Boneh [22, 23] demonstrate that timing attacks

apply also to general software systems, defying contemporary com-

mon belief, by devising a timing attack against the OpenSSL im-

plementation of RSA decryption – exploiting time dependencies

introduced by the Montgomery reduction and the multiplication

routines – and ultimately retrieving the complete factorization of

the key pair modulus. Moreover, they demonstrate that such attacks

are practical even in a remote scenario, mounting a real-world attack

through a client timing RSA decryptions during SSL handshakes

with an OpenSSL server. The attack is effective when performed

between two processes running on the same host, across co-located

virtual machines, and in local networks. They analyze three possi-

ble defenses, favoring RSA blinding, and as a consequence several

cryptographic libraries, including OpenSSL, enable RSA blinding

by default as a countermeasure.
6

Acıiçmez et al. [5] further improve the original attack, by tar-

geting Montgomery Multiplications in the table initialization phase
of the sliding window algorithm used to perform the RSA expo-

nentiation in OpenSSL, rather than the exponentiation phase itself,
increasing the number of multiplications that leak timing infor-

mation used to retrieve one of the secret prime factors of RSA

moduli.

Chen et al. [26] build on these two attacks, improving the suc-

cess rate through an error detection and correction strategy, thus

reducing the number of queries required to mount a successful

attack and affecting the total time of the attack and its detectability.

Brumley and Tuveri [21] present another end-to-end remote tim-

ing attack: it similarly demonstrates full key recovery in local and

remote scenarios, and targets the OpenSSL Montgomery’s ladder

implementation for scalar multiplication on elliptic curves over

binary fields. The Montgomery ladder algorithm is often recom-

mended as a countermeasure to side-channel attacks due to a fixed

sequence of curve operations, that does not depend on the values

of individual bits in the secret scalar, while still being computation-

ally fast with no large memory overhead. Nonetheless, the attack

exploits exactly the regularity feature of the algorithm, as it creates

a direct linear correlation between the binary logarithm (i.e. the bit

6
The issue uncovered by their work was tracked in the public CVE dictionary with the

id CVE-2003-0147, and, addressing it, OpenSSL issued a Security Advisory (17 March

2003), and CERT issued vulnerability note VU#997481.

https://tools.ietf.org/html/draft-oscca-cfrg-sm3-02
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0147
https://www.openssl.org/news/secadv/20030317
https://www.openssl.org/news/secadv/20030317
http://www.kb.cert.org/vuls/id/997481

length) of the secret scalar and the number of iterations (and thus

curve operations) in the ladder.

The authors exploit this vulnerability by mounting an attack

that collects several measures of the wall-clock execution time of

a partial TLS handshake, using an ECDHE_ECDSA ciphersuite over
a binary curve. The collected measures are heavily dominated by

the EC scalar multiplication of the ECDSA signature generation,

implemented using theMontgomery ladder, and thus can be directly

correlated with the bit length of the secret scalar (the ephemeral

nonce of the ECDSA signature generation algorithm). A second,

offline, post-processing phase then uses this partial knowledge to

recover the full secret key through a lattice attack.

The proposed countermeasure, adopted by OpenSSL, is based on

conditionally padding the nonce before the actual scalar multipli-

cation, to always work on scalars of fixed length (i.e. adding once

or twice the group order to the scalar yields an equivalent scalar

with the topmost bit set) which in turn fixes the number of curve

operations in the ladder and the associated execution time.
7

Timing measurement noise heavily affects the success rate of

the described attacks, usually resulting in the attacks being unfea-

sible over a wireless link and having severely limited feasibility

over a WAN connection due to both decreased accuracy and the

total time of the attacks (which is generally further increased to

compensate the noise by collecting more samples). However, more

recent results [32] address the latter scenario, studying the statis-

tical distribution of latency over different network environments

and designing specialized filters to significantly reduce the effect of

jitter (i.e. the random noise on the latency introduced by additional

hops in the route(s) of a network connection). These filters allow

attackers to measure events with higher accuracy over the Internet,

with potential effects on the feasibility of remote timing attacks

over WAN connections.

Timing as a side-channel is not limited to the execution time of

a whole cryptographic operation, and is often a gateway to retrieve

information from other resources shared between an attacker and

a victim, including microarchitecture components, as in the cache-

timing attacks covered below or, switching to the domain of web

privacy, even virtual constructs in modern web browsers [71, 72].

Alternatively, the timing side-channel can be used to build reli-

able oracles, often circumventing trivial implementations of coun-

termeasures to prevent other side-channel attacks. In 1998, Ble-

ichenbacher [16] presented a famous adaptive chosen-ciphertext

attack on SSL/TLS ciphersuites based on RSA and PKCS#1 v1.5

encryption padding, based on an oracle built on top of different

error messages sent by servers in case of malformed ciphertexts

during the SSL/TLS handshake. As a result of the work, subsequent

specifications of the TLS protocol (starting from RFC 2246 [33] TLS

1.0, in the same year) recommend “to treat incorrectly formatted

messages in a manner indistinguishable from correctly formatted

RSA blocks”. But when implementations fail to extend this recom-

mendation to the execution time of handling different events and

conditions, the timing side-channel can be used to build an alterna-

tive oracle, effective for remote exploitation, as presented in 2014

by Meyer et al. [56]. Their work targeted, among others, the default

7
To track the issue uncovered by this work the id CVE-2011-1945 was assigned and

CERT issued the vulnerability note VU#536044.

Java Secure Socket Extension (JSSE) and OpenSSL implementations

of the SSL/TLS protocol.

2.3 Cache Timing Attacks
Cache-timing attacks are a subset of microarchitecture attacks

targeting specifically the cache hierarchy. Cache-timing attacks

against implementations of cryptography primitives exploit two

key features: (1) the timing variation introduced by the cache hi-

erarchy; and (2) the non-constant time execution of algorithms

handling confidential data used by cryptography primitives and

algorithms, e.g. key generation [8, 73], digital signatures [11, 65],

encryption [12] and key exchange [39]. Typically, the ultimate goal

of a cache-timing attack is to recover confidential information from

an algorithm execution and this is done by correlating cache timing

data to either the execution time of the algorithm in use, its internal

state during execution, or the output of the algorithm. Cache-timing

attacks are feasible due to several cache attack techniques proposed

and used successfully in the past, e.g. Evict+Time [63], Prime+Pro-

be [64], and Flush+Reload [75]. The choice of attack technique

depends on the attack scenario since each technique has its own

advantages and disadvantages.

Cache Architecture. Accessing data and instructions from main

memory is not an instant operation since it takes time to locate

and fetch the data, thus delaying the execution of the processor.

To improve the efficiency of the processor, the memory hierarchy

includes memory banks called caches, located between the CPU

cores and the RAM. Caches are smaller and faster compared to

RAM and main memory, helping to improve the performance by

exploiting spacial and temporal locality of the memory access.

Modern CPUs contain multiple cache levels, usually L1 and L2
caches are private to a specific core and the last level cache (LLC)

is shared among the cores. Typically, the LLC is said to be inclusive,
meaning that it contains a superset of the data of the caches below it,

i.e. L1 and L2, thus it contains both instructions and data. The caches

are organized into fixed size cache lines which are grouped in cache
sets. The number of cache lines in a cache set is the associativity, i.e.,
a cache withW lines in each set is aW -way set-associative cache.

When the CPU needs to fetch data from memory, it first checks

in the caches; if the data is there, a cache hit occurs and the load

delay is short. On the other hand, when the data is not found in

the caches, a cache miss occurs and the data must be fetched from

a higher level memory, causing a longer delay. A copy of the data

fetched from a higher level is cached, exploiting temporal locality.

In addition, data close to the accessed data will be fetched and

cached too, exploiting spatial locality. If a cache miss occurs and all

the cache lines are in use, one of the cache lines is evicted, freeing

space for the new data. In order to determine the cache line to

evict, modern CPUs use variations of the least-recently-used (LRU)

replacement policy.

Flush+Reload. Proposed by Yarom and Falkner [75], this pow-

erful technique positively identifies accesses to specific memory

lines with a high resolution, high accuracy, and high signal-to-noise

ratio. Moreover, the technique relies on cache sharing between the

CPU cores, typically achieved through the use of shared libraries.

https://tools.ietf.org/html/rfc2246
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1945
http://www.kb.cert.org/vuls/id/536044

A round of attack consists of three phases: (1) the attacker evicts

the target memory line using the clflush instruction; (2) the at-

tacker waits some time for the victim to access the memory line; (3)

the attacker measures the time it takes to reload the memory line.

The timing reveals whether or not the memory line was accessed

by the victim during the waiting period, i.e. identifies cache hits

and cache misses.

In addition to cache-timing attacks on cryptography, the Flush+

Reload technique applies in clever ways targeting the kernel [45],

web server function calls [77], user input [42, 51], covert chan-

nels [55], as well as more powerful microarchitecture attacks such

as Meltdown [52] and the Spectre [48] attacks.

2.4 Power Analysis
Introduced by Kocher et al. [50], power analysis exploits the corre-

lation between sensitive data and changing power leakages on the

device. These power fluctuations are a result of transistor switching

between the logic levels of CMOS circuits, and the current flow on

data lines, as a result of processor activity and memory accesses.

Due to the tightly packaged components on modern devices,

power analysis can be difficult to perform with limited or no access

to power rails and only noisy global power consumption. As an al-

ternative, Electromagnetic (EM) emanations—a by-product caused

by the current flow on data lines and power rails—originally pro-

posed as cryptographic side-channels by Quisquater and Samyde

[66], provides a spatial dimension to perform side-channel analysis

in isolation from unwanted leakage.

Various techniques exploit data dependent EM leakage such as

Differential Power Analysis [50], Correlation Power Analysis [17],

Template Attacks [25] and Horizontal attacks [30, 34]. Identifying

data dependent EM leakage can be challenging due to additional

noise and other unwanted artifacts, thus in addition to simple fre-

quency analysis, requires additional leakage detection using statis-

tical tools such as Mutual Information Analysis [29], χ2-test [58]
and Test Vector Leakage Assessment (TVLA) [41, 67].

Originally developed by Cryptography Research, Inc. for AES

[41] and later adapted for public-key cryptography [47], TVLA is a

preferred choice for applying black-box leakage detection testing

to identify side-channel weaknesses [28, 61]. TVLA is based on

Welch’s T-test [74], which computes a statistical value i.e. confi-

dence interval (CI) to accept or reject the null hypothesis. More

specifically, the test validate whether two sets of samples are taken

from similar data by comparing the averages of the two data sets.

Formally, for two sets S1 and S2, the T-test computes as

t =
µ1 − µ2√
σ 2

1

n1

+
σ 2

2

n2

where µ1, σ1, and n1 are the mean, standard deviation, and cardi-

nality of S1, respectively, and similarly for S2. The T-test will fail
at some discrete sample point if the value is greater than some

threshold Cτ . In the context of side-channel data, usually fixed vs

random test samples are compared to identify points with data

dependent leakage [41].

Contemporary works demonstrate the effectiveness of EM anal-

ysis on modern PCs, embedded and mobile devices on various open

source libraries such as GnuPG and OpenSSL, for attacking cryp-

tosystems like AES [54], RSA [38], ECDH [36], and ECDSA [37].

Moreover, e.g. Goller and Sigl [40] successfully demonstrate the

viability of EM attacks over varying distances from mobile devices

on ECC and RSA.

Longo et al. [54] performed localized EM analysis on a mod-

ern embedded device running software based OpenSSL AES, a

bit-sliced optimized implementation for SIMD NEON core, and an

AES hardware engine. They applied TVLA to identify EM leakages

and subsequently carry out template attacks. Genkin et al. [37]

were able to filter out EM emanations from a mobile device at very

low frequencies using inexpensive equipment and additional signal

processing steps. Their attack successfully recovered a few bits

of ECDSA nonces, targeting the OpenSSLwNAF implementation.

With roughly 100 signatures, they then successfully mounted a

lattice attack for key recovery.

2.5 SM2 Implementation Attacks: Previous
Work

Due to only recently being standardized and coupled with lack

of sufficient public implementations and deployments, academic

results on attacking SM2 implementations are limited in number.

Nevertheless, existing results suggest that implementation attacks

on ECDSA generally extend—with slight modification—to SM2DSA.

A brief review follows.

Liu et al. [53] were the first to construct an SM2DSA analogue

of existing lattice-based ECDSA key recovery with partially known

nonces. The authors model exposure of three LSBs, and with 256-bit

p and n recover a private key from 100 signatures with reasonable

probability and modest computation time.

Chen et al. [27] were the first to implement an SM2DSA lat-

tice attack with real traces. They target an SM2DSA smartcard

implementation and distinguish least significant byte collisions by

detecting Hamming weight with PCA-based techniques. Restricting

to byte values 0x00 and 0xFF, the authors obtain 120K signatures

with power traces, filter them to 48 pairs, and iteratively construct

lattice problem instances to recover a private key. Interestingly, the

target is not the underlying ECC itself, but data moves by the RNG

during nonce generation. In that respect, their attack is independent

of the underlying ECC arithmetic.

Building on [11, 20] that focus on the LSDs of the wNAF for

ECDSA nonces, Zhang et al. [76] extend the analysis to SM2DSA.

With their own implementation of ECC including traditionalwNAF

scalar multiplication paired with SM2DSA, they demonstrate it is

possible to reliably capture the sequence of ECC doubles and adds

through SPA on an Atmega128. Subsequently modeling the filtered

nonces with sufficient zeros in the LSDs and constructing lattice

problem instances, they recover private keys with high probability.

Since they target least significant zeros in the wNAF expansion,

their attack is largely independent of the scalar representation—for

example, it immediately applies to binary, sliding window, and fixed

window expansions. Their work provides even further evidence

that ECDSA-type leaks are similarly detrimental to SM2DSA.

While no English version is available, the abstract of [68] sug-

gests a CPA attack to recover the SM2PKE session key exploiting

potential leakage from the SM3 compression function execution.

That is, the target is not the ECC but the subsequent KDF.

3 SM2 IN OPENSSL
Refer to Section 1 for the detailed timeline of the SM2 feature

within OpenSSL. With the narrow review window induced by the

release milestone shift, several security (and functionality) issues

were mainlined into the OpenSSL codebase. We give an overview

of these issue in this section. Listing 1 includes an extract of the

SM2DSA signature generation implementation and Listing 2 for

SM2PKE public key decryption, as of OpenSSL 1.1.1-pre5 (beta 3).

Code review. Due to the hasty review process, the code imple-

menting SM2 in the beta releases is evidently not in line with the

quality standards of analogous components of libcrypto,8 lacking
test coverage, including critical bugs (e.g. double frees and wrong

return values), a lack of return values checking and poor error han-

dling. These defects are particularly evident in the integration with

the EVP_PKEY (and EVP_DigestSign) API, which is the main entry

point for libssl and internal and external applications for using

the cryptographic functionality included in libcrypto.

SCA review. Beyond these traditional software issues, we pre-

formed an SCA evaluation of both SM2DSA and SM2PKE inOpenSSL.

This integration provides a rare opportunity to see how a straight-

forward implementation of an EC cryptosystem mixes with the

underlying EC module for arithmetic. Our review resulted in the

following observations, leveraging existing SCA results (Section 2)

on the OpenSSL EC module.

(1) For SM2DSA, in Listing 1 there is no scalar padding before

calling EC_POINT_mul, suggesting an SM2DSA analogue of

CVE-2011-1945 for remote timing attacks; see Section 4 for

our empirical evaluation.

(2) For SM2DSA, since there is no custom EC_METHOD for the

SM2 curve, EC_POINT_mul is a wrapper ec_wNAF_mul, sug-
gesting an SM2DSA analogue for cache timing attacks tar-

geting scalar multiplication; see Section 5.1 for our empirical

evaluation.

(3) The SM2DSA implementation uses BN_mod_inverse with-
out setting BN_FLG_CONSTTIME, suggesting an SM2DSA ana-

logue for cache timing attacks targeting inversion via BEEA;

see Section 5.2 for our empirical evaluation.

(4) For SM2PKE, in Listing 2 there are no SCA considerations,

suggesting (at least) DPA-style attacks on EC_POINT_mul
during decryption; see Section 6 for our empirical evaluation.

The remainder of this paper is dedicated to evaluating these SCA

leaks, proposing and implementing mitigations (Section 7), and

empirical SCA evaluation of the mitigations (Section 7.3).

4 SM2DSA: REMOTE TIMINGS
We note the lack of scalar padding before calling EC_POINT_mul,
suggesting an SM2DSA analogue of CVE-2011-1945. To evaluate

the impact of this vulnerability, we correlate nonce lengths and the

8
The OpenSSL binaries can be roughly split in three blocks: libcrypto, providing the
cryptographic and abstraction layer; libssl, providing the networking layer; apps,
consisting in a CLI toolkit using the two libraries to perform various tasks.

84 k = BN_CTX_get(ctx);
85 rk = BN_CTX_get(ctx);
86 x1 = BN_CTX_get(ctx);
87 tmp = BN_CTX_get(ctx);
88

89 if (tmp == NULL)
90 goto done;
91

92 /* These values are returned and so should not be allocated out of the

context */↪→

93 r = BN_new();
94 s = BN_new();
95

96 if (r == NULL || s == NULL)
97 goto done;
98

99 for (;;) {
100 BN_priv_rand_range(k, order);
101

102 if (EC_POINT_mul(group, kG, k, NULL, NULL, ctx) == 0)
103 goto done;
104

105 if (EC_POINT_get_affine_coordinates_GFp(group, kG, x1, NULL, ctx) == 0)
106 goto done;
107

108 if (BN_mod_add(r, e, x1, order, ctx) == 0)
109 goto done;
110

111 /* try again if r == 0 or r+k == n */
112 if (BN_is_zero(r))
113 continue;
114

115 BN_add(rk, r, k);
116

117 if (BN_cmp(rk, order) == 0)
118 continue;
119

120 BN_add(s, dA, BN_value_one());
121 BN_mod_inverse(s, s, order, ctx);
122

123 BN_mod_mul(tmp, dA, r, order, ctx);
124 BN_sub(tmp, k, tmp);
125

126 BN_mod_mul(s, s, tmp, order, ctx);
127

128 sig = ECDSA_SIG_new();
129

130 if (sig == NULL)
131 goto done;
132

133 /* takes ownership of r and s */
134 ECDSA_SIG_set0(sig, r, s);
135 break;
136 }

Listing 1: Source code from crypto/sm2/sm2_sign.c in
OpenSSL 1.1.1-pre5 for SM2DSA signature generation.

270 C1 = EC_POINT_new(group);
271 if (C1 == NULL)
272 goto done;
273

274 if (EC_POINT_set_affine_coordinates_GFp
275 (group, C1, sm2_ctext->C1x, sm2_ctext->C1y, ctx) == 0)
276 goto done;
277

278 if (EC_POINT_mul(group, C1, NULL, C1, EC_KEY_get0_private_key(key), ctx) ==
279 0)
280 goto done;
281

282 if (EC_POINT_get_affine_coordinates_GFp(group, C1, x2, y2, ctx) == 0)
283 goto done;

Listing 2: Source code from crypto/sm2/sm2_crypt.c in
OpenSSL 1.1.1-pre5 for SM2PKE decryption.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1945

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1.480 1.490 1.500 1.510 1.520 1.530 1.540 1.550 1.560

C
u

m
u

la
ti

v
e

p
ro

b
ab

il
it

y

Time (CPU cycles, millions)

271 bits
272 bits
273 bits
274 bits
275 bits
276 bits
277 bits
278 bits
279 bits
280 bits
281 bits

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1.030 1.040 1.050 1.060 1.070 1.080 1.090 1.100 1.110

C
u

m
u

la
ti

v
e

p
ro

b
ab

il
it

y

Time (CPU cycles, millions)

246 bits
247 bits
248 bits
249 bits
250 bits
251 bits
252 bits
253 bits
254 bits
255 bits
256 bits

Figure 1: SM2DSA latency dependency on the nonce length
on amd64 architecture in OpenSSL 1.1.1-pre3. Top: K-283 bi-
nary curve. Bottom: Recommended SM2 prime curve.

execution time of signature generations, adopting a process similar

to the one presented by Brumley and Tuveri [21].

We wrote an OpenSSL client application which repeatedly gen-

erates SM2DSA signatures for a given plaintext, under the same

private key. For each generated signature, the program measures

the execution time of the operation (in CPU cycles) and retrieves

the associated nonce by monitoring the PRNG. We repeated the

experiment using both the recommended SM2 prime curve and

the standardized K-283 binary (Koblitz) curve [3], as the library

executes two different code paths for EC_POINT_mul over prime

and binary curves. We then analyzed the captured data to correlate

the timings with the binary logarithm (bit-length) of the nonces.

We ran these experiments on a 4-cores/4-threads Intel Core

i5-6500 CPU (Skylake) running at 3.2GHz, with Enhanced Intel

SpeedStep Technology and Intel Turbo Boost Technology disabled.

Figure 1 shows cumulative distribution functions (CDF) for different

nonce bit-lengths for the two curves, collating 4 million samples

for each curve. Both plots show a strong correlation between the

bit-length of the nonce and the execution time of the signature

generation, which in turn is distinctly dominated by the execution

time of the underlying EC_POINT_mul operation.

Generic binary curves. The top plot of Figure 1 shows that, using

a generic binary curve as the underlying elliptic curve for SM2DSA,

the timing correlation appears easily exploitable to mount a remote

timing attack similar to [21]. For generic binary curves, OpenSSL

implements the EC_POINT_mul operation through a Montgomery

ladder algorithm, which due to its extreme regularity in the se-

quence of EC additions and doublings, results in an overall execu-

tion time directly proportional to the binary logarithm of the secret

EC_POINT_mul scalar (i.e. the SM2DSA nonce). As a result, each

nonce bit-length exhibits a clearly distinct CDF, and suggests simple

thresholding on the execution time to filter signatures associated

with a specific nonce length with high probability.

Recommended SM2 curve. When using the recommended SM2

prime curve, OpenSSL 1.1.1-pre3 implements the EC_POINT_mul
operation using the generic prime curve codepath, using awNAF

algorithm (see Section 5.1). The bottom plot of Figure 1 shows that,

similarly to the previous case, there is a strong correlation between

the execution time of SM2DSA and the associated nonce length.

We note that in this case, mounting a practical attack poses more

challenges due to a less distinct separation between the different

CDFs, likely compensated by collecting more samples.

5 SM2DSA: CACHE TIMINGS
As mentioned in Section 2.5, several previous works show SM2DSA

vulnerable to ECDSA-type SCA attacks. For that reason, we explore

and analyze the cryptosystem applying existing cache-timing at-

tack techniques to code paths known for leaking information, and

exploited successfully in the past for ECDSA [11, 65].

For our analysis, we use the Flush+Reload technique [75] paired

with a performance degradation attack [9, 65]. This combination

of techniques allows us to accurately probe relevant memory ad-

dresses with enough granularity to confirm bit leakage on both

scalar multiplication and modular inversion operations.

5.1 Scalar Multiplication
SM2DSA in OpenSSL performs scalar multiplication operations by

calling the EC_POINT_mul function in SM2_sig_gen @ crypto/-
sm2/sm2_sign.c, which is only a wrapper to the underlying ec_-
wNAF_mul function. The ec_wNAF_mul function is a generic code

path performing scalar multiplication, i.e. [k]G in SM2DSA, by

executing a series of double and add operations based on thewNAF

representation of k . This code path is vulnerable to cache-timing

attacks due to its non constant-time execution, targeted previously

using cache-timing techniques [9, 20, 70, 75]. Generally, the strategy

is to trace the sequence of double and add operations, which leaks

LSDs of k , leading to private key recovery.

Unlike previous attacks, during our analysis we do not probe

memory lines directly used in functions EC_POINT_add and EC_-
POINT_dbl, but instead we focus in low level functions BN_rshift1
and BN_lshift. The BN_rshift1 function is one of several func-

tions called during EC_POINT_add execution and, unlike the rest

of the functions in the routine, BN_rshift1 is a representative

of the add operation. Similarly, BN_lshift is a representative of

the double operation, allowing to identify add and double opera-

tions respectively during scalar multiplication. Therefore, these low

level functions allow accurately detecting when add and double

operations execute. By tracing the sequence of BN_rshift1 and

BN_lshift operations, we are able to determine with high accuracy

the sequence of double and add operations, leaking LSDs of k . Top
trace in Figure 2 shows a post-filtered cache-timing trace of a scalar

multiplication with a random nonce k during SM2DSA. The probes

detect the sequence of curve operations from left to right as follows:

1 double, 1 add, 4 doubles, 1 add, 4 doubles, 1 add, 7 doubles, 1 add,

4 doubles, and 1 add; thus revealing partial information on k .

 0

 50

 100

 150

 200

 250

 61000 61500 62000 62500 63000

L
at

en
cy

 (
cy

cl
es

)

Time (samples)

double probe add probe

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60

L
at

en
cy

 (
cy

cl
es

)

Time (samples)

shift probe subtract probe

Figure 2: Partial raw cache-timing traces during SM2DSA.
Top: Scalar multiplication. Bottom: Binary GCDmodular in-
version. Both traces reveal partial information on the secret
scalar and the long-term private key, respectively.

5.2 Modular Inversion
Modular inversion is a common operation during digital signatures

and in OpenSSL, SM2DSA uses the BN_mod_inverse function for

this purpose. This function executes one of several GCD algorithm

variants. Unfortunately, most of these variants are based on the

Euclidean algorithm which executes in a non constant-time fashion.

The Euclidean algorithm and variants are highly dependent on their

inputs and previous research exploits some of these variants [4, 8,

65].

During SM2DSA execution, none of the input values has the

flag BN_FLG_CONSTTIME set when entering to the BN_mod_inverse
function, therefore the function takes the default insecure path, cal-

culating the modular inverse of dA+1 through the Binary Extended
Euclidean Algorithm (BEEA). More importantly, this operation exe-

cutes every time a signature is generated with the exact same input

values, therefore an attacker has several opportunities to trace the

BEEA execution on the private key.

Similar to the scalar multiplication case, we identify the low

level operations leaking bits from the input values. In the BEEA

case, this means functions BN_rshift1 and BN_sub. By placing

probes in memory lines in these routines, we are able to trace the

sequence of shift and subtraction operations performed during

modular inversion, leading to partial bit recovery of dA + 1. Using
algebraic methods [7], it is possible to recover a variable amount of

private key LSDs from these sequences. Bottom trace in Figure 2

shows the end of a post-filtered cache-timing trace capturing the

execution of the BEEA during SM2DSA. The trace matches the

sequence 2 shifts, 1 subtract, 1 shift, 1 subtract, 2 shifts, 1 subtract, 1

shift, 1 subtract, 1 shift; obtained from a perfect trace computed by

executing BEEA on the inputs taken from the SM2DSA signature

test, demonstrating private key leakage.

6 SM2PKE: EM ANALYSIS
As discussed in Section 2.1, SM2PKE decryption computes the

shared secret using the receiver’s private key dB and the sender’s

ECDHE public key C1. The point multiplication [dB]C1 can leak

intermediate values which can be exploited using both vertical

attacks [31, 35, 62] and horizontal attacks [10, 34] for key recovery.

Figure 3: Capturing EM traces from the BeagleBone Black
using a Langer probe positioned on the SoC and procured
using the Picoscope USB oscilloscope.

To evaluate the side-channel leakage for SM2PKE, we applied

Test Vector Leakage Analysis (TVLA) using Welch’s T-test [41, 67].

We took an approach similar to [28, 61] for ECC, with a reduced

set of test vectors. We divided the test vectors into three different

sets {Si } for i = 1, 2, 3. The sets S1, S2 and S3 contained traces for

fixed key dB and fixed cipher textC1, fixed dB and varyingC1, fixed

C1 and varying dB respectively. We performed the tests in pairs,

such that {(S1, S2), (S1, S3)} would fail the T-test if the resulting

confidence threshold satisfies |Cτ | > 4.5. We selected the value Cτ
(a function of number of samples) based upon empirical evidence

from Jaffe et al. [47].

Experimental setup. Weperformed the experiments on anAM335x

Sitara SoC
9
featuring a 32-bit ARM Cortex-A8 embedded on a

BeagleBone Black
10

development board. We used the standard

BeagleBone Debian distribution (“Wheezy” 7.8) while keeping all

the default configurations intact. For capturing the EM traces, we

used a Langer LF-U5 near-field probe (500kHz to 50MHz) and 30dB

Langer PA-303 low noise amplifier. We positioned the probe head di-

rectly on the SoC, seeking to strengthen the acquisition quality. We

procured the traces using a PicoScope 5244B digital oscilloscope at

a sampling rate of 125 MSamples/sec with a 12-bit ADC resolution.

Figure 3 shows our setup for the EM analysis.

EM acquisition. For the purpose of this analysis, we captured
1500 EM traces for each set (S1, S2, S3) while performing the decryp-

tion operation. We fixed the clock frequency at 1GHz to avoid any

bias in the captured traces. To acquire traces, we initially utilized

the GPIO pin of the board to trigger the oscilloscope. However,

this trigger proved unreliable as it encountered random delays. To

improve this, we applied correlation based matching to locate the

beginning of the trace. As most of the EM signal energy was con-

centrated at much lower frequencies, we also applied a Low Pass

filter with a cut-off frequency at 15MHz.

Due to noise in the traces, we performed additional process-

ing steps. For the envelope detection, we applied a Digital Hilbert

Transform, followed by a Low Pass Filter to smooth out any high

frequency noise. From the sets, we dropped traces containing noise

9
http://www.ti.com/processors/sitara/arm-cortex-a8/am335x/overview.html

10
https://beagleboard.org/black

 0 5000 10000 15000 20000 25000 30000

D D D A D D

Time (samples)

Figure 4: The filtered EM trace clearly reveals the sequence
of ECC double and add operations during SM2PKE decryp-
tion.

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000 25000 30000

(S1a, S2a) (S1b, S2b)

 0

 1

 2

 3

 4

 0 5000 10000 15000 20000 25000 30000

Figure 5: TVLA during SM2PKE decryption. Top: T-test re-
sults between sets S1 and S2 versus sample index; for fixed
vs random k the test fails since many peaks exceed the 4.5
threshold for both sets. Bottom: T-test results between ran-
dom sets R1 and R2 versus sample index; it shows no peaks
exceeding 4.5 since the means are similar due to balanced
and random selection of fixed and random k in both sets.

due to preemptive interrupts and other unwanted signal features.

In the end, we retained a total of 1000 traces per set. Since the T-test

required averaging multiple traces, we aligned the traces at each

point of interest (i.e. ECC operations). Figure 4 shows part of an

actual processed EM trace, depicting a sequence of ECC double and

add operations.

T-test. To validate the results, we divided each set into subsets

{Sia } and {Sib } and performed an independent T-test between sets

{(S1a, Ska)} and {(S
1b , Skb)} for k = 2, 3. We performed a further

test by combining an equal number of randomly selected traces

from both {S1} and {Sk } such that the two resulting subsets were

disjoint. A correct T-test for the random sets R1 = {(S1 ∪ Sk)}
and Rk = {(S1 ∪ Sk) − R1} should result in confidence threshold

|Cτ | < 4.5 for all the points in the traces.

The experiments showed multiple points where the T-test failed

for both {(S1, S2), (S1, S3)}. Figure 5 shows two T-test results for

{(S1a, S2a)} and {(S
1b , S2b)}. It is clear from the figure that the T-

test values have a significant number of peaks satisfying |Cτ | > 4.5

for both tests, roughly at the same points. This demonstrates there

is a strong leak at these points, since we performed both tests on dif-

ferent sets of traces. From the random sets {R1,R2} the confidence
threshold remains |Cτ | < 4.5 which further validates our hypothe-

sis. Similarly, Figure 6 shows the failed T-test for {(S1a, S3a)} and
{(S

1b , S3b)}.

 0
 2
 4
 6
 8

 10
 12
 14

 0 5000 10000 15000 20000 25000 30000

(S1a, S3a) (S1b, S3b)

 0

 1

 2

 3

 4

 0 5000 10000 15000 20000 25000 30000

Figure 6: TVLA during SM2PKE decryption. Top: T-test re-
sults between sets S1 and S3 versus sample index; for fixed
vs random C the test fails since many peaks exceed the 4.5
threshold for both sets. Bottom: T-test results between ran-
dom sets R1 and R3 versus sample index; shows no peaks ex-
ceeding 4.5 since themeans are similar due to equal and ran-
dom selection of fixed and random C in both sets.

7 SCA MITIGATIONS
In this section, we describe our results on mitigating the discovered

leaks. We claim no novelty for the mitigations themselves, only

their application and implementation within the OpenSSL library;

they are standard techniques known since at least the 90s.

We stress the focus of our mitigation effort is not on SM2 nor

any individual cryptosystem, but rather on the EC module itself, to

provide transparent secure-by-default behavior to cryptosystems at

the architecture level. That is, conceptually it should be completely

reasonable to drop in a cryptosystem implementation like was done

with SM2DSA or SM2PKE and have it resist SCA, with absolutely no

esoteric knowledge of OpenSSL internals that control SCA features

such as constant-time flags.

7.1 Scalar Multiplication: SCA Mitigations
Ladder. While it is indeed feasible to reduce leakage inOpenSSL’s

wNAF scalar multiplication code path [18], tediously straightlining

conditions and making table lookups regular adds significant code

complexity, increases the probability of defects, and generally re-

sults in low maintainability code. Even then, there is no guarantee

that all leakage issues are addressed: the code path was not ini-

tially intended to resist SCA, and retrofitting mitigations becomes

awkward.

We instead implemented an early exit from ec_wNAF_mul that—

irrespective of the constant time flag—diverts to a new single scalar

multiplication function for all instances of [k]G (fixed point, e.g.

ECC key generation, SM2DSA signing, ECDSA signing, first half

of ECDH) or [k]P (variable point, e.g. SM2PKE decryption, last half

of ECDH), and falls back to the existing (insecure)wNAF code in

all other cases (e.g. [a]G + [b]P in various digital signature scheme

verifications). For cryptosystem use cases internal to the OpenSSL

library, this provides secure-by-default scalar multiplication code

path traversal.

For this new functionality, we chose the traditional powering lad-

der due to Montgomery [57], heralded for its favorable SCA proper-

ties. In modern implementations, straightlining the key-dependent

ladder branches happens in one of two ways [60, Sec. 2]: “either

by loading from (or storing to) addresses that depend on the secret

scalar, or by using arithmetic operations to perform a conditional

register-to-register move. The latter approach is very common

on large processors with cache, where the former approach leaks

through cache-timing information.”

We see both in practice: For example, TomsFastMath
11

does not

branch but reads and stores using (secret) pointer offsets, while

Mbed TLS
12

parses all the data and performs a manual conditional

swap with arithmetic, even documenting their function mbedtls-
_mpi_safe_cond_swap with the comment: “Here it is not OK to

simply swap the pointers, which would lead to different memory ac-

cess patterns whenX andY are used afterwards.” This is in contrast

to e.g. [44, Sec. 8.5]: “we implement the conditional swap operation

after each ladder step by swapping pointer variables instead of

data. We expect slightly better performance and also a reduced

side-channel leakage.” While that is perhaps a valid strategy on

architectures lacking cache memory, we feel it is generally dubi-

ous advice since typical engineers are usually unaware of SCA

subtleties.

Regardless, the “standard way” according to Bernstein [14, Sec. 3]

uses arithmetic to implement conditional swaps on the data, not

the pointers; the work also reviews a slight optimization, which we

also implement. The two contiguous swaps conditional on bits ki
and ki−1 reduce to a single swap by XOR-merging the condition

bits, i.e. only swap if the bit values differ. This optimization halves

the number of conditional swaps.

Scalar padding. The above conditional swaps ensure favorable

SCA behavior for ladder iterations. But [21] exploits the number of

said iterations, fixed in an ECDSA-only fashion in 2011 by padding

nonces. We remove this padding, and instead push it to the underly-

ing EC module to ensure a constant number of ladder iterations. To

accomplish this in an SCA-friendly way, we construct two values

k ′ = k+n andk ′′ = k ′+n, subsequently using the above conditional
swap to set k to either k ′ or k ′′, whichever has bit-length precisely

one more than n. We apply this padding directly preceding ladder

execution.

Coordinate blinding. Originally proposed by Coron [31, Sec. 5.3]

for standard projective coordinates as a DPA countermeasure, co-

ordinate blinding transforms the input point to a random repre-

sentative of the equivalence class. For generic curves over GF (p),
OpenSSL’s formulae are a fairly verbatim implementation of Jaco-

bian projective coordinates [1, A.9.6] where the relation

(X ,Y ,Z) ≡ (λ2X , λ3Y , λZ)

holds for all λ , 0 inGF (p). Our implemented mitigation generates

λ randomly, applying the map a single time directly preceding the

ladder execution. This is, for example, the approach taken by Mbed

TLS (function ecp_randomize_jac).

7.2 Modular Inversion: SCA Mitigations
Directly due to the work by Gueron and Krasnov [43, Sec. 6],

OpenSSL integrated a contribution from Intel that included (1)

high-speed, constant-time P-256 ECC on AVX2 architectures; (2)

11
https://github.com/libtom/tomsfastmath/

12
https://github.com/ARMmbed/mbedtls/

constant-time modular inversion modulo ECDSA group orders.

It did the latter by internally exposing a function pointer within

the EC_METHOD structure. If set, ECDSA signing code path calls

said pointer (for which the custom P-256 method has a dedicated

function), otherwise a series of default fallbacks including (1) FLT

inversion with Montgomery modular exponentiation; (2) normal

EEA-based inversion. We refactored the structure to expose this de-

fault behavior within the wrapper that checks the function pointer,

the end goal being to expose it to the EC module as a whole and

not limit to ECDSA, in turn allowing SM2DSA access to a strictly

secure-by-default functionality. We explored two different options

for inversion default behavior that resist SCA, summarized below.

Blinding. The classical way to compute modular inversions is

through the EEA utilizing divisions, or binary variants utilizing

shifts and subtracts. However, as previously described their control

flow can leak critical algorithm state. Nevertheless, to prevent direct

input deduction from this state one option is to choose blinding

value b uniformly at random from [1 . .n) then compute k−1 =
b(bk)−1 at the additional cost of two multiplications. This is, for

example, the approach taken by Mbed TLS for ECDSA nonces.

Exponentiation. Although initially motivated by binary fields

with normal basis representation where squaring is a simple bit ro-

tation, the algorithm by Itoh and Tsujii [46] is one of the earliest ex-

amples of favorable implementation aspects of using FLT for finite

field inversion. SCA benefits followed thereafter, e.g. Curve25519

where Bernstein [13, Sec. 5] weighs blinded EEA methods versus

FLT: “An extended-Euclid inversion, randomized to protect against

timing attacks, might be faster, but the maximum potential speedup

is very small, while the cost in code complexity is large.”

Performance and security. Regarding security, it is clear that ei-

ther method is a leap forward for OpenSSL with respect to secure-

by-default. We feel that blinding has an intrinsic advantage over

FLT-based methods, since the former resists bug attacks [15, 19]

that exploit predictable execution flows. Regarding performance,

we benchmarked both approaches to measure the potential differ-

ences alluded to by Bernstein, and found the results consistent. On

an Intel Core i5-6500 CPU (Skylake) running at 3.2GHz, after all

of our described and implemented countermeasures, one SM2DSA

execution takes on average 1760913 cycles with FLT, and 1750984

cycles with blinded BEEA—a difference of a fraction of a percent.

In the end, the OpenSSL team declined our blinding contribution.

They plan to increase the usage of the Montgomery arithmetic

context within the EC module, so in that sense their decision is

rational from a software architecture perspective. The team instead

integrated our FLT refactoring, sufficient to thwart the attack in

Section 5, and furthermore provide secure-by-default behavior to

future callers conforming to the convention set by this API.

7.3 SCA Mitigations: Evaluation
Remote timings: evaluation. Using the same approach adopted

in Section 4, Figure 7 shows the cumulative effect of three counter-

measures: adopting the Montgomery ladder instead of thewNAF

algorithm for regular scalar multiplication, scalar padding, and

computation of modular inversion via exponentiation through FLT.

https://github.com/libtom/tomsfastmath/
https://github.com/ARMmbed/mbedtls/

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2.170 2.175 2.180 2.185 2.190 2.195

C
u

m
u

la
ti

v
e

p
ro

b
ab

il
it

y

Time (CPU cycles, millions)

271 bits
272 bits
273 bits
274 bits
275 bits
276 bits
277 bits
278 bits
279 bits
280 bits
281 bits

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1.720 1.725 1.730 1.735 1.740 1.745 1.750 1.755 1.760

C
u

m
u

la
ti

v
e

p
ro

b
ab

il
it

y

Time (CPU cycles, millions)

246 bits
247 bits
248 bits
249 bits
250 bits
251 bits
252 bits
253 bits
254 bits
255 bits
256 bits

Figure 7: SM2DSA latency dependency on the nonce length
on amd64 architecture, using (1) a Montgomery ladder
algorithm for scalar multiplication instead of wNAF; (2)
scalar padding; (3) modular inversion through exponentia-
tion (FLT). Top: K-283 binary curve. Bottom: Recommended
SM2 curve.

Both plots clearly show that the latencies measured for signa-

ture generation using nonces of different bit-lengths are indistin-

guishable, effectively preventing the attack, and a comparison with

Figure 1 immediately shows the extent of the leakage reduction.

Cache-timings: evaluation. After introducing the mitigations,

when SM2DSA performs a scalar multiplication it first calls the EC_-
POINT_mul function, a wrapper to ec_wNAF_mul. There the code
takes an early exit, jumping to the powering ladder regular algo-

rithm to perform a fixed point scalar multiplication [k]G. From
the cache perspective, the ladder implementation consists of an

always-double-and-add algorithm, largely unrelated to thewNAF

representation of the nonce k . To support our claim, we follow the

same approach as in Section 5, placing probes in the same underly-

ing functions BN_rshift1 and BN_lshift—called by EC_POINT_-
add and EC_POINT_dbl—to trace the sequence of operations during
scalar multiplication. Top trace in Figure 8 shows an example trace,

which indeed tracks the sequence of double and add operations

successfully, but due to the regular nature of the powering ladder

algorithm, no meaningful information can be retrieved from this

sequence.

During modular inversion, the high level function SM2_sig_gen
in SM2DSA no longer calls BN_mod_inverse but instead it calls di-

rectly EC_GROUP_do_inverse_ord on the private key dA + 1. This
function computes modular inversion by performing an exponen-

tiation using FLT, therefore the underlying algorithm and its im-

plementation are completely different compared to the Euclidean

algorithm (and variants) used previously. Recall that during mod-

ular inversion using FLT, the exponent value is public; said value

 0

 50

 100

 150

 200

 250

 76200 76300 76400 76500 76600 76700

D A D A D A D A

L
at

en
cy

 (
cy

cl
es

)

Time (samples)

double probe add probe

 0

 50

 100

 150

 200

 250

 103700 103750 103800 103850 103900 103950 104000

L
at

en
cy

 (
cy

cl
es

)

Time (samples)

multiply probe square probe

Figure 8: Partial raw cache-timing traces during SM2DSA.
Top: Ladder scalar multiplication composed of regular dou-
ble and add operations. Bottom: FLT modular inversion via
exponentiation composed of regular squaring windows fol-
lowed by a single multiply.

does not require SCA protection. Bottom trace in Figure 8 shows

an example trace during modular inversion, probing the square and

multiply operations based on the public exponent.

EM leakage: evaluation. To validate the efficacy of the applied

mitigations, we repeated the T-test experiments (Section 6). Fig-

ure 10 shows the results of the new T-test for both fixed vs random

key (S1, S2) and fixed vs random point (S1, S3). Figure 9 shows the
EM traces, reflecting a regular sequence of ECC double and add

operations due to ladder point multiplication. One interesting obser-

vation is the increase in the number of peaks for the add operation

compared to Figure 4. This is due to the fact that ec_wNAF_mul uses
mixed coordinates (projective and affine), a code path with less field

operations compared to the fully projective coordinate path taken

by the ladder.

It is clear from Figure 10 that the T-test shows a significant im-

provement due to the combined ladder application and projective

coordinate randomization. The T-test easily passed for fixed vs

random point (S1, S3) with |Cτ | < 4. In case of fixed vs random key

(S1, S2) we still observe a marginal number of peaks with magnitude

roughly 6. In theory, it is still possible to exploit this; e.g. a key

value that leading to special intermediate points on the curve such

as zero-value [6] or same value points [59]. However, the leakage is

so minimal, our analysis suggests mounting such attacks would be

extremely difficult and feature significant data complexity. More-

over, the scalar randomization countermeasure [31] to thwart this

leak introduces performance overhead, in this case unacceptable to

OpenSSL when weighed vs risk.

8 CONCLUSION
Subsequent to an accelerated OpenSSL milestone to support SM2

cryptosystems, our work began with a security review of SM2DSA

and SM2PKE implementations within OpenSSL pre-releases. Part

of our review uncovered several side-channel deficiencies in the

merged code, which we then verified with empirical remote timing,

cache-timing, and EM traces. To mitigate these discovered vulner-

abilities, we proposed and implemented several mitigations, now

mainlined into the OpenSSL codebase. These mitigations target the

underlying EC module, providing secure-by-default behavior not

 10000 15000 20000 25000 30000 35000 40000 45000

A A A AD D D

Time (samples)

Figure 9: The filtered EM trace after applying the ladder
countermeasure. As expected, it clearly reveals the sequence
of ECC double and add operations during SM2PKE decryp-
tion, yet this sequence is regular and not useful for SCA-
enabled attackers.

 0

 1

 2

 3

 4

 5

 6

 0 10000 20000 30000 40000 50000

 0

 1

 2

 3

 4

 0 10000 20000 30000 40000 50000

Figure 10: Top: T-test results between sets S1 and S2 versus
sample index; for fixed vs random k the test marginally fails
with leaks at the few points where the threshold is around 6.
Bottom: T-test results between sets S1 and S3 versus sample
index; for fixed vs random C the test passes since no peaks
exceed the 4.5 threshold.

only for SM2 but future cryptosystems in the ECC family. Notably,

the mitigations also bring security to the generic curve scalar multi-

plication code path in OpenSSL, a longstanding vulnerability since

2009. Finally, we performed an empirical SCA evaluation of these

mitigations to demonstrate their efficacy.

We met our goal to intersect the upcoming OpenSSL 1.1.1 re-

lease and ensure these vulnerabilities do not affect release versions.

However, given a more relaxed schedule, we outline future work to

improve this secure-by-default approach: (1) the antiquated ECC

point addition and doubling formulae should be renovated to more

recent exception and/or branch-free versions; (2) support for ladder

step function pointers, for more efficient ladder operations w.r.t.

finite field operations; (3) at the standardization level, SM2DSA

private key formats that, similar to RSA private keys with CRT

parameters, store the value (dA + 1)
−1

alongside the private key dA
for accelerated performance and a reduced SCA attack surface.

From the software engineering perspective, lessons learned from

our work are twofold: (1) software projects, OpenSSL included,

should maintain a stronger separation between release, beta, and

development branches to inhibit “feeping creaturism” [69, Ch. 6]

that can adversely shift milestones; (2) milestones for security-

critical features should be set consistent with the complexity of

the review process, to prevent premature merging. Luckily, in this

case our responsible disclosure with the OpenSSL security team

coupled with our mitigation development efforts yielded a favorable

outcome. We strongly encourage adhering to the above two points

to assist averting future security vulnerabilities.

Acknowledgments
Supported in part by Academy of Finland grant 303814.

The second author was supported in part by a Nokia Foundation

Scholarship and by the Pekka Ahonen Fund through the Industrial

Research Fund of Tampere University of Technology.

This article is based in part upon work from COST Action IC1403

CRYPTACUS, supported by COST (European Cooperation in Sci-

ence and Technology).

REFERENCES
[1] 1999. Standard Specifications for Public Key Cryptography. IEEE P1363/D13.

Institute of Electrical and Electronics Engineers.

[2] 2009. Elliptic Curve Cryptography. SEC 1. Standards for Efficient Cryptography

Group. http://www.secg.org/sec1-v2.pdf

[3] 2013. Digital Signature Standard (DSS). FIPS PUB 186-4. National Institute of

Standards and Technology. https://doi.org/10.6028/NIST.FIPS.186-4

[4] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. 2007. New Branch Pre-

diction Vulnerabilities in OpenSSL and Necessary Software Countermeasures.

In Cryptography and Coding, 11th IMA International Conference, Cirencester,
UK, December 18-20, 2007, Proceedings. 185–203. http://dx.doi.org/10.1007/

978-3-540-77272-9_12

[5] Onur Acıiçmez, Werner Schindler, and Çetin Kaya Koç. 2005. Improving Brumley

and Boneh timing attack on unprotected SSL implementations. In Proceedings of
the 12th ACM Conference on Computer and Communications Security, CCS 2005,
Alexandria, VA, USA, November 7-11, 2005, Vijay Atluri, Catherine A. Meadows,

and Ari Juels (Eds.). ACM, 139–146. https://doi.org/10.1145/1102120.1102140

[6] Toru Akishita and Tsuyoshi Takagi. 2005. Zero-Value Register Attack on Elliptic

Curve Cryptosystem. IEICE Transactions 88-A, 1 (2005), 132–139. https://doi.

org/10.1093/ietfec/e88-a.1.132

[7] Alejandro Cabrera Aldaya, Alejandro J. Cabrera Sarmiento, and Santiago Sánchez-

Solano. 2017. SPA vulnerabilities of the binary extended Euclidean algorithm.

J. Cryptographic Engineering 7, 4 (2017), 273–285. https://doi.org/10.1007/

s13389-016-0135-4

[8] Alejandro Cabrera Aldaya, Cesar Pereida García, Luis Manuel Alvarez Tapia, and

Billy Bob Brumley. 2018. Cache-Timing Attacks on RSA Key Generation. IACR
Cryptology ePrint Archive 2018 (2018), 367. https://eprint.iacr.org/2018/367

[9] Thomas Allan, Billy Bob Brumley, Katrina E. Falkner, Joop van de Pol, and

Yuval Yarom. 2016. Amplifying side channels through performance degrada-

tion. In Proceedings of the 32nd Annual Conference on Computer Security Ap-
plications, ACSAC 2016, Los Angeles, CA, USA, December 5-9, 2016, Stephen
Schwab, William K. Robertson, and Davide Balzarotti (Eds.). ACM, 422–435.

https://doi.org/10.1145/2991079.2991084

[10] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard, and Justine

Wild. 2015. Horizontal collision correlation attack on elliptic curves – Extended

Version. Cryptography and Communications 7, 1 (2015), 91–119. https://doi.org/

10.1007/s12095-014-0111-8

[11] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. 2014. “Ooh

Aah... Just a Little Bit” : A Small Amount of Side Channel Can Go a Long Way. In

Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th International
Workshop, Busan, South Korea, September 23-26, 2014. Proceedings (Lecture Notes in
Computer Science), Lejla Batina and Matthew Robshaw (Eds.), Vol. 8731. Springer,

75–92. https://doi.org/10.1007/978-3-662-44709-3_5

[12] Daniel J. Bernstein. 2005. Cache-timing attacks on AES. http://cr.yp.to/papers.

html#cachetiming

[13] Daniel J. Bernstein. 2006. Curve25519: New Diffie-Hellman Speed Records. In

Public Key Cryptography - PKC 2006, 9th International Conference on Theory
and Practice of Public-Key Cryptography, New York, NY, USA, April 24-26, 2006,
Proceedings (Lecture Notes in Computer Science), Moti Yung, Yevgeniy Dodis,

Aggelos Kiayias, and Tal Malkin (Eds.), Vol. 3958. Springer, 207–228. https:

//doi.org/10.1007/11745853_14

[14] Daniel J. Bernstein. 2009. Batch Binary Edwards. In Advances in Cryptology
- CRYPTO 2009, 29th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 16-20, 2009. Proceedings (Lecture Notes in Computer Sci-
ence), Shai Halevi (Ed.), Vol. 5677. Springer, 317–336. https://doi.org/10.1007/

978-3-642-03356-8_19

[15] Eli Biham, Yaniv Carmeli, and Adi Shamir. 2016. Bug Attacks. J. Cryptology 29, 4

(2016), 775–805. https://doi.org/10.1007/s00145-015-9209-1

[16] Daniel Bleichenbacher. 1998. Chosen Ciphertext Attacks Against Protocols Based

on the RSA Encryption Standard PKCS #1. In Advances in Cryptology - CRYPTO
’98, 18th Annual International Cryptology Conference, Santa Barbara, California,

http://www.secg.org/sec1-v2.pdf
https://doi.org/10.6028/NIST.FIPS.186-4
http://dx.doi.org/10.1007/978-3-540-77272-9_12
http://dx.doi.org/10.1007/978-3-540-77272-9_12
https://doi.org/10.1145/1102120.1102140
https://doi.org/10.1093/ietfec/e88-a.1.132
https://doi.org/10.1093/ietfec/e88-a.1.132
https://doi.org/10.1007/s13389-016-0135-4
https://doi.org/10.1007/s13389-016-0135-4
https://eprint.iacr.org/2018/367
https://doi.org/10.1145/2991079.2991084
https://doi.org/10.1007/s12095-014-0111-8
https://doi.org/10.1007/s12095-014-0111-8
https://doi.org/10.1007/978-3-662-44709-3_5
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-642-03356-8_19
https://doi.org/10.1007/978-3-642-03356-8_19
https://doi.org/10.1007/s00145-015-9209-1

USA, August 23-27, 1998, Proceedings (Lecture Notes in Computer Science), Hugo
Krawczyk (Ed.), Vol. 1462. Springer, 1–12. https://doi.org/10.1007/BFb0055716

[17] Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation Power

Analysis with a Leakage Model. In Cryptographic Hardware and Embedded Sys-
tems - CHES 2004: 6th International Workshop Cambridge, MA, USA, August 11-
13, 2004. Proceedings (Lecture Notes in Computer Science), Marc Joye and Jean-

Jacques Quisquater (Eds.), Vol. 3156. Springer, 16–29. https://doi.org/10.1007/

978-3-540-28632-5_2

[18] Billy Bob Brumley. 2015. Faster Software for Fast Endomorphisms. In Constructive
Side-Channel Analysis and Secure Design - 6th International Workshop, COSADE
2015, Berlin, Germany, April 13-14, 2015. Revised Selected Papers (Lecture Notes
in Computer Science), Stefan Mangard and Axel Y. Poschmann (Eds.), Vol. 9064.

Springer, 127–140. https://doi.org/10.1007/978-3-319-21476-4_9

[19] Billy Bob Brumley, Manuel Barbosa, Dan Page, and Frederik Vercauteren. 2012.

Practical Realisation and Elimination of an ECC-Related Software Bug Attack.

In Topics in Cryptology - CT-RSA 2012 - The Cryptographers’ Track at the RSA
Conference 2012, San Francisco, CA, USA, February 27 - March 2, 2012. Proceedings
(Lecture Notes in Computer Science), Orr Dunkelman (Ed.), Vol. 7178. Springer,

171–186. https://doi.org/10.1007/978-3-642-27954-6_11

[20] Billy Bob Brumley and Risto M. Hakala. 2009. Cache-Timing Template Attacks.

In Advances in Cryptology - ASIACRYPT 2009, 15th International Conference on the
Theory and Application of Cryptology and Information Security, Tokyo, Japan, De-
cember 6-10, 2009. Proceedings (Lecture Notes in Computer Science), Mitsuru Matsui

(Ed.), Vol. 5912. Springer, 667–684. https://doi.org/10.1007/978-3-642-10366-7_39

[21] Billy Bob Brumley and Nicola Tuveri. 2011. Remote Timing Attacks Are Still

Practical. In Computer Security - ESORICS 2011 - 16th European Symposium on
Research in Computer Security, Leuven, Belgium, September 12-14, 2011. Proceedings
(Lecture Notes in Computer Science), Vijay Atluri and Claudia Díaz (Eds.), Vol. 6879.
Springer, 355–371. https://doi.org/10.1007/978-3-642-23822-2_20

[22] David Brumley and Dan Boneh. 2003. Remote Timing Attacks Are Practical.

In Proceedings of the 12th USENIX Security Symposium, Washington, D.C., USA,
August 4-8, 2003. USENIX Association. https://www.usenix.org/conference/

12th-usenix-security-symposium/remote-timing-attacks-are-practical

[23] David Brumley and Dan Boneh. 2005. Remote timing attacks are practical.

Computer Networks 48, 5 (2005), 701–716. https://doi.org/10.1016/j.comnet.2005.

01.010

[24] Certicom Research. 2010. Standards for Efficient Cryptography 2 (SEC 2): Rec-
ommended Elliptic Curve Domain Parameters (Version 2.0). Technical Report.

Certicom Corp. http://www.secg.org/sec2-v2.pdf

[25] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. 2002. Template Attacks. In

Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers (Lecture
Notes in Computer Science), Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof

Paar (Eds.), Vol. 2523. Springer, 13–28. https://doi.org/10.1007/3-540-36400-5_3

[26] Cai-Sen Chen, Tao Wang, and Jun-Jian Tian. 2013. Improving timing attack on

RSA-CRT via error detection and correction strategy. Information Sciences 232
(2013), 464–474. https://doi.org/10.1016/j.ins.2012.01.027

[27] Jiazhe Chen, Mingjie Liu, Hexin Li, and Hongsong Shi. 2015. Mind Your Nonces

Moving: Template-Based Partially-Sharing Nonces Attack on SM2 Digital Sig-

nature Algorithm. In Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’15, Singapore, April 14-17,
2015, Feng Bao, Steven Miller, Jianying Zhou, and Gail-Joon Ahn (Eds.). ACM,

609–614. https://doi.org/10.1145/2714576.2714587

[28] Łukasz Chmielewski, PedroMassolino, Jo Vliegen, Lejla Batina, and NeleMentens.

2017. Completing the Complete ECC Formulae with Countermeasures. Journal
of Low Power Electronics and Applications 7, 1 (2017), 3. https://doi.org/10.3390/

jlpea7010003

[29] Tom Chothia and Apratim Guha. 2011. A Statistical Test for Information Leaks

Using Continuous Mutual Information. In Proceedings of the 24th IEEE Computer
Security Foundations Symposium, CSF 2011, Cernay-la-Ville, France, 27-29 June,
2011. IEEE Computer Society, 177–190. https://doi.org/10.1109/CSF.2011.19

[30] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and Vin-

cent Verneuil. 2010. Horizontal Correlation Analysis on Exponentiation. In

Information and Communications Security - 12th International Conference, ICICS
2010, Barcelona, Spain, December 15-17, 2010. Proceedings (Lecture Notes in Com-
puter Science), Miguel Soriano, Sihan Qing, and Javier López (Eds.), Vol. 6476.

Springer, 46–61. https://doi.org/10.1007/978-3-642-17650-0_5

[31] Jean-Sébastien Coron. 1999. Resistance against Differential Power Analysis for

Elliptic Curve Cryptosystems. In Cryptographic Hardware and Embedded Systems,
First International Workshop, CHES’99, Worcester, MA, USA, August 12-13, 1999,
Proceedings (Lecture Notes in Computer Science), Çetin Kaya Koç and Christof Paar

(Eds.), Vol. 1717. Springer, 292–302. https://doi.org/10.1007/3-540-48059-5_25

[32] Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi. 2009. Opportunities

and Limits of Remote Timing Attacks. ACM Transactions on Information and
System Security (TISSEC) 12, 3 (2009), 17:1–17:29. https://doi.org/10.1145/1455526.
1455530

[33] T. Dierks and C. Allen. 1999. The TLS Protocol Version 1.0. RFC 2246. RFC Editor.

https://doi.org/10.17487/RFC2246

[34] Margaux Dugardin, Louiza Papachristodoulou, Zakaria Najm, Lejla Batina, Jean-

Luc Danger, and Sylvain Guilley. 2016. Dismantling Real-World ECC with Hor-

izontal and Vertical Template Attacks. In Constructive Side-Channel Analysis
and Secure Design - 7th International Workshop, COSADE 2016, Graz, Austria,
April 14-15, 2016, Revised Selected Papers (Lecture Notes in Computer Science),
François-Xavier Standaert and Elisabeth Oswald (Eds.), Vol. 9689. Springer, 88–

108. https://doi.org/10.1007/978-3-319-43283-0_6

[35] Pierre-Alain Fouque and Frédéric Valette. 2003. The Doubling Attack - Why
Upwards Is Better than Downwards. In Cryptographic Hardware and Embedded
Systems - CHES 2003, 5th International Workshop, Cologne, Germany, Septem-
ber 8-10, 2003, Proceedings (Lecture Notes in Computer Science), Colin D. Wal-

ter, Çetin Kaya Koç, and Christof Paar (Eds.), Vol. 2779. Springer, 269–280.

https://doi.org/10.1007/978-3-540-45238-6_22

[36] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. 2016. ECDH

Key-Extraction via Low-Bandwidth Electromagnetic Attacks on PCs. In Topics
in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA Conference
2016, San Francisco, CA, USA, February 29 - March 4, 2016, Proceedings (Lecture
Notes in Computer Science), Kazue Sako (Ed.), Vol. 9610. Springer, 219–235. https:

//doi.org/10.1007/978-3-319-29485-8_13

[37] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yuval Yarom.

2016. ECDSA Key Extraction fromMobile Devices via Nonintrusive Physical Side

Channels. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, Edgar R. Weippl,

Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi

(Eds.). ACM, 1626–1638. https://doi.org/10.1145/2976749.2978353

[38] Daniel Genkin, Adi Shamir, and Eran Tromer. 2014. RSA Key Extraction via

Low-Bandwidth Acoustic Cryptanalysis. In Advances in Cryptology - CRYPTO
2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part I (Lecture Notes in Computer Science), Juan A. Garay and

Rosario Gennaro (Eds.), Vol. 8616. Springer, 444–461. https://doi.org/10.1007/

978-3-662-44371-2_25

[39] Daniel Genkin, Luke Valenta, and Yuval Yarom. 2017. May the Fourth BeWith You:

A Microarchitectural Side Channel Attack on Several Real-World Applications

of Curve25519. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu

(Eds.). ACM, 845–858. https://doi.org/10.1145/3133956.3134029

[40] Gabriel Goller and Georg Sigl. 2015. Side Channel Attacks on Smartphones

and Embedded Devices Using Standard Radio Equipment. In Constructive Side-
Channel Analysis and Secure Design - 6th International Workshop, COSADE 2015,
Berlin, Germany, April 13-14, 2015. Revised Selected Papers (Lecture Notes in Com-
puter Science), Stefan Mangard and Axel Y. Poschmann (Eds.), Vol. 9064. Springer,

255–270. https://doi.org/10.1007/978-3-319-21476-4_17

[41] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. 2011.

A testing methodology for side-channel resistance validation. In Non-
Invasive Attack Testing Workshop, NIAT 2011, Nara, Japan, September
26-27, 2011. Proceedings. NIST. https://csrc.nist.gov/csrc/media/events/

non-invasive-attack-testing-workshop/documents/08_goodwill.pdf

[42] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template

Attacks: Automating Attacks on Inclusive Last-Level Caches. In 24th USENIX
Security Symposium, USENIX Security 15, Washington, D.C., USA, August 12-
14, 2015, Jaeyeon Jung and Thorsten Holz (Eds.). USENIX Association, 897–

912. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/

presentation/gruss

[43] Shay Gueron and Vlad Krasnov. 2015. Fast prime field elliptic-curve cryptography

with 256-bit primes. J. Cryptographic Engineering 5, 2 (2015), 141–151. https:

//doi.org/10.1007/s13389-014-0090-x

[44] Björn Haase and Benoît Labrique. 2017. Making Password Authenticated Key

Exchange Suitable for Resource-Constrained Industrial Control Devices. In Cryp-
tographic Hardware and Embedded Systems - CHES 2017 - 19th International
Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings (Lecture Notes
in Computer Science), Wieland Fischer and Naofumi Homma (Eds.), Vol. 10529.

Springer, 346–364. https://doi.org/10.1007/978-3-319-66787-4_17

[45] Ralf Hund, CarstenWillems, and ThorstenHolz. 2013. Practical Timing Side Chan-

nel Attacks Against Kernel Space ASLR. In 20th Annual Network and Distributed
System Security Symposium, NDSS 2013, San Diego, California, USA, February
24-27, 2013. The Internet Society. https://www.ndss-symposium.org/ndss2013/

practical-timing-side-channel-attacks-against-kernel-space-aslr

[46] Toshiya Itoh and Shigeo Tsujii. 1988. A fast algorithm for computing multiplica-

tive inverses in GF(2m) using normal bases. Inform. and Comput. 78, 3 (1988),
171–177. https://doi.org/10.1016/0890-5401(88)90024-7

[47] Josh Jaffe, Pankaj Rohatgi, and Marc Witteman. 2011. Efficient side-

channel testing for public key algorithms: RSA case study. In Non-
Invasive Attack Testing Workshop, NIAT 2011, Nara, Japan, September 26-
27, 2011. Proceedings. NIST. https://csrc.nist.gov/CSRC/media/Events/

Non-Invasive-Attack-Testing-Workshop/documents/09_Jaffe.pdf

[48] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz

Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.

https://doi.org/10.1007/BFb0055716
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-319-21476-4_9
https://doi.org/10.1007/978-3-642-27954-6_11
https://doi.org/10.1007/978-3-642-10366-7_39
https://doi.org/10.1007/978-3-642-23822-2_20
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://doi.org/10.1016/j.comnet.2005.01.010
https://doi.org/10.1016/j.comnet.2005.01.010
http://www.secg.org/sec2-v2.pdf
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1016/j.ins.2012.01.027
https://doi.org/10.1145/2714576.2714587
https://doi.org/10.3390/jlpea7010003
https://doi.org/10.3390/jlpea7010003
https://doi.org/10.1109/CSF.2011.19
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1145/1455526.1455530
https://doi.org/10.1145/1455526.1455530
https://doi.org/10.17487/RFC2246
https://doi.org/10.1007/978-3-319-43283-0_6
https://doi.org/10.1007/978-3-540-45238-6_22
https://doi.org/10.1007/978-3-319-29485-8_13
https://doi.org/10.1007/978-3-319-29485-8_13
https://doi.org/10.1145/2976749.2978353
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1145/3133956.3134029
https://doi.org/10.1007/978-3-319-21476-4_17
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://doi.org/10.1007/s13389-014-0090-x
https://doi.org/10.1007/s13389-014-0090-x
https://doi.org/10.1007/978-3-319-66787-4_17
https://www.ndss-symposium.org/ndss2013/practical-timing-side-channel-attacks-against-kernel-space-aslr
https://www.ndss-symposium.org/ndss2013/practical-timing-side-channel-attacks-against-kernel-space-aslr
https://doi.org/10.1016/0890-5401(88)90024-7
https://csrc.nist.gov/CSRC/media/Events/Non-Invasive-Attack-Testing-Workshop/documents/09_Jaffe.pdf
https://csrc.nist.gov/CSRC/media/Events/Non-Invasive-Attack-Testing-Workshop/documents/09_Jaffe.pdf

2018. Spectre Attacks: Exploiting Speculative Execution. CoRR abs/1801.01203

(2018). arXiv:1801.01203 http://arxiv.org/abs/1801.01203

[49] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems. In Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 18-22,
1996, Proceedings (Lecture Notes in Computer Science), Neal Koblitz (Ed.), Vol. 1109.
Springer, 104–113. https://doi.org/10.1007/3-540-68697-5_9

[50] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.

In Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings (Lec-
ture Notes in Computer Science), Michael J. Wiener (Ed.), Vol. 1666. Springer,

388–397. https://doi.org/10.1007/3-540-48405-1_25

[51] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Ste-

fan Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In 25th
USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-
12, 2016, Thorsten Holz and Stefan Savage (Eds.). USENIX Association, 549–

564. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/

presentation/lipp

[52] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.

2018. Meltdown. CoRR abs/1801.01207 (2018). arXiv:1801.01207 http://arxiv.org/

abs/1801.01207

[53] Mingjie Liu, Jiazhe Chen, and Hexin Li. 2013. Partially Known Nonces and

Fault Injection Attacks on SM2 Signature Algorithm. In Information Security
and Cryptology - 9th International Conference, Inscrypt 2013, Guangzhou, China,
November 27-30, 2013, Revised Selected Papers (Lecture Notes in Computer Science),
Dongdai Lin, Shouhuai Xu, and Moti Yung (Eds.), Vol. 8567. Springer, 343–358.

https://doi.org/10.1007/978-3-319-12087-4_22

[54] Jake Longo, Elke De Mulder, Dan Page, and Michael Tunstall. 2015. SoC It to

EM: ElectroMagnetic Side-Channel Attacks on a Complex System-on-Chip. In

Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th International
Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings (Lecture Notes
in Computer Science), Tim Güneysu and Helena Handschuh (Eds.), Vol. 9293.

Springer, 620–640. https://doi.org/10.1007/978-3-662-48324-4_31

[55] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien Francillon.

2015. C5: Cross-Cores Cache Covert Channel. In Detection of Intrusions and
Malware, and Vulnerability Assessment - 12th International Conference, DIMVA
2015, Milan, Italy, July 9-10, 2015, Proceedings (Lecture Notes in Computer Sci-
ence), Magnus Almgren, Vincenzo Gulisano, and Federico Maggi (Eds.), Vol. 9148.

Springer, 46–64. https://doi.org/10.1007/978-3-319-20550-2_3

[56] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk, Sebastian

Schinzel, and Erik Tews. 2014. Revisiting SSL/TLS Implementations: New Ble-

ichenbacher Side Channels and Attacks. In Proceedings of the 23rd USENIX Secu-
rity Symposium, San Diego, CA, USA, August 20-22, 2014, Kevin Fu and Jaeyeon

Jung (Eds.). USENIX Association, 733–748. https://www.usenix.org/conference/

usenixsecurity14/technical-sessions/presentation/meyer

[57] Peter L. Montgomery. 1987. Speeding the Pollard and elliptic curve methods

of factorization. Math. Comp. 48, 177 (1987), 243–264. https://doi.org/10.2307/

2007888

[58] Amir Moradi, Bastian Richter, Tobias Schneider, and François-Xavier Standaert.

2018. Leakage Detection with the χ 2
-Test. IACR Trans. Cryptogr. Hardw. Embed.

Syst. 2018, 1 (2018), 209–237. https://doi.org/10.13154/tches.v2018.i1.209-237

[59] Cédric Murdica, Sylvain Guilley, Jean-Luc Danger, Philippe Hoogvorst, and David

Naccache. 2012. Same Values Power Analysis Using Special Points on Elliptic

Curves. In Constructive Side-Channel Analysis and Secure Design - Third Interna-
tional Workshop, COSADE 2012, Darmstadt, Germany, May 3-4, 2012. Proceedings
(Lecture Notes in Computer Science), Werner Schindler and Sorin A. Huss (Eds.),

Vol. 7275. Springer, 183–198. https://doi.org/10.1007/978-3-642-29912-4_14

[60] Erick Nascimento, Lukasz Chmielewski, David Oswald, and Peter Schwabe. 2016.

Attacking Embedded ECC Implementations Through cmov Side Channels. In

Selected Areas in Cryptography - SAC 2016 - 23rd International Conference, St.
John’s, NL, Canada, August 10-12, 2016, Revised Selected Papers (Lecture Notes
in Computer Science), Roberto Avanzi and Howard M. Heys (Eds.), Vol. 10532.

Springer, 99–119. https://doi.org/10.1007/978-3-319-69453-5_6

[61] Erick Nascimento, Julio López, and Ricardo Dahab. 2015. Efficient and Secure

Elliptic Curve Cryptography for 8-bit AVR Microcontrollers. In Security, Privacy,
and Applied Cryptography Engineering - 5th International Conference, SPACE 2015,
Jaipur, India, October 3-7, 2015, Proceedings (Lecture Notes in Computer Science),
Rajat Subhra Chakraborty, Peter Schwabe, and Jon A. Solworth (Eds.), Vol. 9354.

Springer, 289–309. https://doi.org/10.1007/978-3-319-24126-5_17

[62] Katsuyuki Okeya and Kouichi Sakurai. 2002. A Second-Order DPA Attack Breaks

a Window-Method Based Countermeasure against Side Channel Attacks. In

Information Security, 5th International Conference, ISC 2002 Sao Paulo, Brazil,
September 30 - October 2, 2002, Proceedings (Lecture Notes in Computer Science),
Agnes Hui Chan and Virgil D. Gligor (Eds.), Vol. 2433. Springer, 389–401. https:

//doi.org/10.1007/3-540-45811-5_30

[63] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-

termeasures: The Case of AES. In Topics in Cryptology - CT-RSA 2006, The Cryp-
tographers’ Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17,
2006, Proceedings (Lecture Notes in Computer Science), David Pointcheval (Ed.),

Vol. 3860. Springer, 1–20. https://doi.org/10.1007/11605805_1

[64] Colin Percival. 2005. Cache Missing for Fun and Profit. In BSDCan 2005, Ottawa,
Canada, May 13-14, 2005, Proceedings. http://www.daemonology.net/papers/

cachemissing.pdf

[65] Cesar Pereida García and Billy Bob Brumley. 2017. Constant-Time Callees with

Variable-Time Callers. In 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017, Engin Kirda and Thomas Ris-

tenpart (Eds.). USENIX Association, 83–98. https://www.usenix.org/conference/

usenixsecurity17/technical-sessions/presentation/garcia

[66] Jean-Jacques Quisquater and David Samyde. 2001. ElectroMagnetic Analysis

(EMA): Measures and Counter-Measures for Smart Cards. In Smart Card Program-
ming and Security, International Conference on Research in Smart Cards, E-smart
2001, Cannes, France, September 19-21, 2001, Proceedings (Lecture Notes in Com-
puter Science), Isabelle Attali and Thomas P. Jensen (Eds.), Vol. 2140. Springer,

200–210. https://doi.org/10.1007/3-540-45418-7_17

[67] Tobias Schneider and Amir Moradi. 2016. Leakage assessment methodology

– Extended version. Journal of Cryptographic Engineering 6, 2 (2016), 85–99.

https://doi.org/10.1007/s13389-016-0120-y

[68] Ru-Hui Shi, Zeng-Ju Li, Lei Du, Qian Peng, and Jiu-Ba Xu. 2015. Side Channel

Analysis on SM2 Decryption Algorithm. Journal of Cryptologic Research 2, 5

(2015), 467–476. https://doi.org/10.13868/j.cnki.jcr.000093

[69] Sam Tregar. 2002. Writing Perl Modules for CPAN. Apress. https://doi.org/10.

1007/978-1-4302-1152-5

[70] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. 2015. Just a Little Bit More.

In Topics in Cryptology - CT-RSA 2015, The Cryptographer’s Track at the RSA
Conference 2015, San Francisco, CA, USA, April 20-24, 2015. Proceedings (Lecture
Notes in Computer Science), Kaisa Nyberg (Ed.), Vol. 9048. Springer, 3–21. https:

//doi.org/10.1007/978-3-319-16715-2_1

[71] Tom van Goethem, Wouter Joosen, and Nick Nikiforakis. 2015. The Clock is Still

Ticking: Timing Attacks in the Modern Web. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO, USA,
October 12-16, 2015, Indrajit Ray, Ninghui Li, and Christopher Kruegel (Eds.).

ACM, 1382–1393. https://doi.org/10.1145/2810103.2813632

[72] Pepe Vila and Boris Köpf. 2017. Loophole: Timing Attacks on Shared Event

Loops in Chrome. In 26th USENIX Security Symposium, USENIX Security 2017,
Vancouver, BC, Canada, August 16-18, 2017, Engin Kirda and Thomas Risten-

part (Eds.). USENIX Association, 849–864. https://www.usenix.org/conference/

usenixsecurity17/technical-sessions/presentation/vila

[73] Samuel Weiser, Raphael Spreitzer, and Lukas Bodner. 2018. Single Trace Attack

Against RSA Key Generation in Intel SGX SSL. In Proceedings of the 2018 on Asia
Conference on Computer and Communications Security, AsiaCCS 2018, Incheon,
Republic of Korea, June 04-08, 2018, Jong Kim, Gail-Joon Ahn, Seungjoo Kim,

Yongdae Kim, Javier López, and Taesoo Kim (Eds.). ACM, 575–586. https://doi.

org/10.1145/3196494.3196524

[74] Bernard L. Welch. 1947. The generalization of ‘Student’s’ problem when several

different population variances are involved. Biometrika 34 (1947), 28–35. http:

//www.jstor.org/stable/2332510

[75] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolu-

tion, Low Noise, L3 Cache Side-Channel Attack. In Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014. 719–
732. https://www.usenix.org/conference/usenixsecurity14/technical-sessions/

presentation/yarom

[76] Kaiyu Zhang, Sen Xu, Dawu Gu, Haihua Gu, Junrong Liu, Zheng Guo, Ruitong

Liu, Liang Liu, and Xiaobo Hu. 2017. Practical Partial-Nonce-Exposure Attack on

ECC Algorithm. In 13th International Conference on Computational Intelligence
and Security, CIS 2017, Hong Kong, China, December 15-18, 2017. IEEE, 248–252.
https://doi.org/10.1109/CIS.2017.00061

[77] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2014. Cross-

Tenant Side-Channel Attacks in PaaS Clouds. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ,
USA, November 3-7, 2014, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM,

990–1003. https://doi.org/10.1145/2660267.2660356

A REMOTE TIMINGS SCA EVALUATION:
ECDSA

As stated in the Introduction, as a secondary goal, we aimed at

reviewing the abstraction level at which SCA countermeasures

are implemented. Specifically, pushing for a secure-by-default ap-
proach, we proposed to move each one of the SCA countermeasures

discussed in this work at the lowest possible abstraction level.

http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
http://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1801.01207
https://doi.org/10.1007/978-3-319-12087-4_22
https://doi.org/10.1007/978-3-662-48324-4_31
https://doi.org/10.1007/978-3-319-20550-2_3
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://doi.org/10.2307/2007888
https://doi.org/10.2307/2007888
https://doi.org/10.13154/tches.v2018.i1.209-237
https://doi.org/10.1007/978-3-642-29912-4_14
https://doi.org/10.1007/978-3-319-69453-5_6
https://doi.org/10.1007/978-3-319-24126-5_17
https://doi.org/10.1007/3-540-45811-5_30
https://doi.org/10.1007/3-540-45811-5_30
https://doi.org/10.1007/11605805_1
http://www.daemonology.net/papers/cachemissing.pdf
http://www.daemonology.net/papers/cachemissing.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/garcia
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/garcia
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/s13389-016-0120-y
https://doi.org/10.13868/j.cnki.jcr.000093
https://doi.org/10.1007/978-1-4302-1152-5
https://doi.org/10.1007/978-1-4302-1152-5
https://doi.org/10.1007/978-3-319-16715-2_1
https://doi.org/10.1007/978-3-319-16715-2_1
https://doi.org/10.1145/2810103.2813632
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/vila
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/vila
https://doi.org/10.1145/3196494.3196524
https://doi.org/10.1145/3196494.3196524
http://www.jstor.org/stable/2332510
http://www.jstor.org/stable/2332510
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://doi.org/10.1109/CIS.2017.00061
https://doi.org/10.1145/2660267.2660356

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1.145 1.150 1.155 1.160 1.165 1.170 1.175 1.180

C
u

m
u

la
ti

v
e

p
ro

b
ab

il
it

y

Time (CPU cycles, millions)

246 bits
247 bits
248 bits
249 bits
250 bits
251 bits
252 bits
253 bits
254 bits
255 bits
256 bits

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1.770 1.780 1.790 1.800 1.810 1.820

C
u

m
u

la
ti

v
e

p
ro

b
ab

il
it

y

Time (CPU cycles, millions)

246 bits
247 bits
248 bits
249 bits
250 bits
251 bits
252 bits
253 bits
254 bits
255 bits
256 bits

Figure 11: Latency dependency on the nonce length for
ECDSA signature generation over the secp256k1 prime
curve on amd64 architecture. Top: OpenSSL 1.1.1-pre3, in
which a wNAF algorithm is used to implement EC scalar
multiplication (see Section 5.1). Bottom: After applying our
patchset (see Section 7), most notably switching to a Mont-
gomery ladder algorithm for scalar multiplication instead
ofwNAF.

As a result, the changes we proposed affected also other existing

cryptosystems, increasing their resistance to SCA. In particular, in

this section we evaluate the impact of our patchset on the ECDSA

cryptosystem, specifically when using generic prime curves (as op-

posed to curves for which an alternative optimized implementation

is specifically provided).

Figure 11 shows an empirical evaluation —similar to the one

presented in Section 4 and Section 7— on the impact of the proposed

mitigations on ECDSA over the secp256k1 [24] GLV prime curve

used in the BitCoin protocol.

Both plots show the latency dependency on the nonce length:

the top plot related to the OpenSSL implementation as of version

1.1.1-pre3, while the bottom plot shows the results after applying

the proposed patchset. Specifically, the original implementation

already applied the nonce padding and the FLT modular inversion
countermeasures, so the main change between the two implemen-

tations is due to adopting a Montgomery ladder algorithm for EC

scalar multiplication instead of thewNAF algorithm adopted in the

original implementation (see Section 7).

Comparing the two plots, our mitigations introduce an improve-

ment centered around the median values. This is due in part to the

fact that timings in the top plot depend on the weight of scalars,

while the timings in the bottom plot are independent of the weight.

This leads to lower deviations for the majority of data points cen-

tered around the median.

	Abstract
	1 Introduction
	2 Background
	2.1 SM2: Chinese Cryptography Standards
	2.2 Remote Timing Attacks
	2.3 Cache Timing Attacks
	2.4 Power Analysis
	2.5 SM2 Implementation Attacks: Previous Work

	3 SM2 in OpenSSL
	4 SM2DSA: Remote Timings
	5 SM2DSA: Cache Timings
	5.1 Scalar Multiplication
	5.2 Modular Inversion

	6 SM2PKE: EM Analysis
	7 SCA Mitigations
	7.1 Scalar Multiplication: SCA Mitigations
	7.2 Modular Inversion: SCA Mitigations
	7.3 SCA Mitigations: Evaluation

	8 Conclusion
	References
	A Remote Timings SCA Evaluation: ECDSA

