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Abstract

Currently, round complexity and communication complexity are two fundamen-

tal issues of secure multi-party computation (MPC) since all known schemes

require communication for each multiplication operation. In this paper, we

propose a double non-interactive secure multi-party computation, called Bee-

Hive, that essentially addresses the two fundamental issues. Specifically, in the

proposed scheme, the first non-interactivity denotes that shareholders can in-

dependently generate shares (these shares will be responses that are sent to

the dealer) of any-degree polynomial of secret numbers without interaction.

Furthermore, the second non-interactivity indicates that the dealer can verify

correctness of responses sent by shareholders without interaction. To the best

of our knowledge, it is the first work to realize that shareholders can generate

shares of any-degree polynomial of secret numbers without interaction. Exist-

ing secure MPCs are not suitable for blockchain due to their issues of round

complexity and communication complexity, while the proposed Beehive is very

suitable. Therefore, we present a general architecture of blockchain-based Bee-

hive. Finally, we implemented the proposed scheme in Python with a detailed

performance evaluation.

Keywords: Secure multi-party computation, secret sharing, non-interactive,

full homomorphism.

∗Corresponding author
Email address: wanglc2012@126.com (Licheng Wang)

Preprint submitted to Journal of LATEX Templates August 9, 2018



1. Introduction

Currently, secure multi-party computation (MPC) [1] is a very significant

technology in the blockchain security. On the one hand, by using blockchain

technology, distrustful players can achieve a consensus on history. On the other

hand, secure MPC allows that distrustful players compute an agreed function5

of their inputs in a secure way. Even if some malicious players cheat, MPC can

guarantee the correctness of output as well as the privacy of players’ inputs.

Therefore, the combination of secure MPC and blockchain has both academic

and industrial significance.

However, there is a long-term problem that all existing information-theoretic10

secure MPCs have large round and communication complexity [2, 17, 3, 7, 8,

9, 10, 11, 12, 13, 14, 15]. In these constructions, it is the case that multiplica-

tion gates require communication to be processed (while addition/linear gates

usually do not). In CRYPTO 2016, Damg̊ard et al. [17] proposed that the num-

ber of rounds should be at least the (multiplicative) depth of the circuit, and15

the communication complexity is O(ns) for a circuit of size s (n and s are the

number of participants and the number of multiplication gates respectively).

Specifically, the issue of round and communication complexity existed be-

cause all such protocols follow the same typical ”gate-by-gate” design pattern

[17]: Players work through an arithmetic (boolean) circuit on secretly shared20

inputs, such that after they execute a sub-protocol that processes a gate, the

output of gate is represented as a new secret sharing among these players. In

particular, a Multiplication Gate Protocol (MGP) basically takes random shares

of two values a, b from a field as input and random shares of ab as output.

In current blockchain platforms (e. g., Bitcoin [4], Ethereum [5] and EOS25

[6]), throughput is an important indicator for evaluating performance of blockchain

platform. If every multiplication of secret numbers needs O(n) communication

complexity, the throughput will be seriously affected. Therefore, existing secure

MPCs are not suitable for the requirements of blockchain since they require a

certain number of interaction per multiplication of secret numbers.30
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In this paper, we mainly focus on non-interactive secure MPC, where players

can process any-degree multiplication of secret numbers without interaction. It

will have great significance for the application of secure MPC in the blockchain.

1.1. Our Results

Our contributions are summarized as follows:35

• We propose a Double Non-interactive Secure Multi-party Computation,

called BeeHive. The first non-interactivity denotes that shareholders can

locally generate shares (these shares will be the responses sent to deal-

er) of any-degree polynomial of secret numbers without interaction. The

second non-interactivity indicates that dealer can verify the correctness of40

responses sent by shareholders without interaction.

• We present detailed performance evaluation of BeeHive by deploying Bee-

Hive on a Ubuntu 16.04 environment laptop. Specifically, the proposed

BeeHive was implemented in Python on a two core of a 2.60GHz Intel(R)

Core (TM) i7-6500U CPU with 8G RAM. We used high-speed Python45

Pairing-Based Cryptography (PBC) library [30] to compute point multi-

plication of elliptic curve and pairing, and utilized Python GNU Multiple

Precision (GMP) Arithmetic Library [31] to calculate big number com-

putation. According to the performance evaluation, the performance of

proposed BeeHive is satisfactory. For instance, when the request is a50

10-degree polynomial of secret value, generating a response takes about

0.0017263 s; verifying a response takes about 0.1221394 s; recovering a

result takes about 0.0003862 s.

• A security analysis of BeeHive is presented. According to this security

proof, we proved that malicious shareholders cannot get any information55

if the number of malicious shareholders is less than the threshold number.

1.2. Related Work

The round complexity and communication complexity of secure MPC have

been two fundamental issues in cryptography. There are many studies about
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these two aspects. In this subsection, we will present related work about our60

study at first, then some comparisons between our previous paper [26] and this

paper will be presented.

Round complexity. The round complexity of an ordered gate-by-gate

protocol must be at least proportional to the multiplicative depth of the circuit

[7]. The work of constant-round protocols for MPC was initially studied by65

Beaver et al. [18]. Subsequently, a long sequence of works constructed constant-

round MPCs (e.g., 2-round [19, 15, 27, 3], 3-round [20], 4-round [21, 7, 12],

5-round [22, 16, 8] and 6-round [22]). In particular, in Eurocrypt 2004, Katz

and Ostrovsky [16] established the exact round complexity of secure two-party

computation with respect to blackbox proofs of security. In CRYPTO 2015,70

Ostrovsky et al. [12] provided a 4-round secure two-party computation protocol

based on any enhanced trapdoor permutation, and Ishai et al. [15] obtained

several results on the existence of 2-round MPC protocols over secure point-to-

point channels, without broadcast or any additional setup. In Ecrypt 2017, Garg

et al. [8] proposed several 5-rounds protocols by assuming quasi-polynomially-75

hard injective one-way functions (or 7 rounds assuming standard polynomially-

hard collision-resistant hash functions). However, our scheme can solve any

request of any-degree polynomial of secret numbers in 1-round.

Communication complexity. Initially, Rabin et al. [23] proposed that:

To securely compute a multiplication of two secretly shared elements from a80

finite field based on one communication round, players have to exchange O(n2)

field elements since each of n players must perform Shamir’s secret sharing as

part of the protocol. After that, Cramer et al. [24] further proposed a twist on

Rabin’s idea that enables one-round secure multiplication with just O(n) band-

width in certain settings, thus they reduced the communication complexity from85

quadratic to linear. Recently, in CRYPTO 2016, Damg̊ard et al. [17] further

presented that: In the honest majority setting, as well as for dishonest major-

ity with preprocessing, any gate-by-gate protocol must communicate O(n) bits

for every multiplication gate, where n is the number of players. While, servers

(shareholders) of our scheme can generate responses of any-degree polynomial90
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of secret numbers without any interaction.

Comparisons with [26]. Currently, IoT and blockahin are experiencing

exponential growth in industry and academia [25]. Recently, [26] proposed a

blockchain-based IoT system with secure storage and homomorphic computa-

tion, called BeeKeeper. A key innovation of [26] is a secure multi-party computa-95

tion scheme, which realized that shareholders can generate shares of two-degree

polynomials of secret numbers without interaction. In this paper, we extend

the secure MPC of [26] to propose a novel secure MPC scheme, called BeeHive.

To the best of our knowledge, it is the first work to realize that shareholders

can generate shares of any-degree polynomial of secret numbers without inter-100

action. Essentially, BeeHive can be used to replace the secure MPC previously

used in BeeKeeper [26] since the way of combining is the same. Consequently,

we will mainly present the work principle and security analysis of BeeHive in

this paper since how MPC is used in BeeKeeper can be found in [26]. By us-

ing BeeHive, servers of BeeKeeper can process any-degree (not just two-degree105

realized by [26]) polynomial of secret numbers and the verification of responses

will be obviously more efficient than [26]. Temporarily, the secure MPC scheme

proposed in [26] is called Pre-Scheme. In the following text, we will present the

Pre-Scheme roughly at first. Then, we will show what BeeHive has improved.

Pre-Scheme has the following limitations:110

• Servers (shareholders) can only generate shares of two-degree polynomial

of secret numbers. In other words, servers cannot get any shares of k-

degree (k > 2) polynomial of secret numbers.

• Pre-Scheme used the pairing (pairing is an expensive computation) to

verify the correctness of responses (these responses are shares of two-degree115

polynomial of secret numbers) sent by servers.

• [26] did not include a complete security analysis of Pre-Scheme.

Based on Pre-Scheme, in this paper, we propose the BeeHive. Improvements

of BeeHive are described as follows:
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• Theoretically, servers can generate shares of any-degree polynomial of se-120

cret numbers without communicating with anyone.

• The dealer can verify the correctness of responses (shares of any-degree

polynomial of secret numbers) sent by servers. In this verification process,

BeeHive does not use pairing to verify responses, while Pre-Scheme used.

• We will present a complete security analysis of BeeHive. Moreover, this125

proof is also valid for the Pre-Scheme [26].

Organization. The remainder of the paper is organized as follows. An overview

of BeeHive is shown in Sec. 2. Sec. 3 briefly presents preliminaries. We

introduce BeeHive without verifiability and the verifiability of BeeHive in Sec.

4.1 and 4.2, respectively. Moreover, blockchain-based BeeHive is shown in Sec.130

4.3. A detailed performance evaluation is shown in Sec. 5. A security analysis

is presented in Sec. 6. Finally, a short conclusion is presented in Sect. 7.

2. An Overview of BeeHive

In the real world, there may be such a situation like the following one. That

is, a user does not want to store data, and he does not want others to get the135

data, but he wants to use the data for calculation at any time. Therefore, the

user has to store his encrypted data on some servers, and he hopes he can get

any result generated with his data by requesting these servers. In this process,

plaintext data and result of request should not be achieved by servers. Besides,

the user may not hope there is only one server since if the single server is offline140

or malicious, the scheme will not work properly. Therefore, threshold scheme

with multiple servers may be a reasonable choice. Specifically, if the user can

achieve a threshold number of correct responses from threshold servers, he will

obtain his desired result even if a part of these servers are offline or malicious.

Finally, in order to check out malicious participants and incorrect messages, all145

key messages should be verifiable.
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To address the above situation, in this paper, we propose a double non-

interactive secure multi-party computation, called BeeHive. In BeeHive, dealer

does not need to keep data (encrypted data are stored by servers), and he can

achieve any result generated with his data by requesting servers as long as a150

threshold number of servers send correct responses to him. An overview of

BeeHive is shown in Fig.1.

Figure 1: An overview of BeeHive

We hope to take the (t, n) BeeHive as an example to present the working

process of the proposed scheme as follows:

• Step 1: The dealer generates n sets of core-shares and a verification key155

(VK). After that, he opens VK, then anyone (including servers) can verify
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whether VK is correctly computed by dealer. If VK is invalid, then the

dealer has to regenerate the core-shares and VK, else the participants join

in the next step.

• Step 2: The dealer secretly sends these n sets of core-share to n servers160

respectively. After receiving a core-share, a server can verify whether his

core-share is valid by using VK. If the server’s core-share is invalid, then

he can ignore it and ask dealer to resend a core-share to him.

• Step 3: The dealer encrypts secret numbers into encrypted numbers, then

he sends the encrypted numbers to servers.165

• Step 4: When the dealer needs to get a result that is a polynomial of

secret numbers, he will send a query to n servers.

• Step 5: According to the query sent by dealer, an active server will in-

dependently generate a response with his core-share (this process has no

interaction with other servers), then the server will send his response to170

dealer securely.

• Step 6: After receiving responses, the dealer can verify whether responses

are correctly computed by corresponding servers. These verifications do

not need interaction with other servers. If a response is invalid, then the

dealer can ignore this response or ask the corresponding server to resend175

a response to him. Finally, the dealer can recover the desired result if he

can collect at least t correct responses.

BeeHive mainly has the following features:

• Full homomorphism. Servers can perform efficient homomorphic addi-

tions and multiplications on encrypted numbers without decrypting them.180

• Confidentiality. Secret numbers shared by dealer with core-shares are

always confidential as long as less than threshold number of servers are

malicious.
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• Verifiability. Verification key, core-shares and responses are verifiable.

– Verification key. When the verification key is opened, anyone can185

verify its validity.

– Core-shares. When a server receives a set of core-share, he can verify

whether his core-share is correctly computed by the dealer by using

VK. Moreover, in this method, the malicious dealer and incorrect

core-shares can be checked out.190

– Responses. When the dealer gets a response sent by a server, the

dealer would verify whether this response is correctly computed by

the server. In this way, malicious servers and incorrect responses can

be checked out.

3. Preliminaries195

In this section, we hope to present basic cryptography techniques of BeeHive

and the adversary model.

3.1. Shamir’s (t, n) Secret Sharing

Alice wants to secretly share a secret value s with n participants, and arbi-

trary t of the n participants can recover s, but less than t participants cannot get200

anything. In order do this, Alice needs to generate n shares of s, then secretly

sends the n shares to the n participants respectively. After that, if someone can

collect at least t correct shares, then he can recover the secret value s. This

problem can be resolved by Shamir’s (t, n) secret sharing (SSS) [28]. In this

subsection, we will present the working process of the SSS.205

Firstly, Alice randomly samples a polynomial f(x) of degree t-1 from Fp[x]

(p is a big prime number) as the following polynomial:

f(x) = at−1x
t−1 + at−2x

t−2 + · · ·+ a1x+ s,

where s is the secret value as well as a1, · · · , at−1 ∈ Fp, at−1 6= 0.
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Secondly, let P1, P2,...,Pn be the n participants and IDi (i = 1, 2, ..., n)

denote Pi’s address. Alice generates Pi’s share as follow:210

Sharei = f(IDi),

where i=1, 2, ...,n. Then, Alice secretly sends Share1, Share2, ...,Sharen to

the n participants, respectively.

Finally, if someone collects t correct shares, then he can use the lagrange

interpolation to reconstruct the polynomial f(x). Without loss of generality, let

the t shares be Share1, Share2, ...,Sharet. He can reconstruct the polynomial215

f(x) as follow:

f(x) =

t∑
i=1

Sharei

t∏
j=1,j 6=i

x− IDj

IDi − IDj
.

Consequently, he can get s = f(0).

Addition homomorphism of SSS. SSS naturally has the additional ho-

momorphism. It means that the sum of shares is the share of the sum of corre-

sponding secrets. Moreover, the threshold number is always immutable during220

this process since the degree of the sum of shared polynomials is equal to the de-

gree of shared polynomials. Therefore, if a dealer can collect threshold number

of sum shares, he can reconstruct the corresponding polynomial and then get the

sum of secrets. Consequently, SSS naturally has the additional homomorphism.

Multiplication homomorphism of SSS. Similarly, SSS naturally also225

has the multiplicative homomorphism. It denotes that the product of shares is

the share of the product of corresponding secrets. However, the multiplicative

homomorphism has a big limitation that is, with the degree growth of product

of secrets, the degree result polynomial will become larger and larger. Under

this process, it will eventually arrive at a threshold larger than n so that the230

final result cannot be reconstructed. Finally, the multiplicative homomorphism

of SSS is restricted.

3.2. Pairing

In BeeHive, the pairing computation is only used in the verification process

of verification key. After that, pairing will not be used anymore. Namely, it235
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however will not be used in the verification processes of core-shares and respons-

es.

Let G and GT be the cyclic groups of a large prime order q. G is the

generator of G. A cryptography pairing [29] e (bilinear map): G× G → GT is

a map that has a property of bilinearity. The bilinearity means that240

e(aG, bG) = e(G,G)ab,

where a, b ∈ Zq.

Remark 1. In the proposed scheme, pairing is only used in verifying VK. In

other words, it will not be used in any other process anymore.

3.3. Adversary Model

In this subsection, we will take the (t, n) BeeHive as an example to present245

the adversary model of the proposed scheme. In this adversary model, there are

n servers. In these n servers, we assume that more than n− t servers are honest.

Otherwise, this scheme is not secure. Specifically, t malicious servers can recover

secret numbers from their core-shares, but if the number of malicious servers is

less than t, these malicious servers would get nothing.250

Honest. An honest user means that (i) he honestly processes his data, (ii)

he does not jointly work with others and (iii) he secretly keeps his secret data

without exposing it to others.

Malicious. A malicious user denotes that (i) he can dishonestly process his

data, (ii) he can jointly work with other malicious users and (iii) he can expose255

his secret data to other malicious users.

In the full version of BeeHive, we have the following assumptions:

• The dealer could dishonestly generate the verification key (VK) and core-

shares, but he can not expose any secret data to servers.

• Some malicious servers may not generate responses or respond incorrectly,260

but it is crucial to have at least n− t servers honest and active.
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4. Construction of BeeHive

In this section, to clearly present the work process of BeeHive, we will present

the BeeHive without verifiability at first. Then we will give out the verifiability

of BeeHive. Finally, basic applications of BeeHive combined with blockchain265

will be illustrated.

4.1. BeeHive without verifiability

In this subsection, we will present the BeeHive without verifiability, where

data-senders (dealer and servers) are all honest. Namely, all data-recepients

(servers and dealer) do not need to verify data received. While, in the next270

section, we will specifically show the verification processes of BeeHive, where

the dealer and servers could be dishonest, and a (t, n) BeeHive will be taken as

an example to present the scheme without verifiability. It contains a dealer and

n servers. Let Sri denote the i-th server and IDi be the ID of Sri.

4.1.1. Generation of Core-share, Request, Response and Result275

Assume the dealer wants to get V =
∑k

i=0 bis
i, where s is the key secret

value shared among servers. Therefore, the dealer needs to send request =

{bk, bk−1, ..., b1, b0} to every server. According to the request, a server can use

his data to generate a response of V for dealer. It must be pointed that servers

cannot get s or V in this process although they get the requst. Before presenting280

the real working process, we will provide some mathematical principles at first,

which can help to understand the process of generating responses.

• Let f(x) = wt−1x
t−1 +wt−2x

t−2 + ...+w1x+s be a random (t−1)-degree

polynomial over Fq.

• Let285

S(x) =

k∑
i=1

bif(x)i + b0.

We know that S(0) =
∑k

i=0 bis
i since f(0) = s. However, the degree of

S(x) is kt− k.
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• In order to reduce the degree of S(x) to t− 1 as well as keep its constant

term being
∑k

i=0 bis
i, we now present polynomials h2(x), h3(x), ..., hk(x).

They can be constructed as follows:290

– Randomly sample (t − 1)-degree polynomials c2(x), c3(x), ..., ck(x),

ci(0) = 0, i = 2, 3, ..., k.

– i from 2 to k, construct

hi(x) = f(x)i − ci(x)− si.

• Compute

H(x) = S(x)−
∑k

j=2 bjhj(x)

=
∑k

i=1 bif(x)i + b0 −
∑k

j=2 bjhj(x)

=
∑k

j=2 bj(cj(x) + sj) + b1f(x) + b0.

(1)

• H(x) is a polynomial of t − 1 since ck(x), ck−1(x),..., c2(x) and f(x) are295

of degree t− 1. Moreover, we have

H(0) =

k∑
i=1

bis
i + b0 = V.

Thereby, H(x) is the desired polynomial. H(x) can be reconstructed if someone

can obtain at least t correct shares of H(x), then he can obtain
∑k

i=0 bis
i by

computing H(x)|x=0.

Question: How does a server generate his share of the H(x)as his response?300

According to the above process of computing H(x), servers can work as

follows to help dealer to secretly obtain
∑k

i=1 bis
i + b0:

• Core-shares The dealer randomly samples f(x), c2(x), c3(x), ..., ck(x).

They are polynomials of degree t − 1 and f(0) = s, cj(0) = 0 (j =

2, 3, ..., k). Then, the dealer generates polynomials h2(x), h3(x), ..., hk(x)305

as above process, and then generates core-share for each server. For in-

stance, Sri’s core-share is

core-sharei = {f(IDi)||h2(IDi)||h3(IDi)||...||hk(IDi)}
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, i = 1, 2, ..., n. Then, the dealer secretly sends core-sharei to Sri.

• Request Assume that the dealer wants to get the result V =
∑k

i=0 bis
i.

Therefore, he will send a request to n servers to get feedback from them.310

Specifically, the request includes the following numbers:

{bk, bk−1, ..., b1, b0}

According to the request, an active server will know that the dealer wants

to get the result
∑k

i=1 biX
i + b0, where X is the secret value s. However,

servers do not know what X is.

• Responses If Sri wants to respond the request, he can use f(IDi),315

h2(IDi), h3(IDi),..., hk(IDi) to generate his response Respi (it is a share

of H(x)) as follow:

Respi =

k∑
j=1

bjf(IDi)
j + b0 −

k∑
j=2

bjhj(IDi).

Then, Sri sends Respi to the dealer secretly.

• Result If the dealer can collect t responses like Respi, then he can use the

lagrange interpolating to recover the t−1-degree polynomial H(x). Final-320

ly, the dealer can get the desired result
∑k

i=0 bis
i by computing H(x)|x=0.

Remark 2. We know that the degree of request
∑k

i=0 bis
i is k. However, the

value k is unlimited. Namely, the dealer can purposefully set the k according to

his requirements by providing enough core-shares to servers. Therefore, servers

of BeeHive can process any-degree polynomials of secret numbers in theoretically325

as long as the dealer can provide enough core-shares to servers. For instance,

servers can generate responses of 50-degree polynomials of secret number if their

core-shares are similar to f(IDi), h2(IDi), ..., h50(IDi).

4.1.2. BeeHive with Sharing Encrypted Numbers

In this subsection, we will add a feature of sharing encrypted number-330

s on BeeHive. Specifically, the dealer has a set of secret numbers that are
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d1, d2, ..., dm. After randomly sampling f(x) (f(x) is a (t-1)-degree polynomial

and f(0) = s), the dealer performs as follows:

• Encrypt d1, d2, ..., dm into a1, a2, ..., am as follows:

aj = dj − s, j = 1, 2, ...,m.

• Secretly sending core-sharei to Sri, i from 1 to n.335

• Open a1, a2, ..., am.

After that, the dealer will send a request about the encrypted numbers a1, a2, ..., am.

Then servers can generate corresponding responses according to the request.

Next, we will present how dealer and servers work with a1, a2, ..., am.

At first, assume that: i) the largest degree of addressable request is k, ii)340

the dealer has secretly sent {f(IDi)||h2(IDi)||h3(IDi)||...||hk(IDi)} to Sri, i =

1, 2, ..., n, and iii) he has also opened {a1, a2, ..., am}. Then, servers can help

the dealer to get any result like the following formula:

w∑
t=1

vt∏
j=1

µt,ddjt,d ,

where vt ≤ k and µt,d ∈ Fq, jt,d ∈ {1, 2, ...,m}. The dealer sends a string to

servers like the following one:345

w∑
t=1

vt∏
j=1

µt,d(X + ajt,d),

due to djt,d = s+ ajt,d .

After receiving the above request, Sri can transmit the string into a poly-

nomial of x as follow:

W (x) =

w∑
t=1

vt∏
j=1

µt,d(x+ ajt,d) =

k∑
j=0

bjx
j .

At this moment, the polynomial W (x) can be seen as the request mentioned

in Sec. 4.1.1. Therefore, servers can use W (x) to generate responses, and the350

subsequent work is the same as the corresponding work mentioned in Sec. 4.1.1.
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Remark 3. Servers and dealer may transmit the string of request into a ad-

dressable polynomial. After that, the processes of generating responses and

verifying responses are the same as the original BeeHive. Servers cannot get

d1, d2, ..., dm from a1, a2, ..., am as long as the key secret value s is secretly pro-355

tected by servers. We will analyze the security of BeeHive in Sec. 6.

4.2. Verifiability of BeeHive

In Sec. 4.1, we described the BeeHive without verification, and we assumed

that data-senders (dealer and servers) are honest. However, in practical ap-

plications, data-senders might incorrectly compute data which would lead to360

the corresponding data-recepients generates wrong results. Therefore, data-

recepients (servers or dealer) should verify whether received data (core-shares

or responses) are correctly computed by corresponding data-senders. In this

way, malicious data-senders and incorrect data can be checked out. Therefore,

in this section, we will present how data-recepients verify received data.365

Specifically, compared with the BeeHive without verifiability mentioned in

Sec.4.1, the full BeeHive adds four parts: (i) the dealer generates and opens the

verification key; (ii) anyone can verify the correctness of the verification key;

(iii) the server can verify the correctness of his core-share; (iv) the dealer can

verify the correctness of responses sent by servers.370

Without loss of generality, we take the (2, 3) BeeHive as an example (The

(t, n) BeeHive can be similarly constructed since it is similar to (2, 3) BeeHive.).

The BeeHive contains a dealer and three servers as well as a server can respond

at most k-degree request included in the query. Let Sr1, Sr2, Sr3 denote the

three servers. Furthermore, the dealer can recover the desired result if at least375

two servers generate responses to the dealer honestly. Moreover, IDi is the

ID of Sri, i = 1, 2, 3. Furthermore, in the underlying contents, let g denote a

generator of a cyclic group. We will use ga to compute a commitment to hide a.

In the next text, we will present how to verify verification key (VK), core-shares

and responses.380

16



4.2.1. Verify Verification Key

Before the dealer sends the core-shares to servers, he would generates a

verification key (VK) that will be used in the future verifications. The VK is

constructed as follows:

• The dealer randomly samples f(x), c2(x), ..., ck(x) from Fp[x]. f(x), c2(x), ..., ck(x)385

are polynomials of degree t− 1 as follows:

f(x) = bf2x
2 + bf1x+ s,

c2(x) = bc22 x
2 + bc21 x,

c3(x) = bc32 x
2 + bc31 x,

....

ck(x) = bck2 x
2 + bck1 x,

(2)

Then, the dealer computes hr(x) (r = 2, 3, ..., k) as follow:

hr(x) = f(x)r − cr(x)− sr =
∑2r

j=1 b
hr
j xj . (3)

• Let CMX denote the commitment of X. X may be a constant or polyno-

mial. Specifically,

– CMa = ga when a is a constant.390

– CM{h(x)} = {gbi |h(x) = brx
r+br−1x

r−1+...+b1x+b0, i = 0, 1, 2, ..., r}

when h(x) is a polynomial of x. For instance, if h(x) = b3x
3 + b2x

2 +

b1x+ b0, then

CM{h(x)} = {gb3 ||gb2 ||gb1 ||gb0}.

Let Hash(·) be a hash function. The dealer computes the following com-

mitments:395

– CM{f(x)}.

– CM{cj(x)}, CM{hj(x)} and CMsj , j = 2, 3, ..., k.

– CMf(r)j , where r = Hash(CM{f(x)}) and j = 2, 3, ..., k.
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• The verification key (VK) is as follow:

Verification key

CM{f(x)}

CM{c2(x)} CM{c3(x)} ... CM{ck(x)}

CM{h2(x)} CM{h3(x)} ... CM{hk(x)}

CMs2 CMs3 ... CMsk

CMf(r)2 CMf(r)3 ... CMf(r)k

Anyone (include servers) can verify the correctness of verification key (VK).400

The correctness of VK means that commitments of f(x), c2(x), h2(x), c3(x), h3(x), ..., ck(x), hk(x)

satisfy the following requirements:

• f(x), c2(x), c3(x), ..., ck(x) are polynomials of degree t− 1.

• cj(0) = 0, j = 2, 3, ..., k.

• hj(x) = f(x)j − cj(x)− sj , j = 2, 3, ..., k.405

Specifically, a verifier can verify VK as follows:

• j from 2 to k, if the following equation holds, then the commitment of sj

is valid.

e(CMs, CMsj−1) = e(CMsj , g).

If above equation does not holds for any j, the verifier would stop his

verifications of VK and concludes that the dealer did not generate the VK410

honestly.

• Compute r′ = Hash(CM{f(x)}).

• Compute gf(r′) by using the following equation:

gf(r′) = (CMbf2
)r
′2

(CMbf1
)r
′
CMs.

• j from 2 to k, if the following equation holds, the commitment of f(r)j is

correct.415

e(gf(r′), CMf(r)j−1) = e(CMf(r)j , g).
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If above equation does not holds for any j, the verifier would stop his

verifications of VK and concludes that the dealer did not generate the VK

honestly.

• j from 2 to k, the verifier computes gcj(r′) by using the following equation:

gcj(r′) =

2∏
t=1

(CM
b
cj
t

)r
′t
,

where CM
b
cj
t

is included in the CM{cj(x)} = {gb
cj
1 ||gb

cj
2 }.420

• j from 2 to k, compute ghj(r′) by using the following equation:

ghj(r′) =

2j∏
t=1

(CM
b
hj
t

)r
′t
,

where CM
b
hj
t

is included in the CM{hj(x)} = {gb
hj
1 ||gb

hj
2 ||...||gb

hj
2j }.

• j from 2 to k, if the following equation holds, then the commitments of

cj(x) and hj(x) are correct.

ghj(r′) = CMf(r)j/(g
cj(r′)CMsj ).

If above equation does not holds for any j, the verifier would stop his425

verifications of VK and concludes that the dealer did not generate the VK

honestly.

Finally, if the VK passes all the above verifications, then it can be seen valid.

After that, the verifier can use the VK to verify core-shares and responses.

4.2.2. Verify Core-shares430

In this subsection, we will present how Sri verifies his core-share. Assume

that the VK has been verified and it is valid. In BeeHive, the core-share of Sri

are as follows:

f(IDi), h2(IDi), h3(IDi), ..., hk(IDi).

Because commitments of coefficients of f(x), c2(x), ...,ck(x), h2(x), ..., hk(x)

have been provided in VK as well as VK is valid, so Sri can verify his core-435

shares with these commitments and IDi. Moreover, the verification processes of
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f(IDi), h2(IDi), h3(IDi), ..., hk(IDi) are similar to each other. Therefore, we

are going to take the verification process of f(IDi) as an example. Specifically,

if the following equation holds, then the f(IDi) is correct.

gf(IDi) = (CMbf2
)ID

2
i (CMbf1

)IDiCMs.

Anyone of f(IDi), h2(IDi), h3(IDi), ..., hk(IDi) can be verified as the same pro-440

cess above. For another instance, if the following equation holds, then h3(IDi)

can be seen correct.

gh3(IDi) =

6∏
j=1

(CM
b
h3
j

)ID
j
i .

4.2.3. Verify Responses

In BeeHive, the dealer can verify whether a response is correctly computed

by the corresponding server. In this subsection, we will take the case of re-445

quest being
∑k

i=1 bis
i + b0 as an example to present the process of verifying

response. Specifically, the dealer verifies the response Respi generated by Sri

(i = 1, 2, ..., n) as follows:

According to Sec. 4.1.1, we know

Respi =
∑k

t=2 bt(ct(IDi) + st) + b1f(IDi) + b0.

Consequently, the dealer can verify the Respi as follows:450

• Compute CMf(IDi) as follows:

CMf(IDi) =

2∏
j=0

(CMbfj
)ID

j
i .

• Compute CMct(IDi) (t = 2, 3, ..., k) as follows:

CMct(IDi) =

2∏
j=1

(CMb
ct
j

)ID
j
i .

• If the following equation holds, then the response Respi is correct.

gRespi =

k∏
t=2

[CMct(IDi)CMst ]
bt [CMf(IDi)]

b1CMb0 .
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4.3. Blockchain-based BeeHive

Currently, blockchain [32] is experiencing exponential growth in industry455

and academia. Blockchain can provide decentralization and high credibility to

users due to its collective verification and tamper resistance. Therefore, it can

also provide high credibility and convenience to users of BeeHive. Benefits of

blockchain-based BeeHive are as follows:

• Blockchain provides tamper-resistance to all users of BeeHive. Namely,460

once data have been recorded in the blockchain, they can be seen im-

mutable. Besides, verification key (VK) is the security base of BeeHive.

Therefore, if the correctness and tamper-resistance of VK cannot be guar-

anteed, then scheme would be insecure. For instance, if VK of BeeHive is

opened on some centralized data center, the center could modify or delete465

this VK since the center could be corrupted by some malicious adversary.

However, if VK is opened in the blockchain, then all users can consider

that VK as credible and immutable.

• Verifiers of blockchain can help users of BeeHive to verify all publicly veri-

fiable data. Thereby, verifiers of blockchain can verify the VK included in470

the transaction before it is recorded in the blockchain. Consequently, only

valid VK can be recorded in the blockchain. Similarly, most verification of

commitments of core-shares and responses are publicly verifiable, and the

process of these verification does not release the plain-text of core-shares

and responses, thus this verification can also be performed by verifiers of475

blockchain. In that way, invalid commitments of core-shares and respons-

es cannot be recorded in the blockchain. Therefore, if commitments of

core-shares and responses have been recorded in the blockchain, the cor-

responding receivers can consider these commitments as valid, now they

only need to decrypt the encrypted core-shares or responses, then compare480

the commitments of plain-text core-shares or responses to verify they are

the same as the commitments on the blockchain.
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Figure 2: Architecture of blockchain-based BeeHive

• Processing power limitation is broken. Generally speaking, in some specific

application, the processing power of servers has a upper-limit since servers

are controlled by some company. Therefore, in this situation, external485

computing resources are hard to join in this system of servers to increase

the processing power of the entire system. However, in blockchain-based

BeeHive, a user can arbitrarily choose some nodes as his servers as long

as these nodes are willing. Thus if the blockchain-based BeeHive can be

applied in practice, the processing power upper-limit of the entire system490

may gradually increase with the number of server nodes increases.

• Servers and dealer do not need to store encrypted data in their location

since these encrypted can be stored by the blockchain. In this way, servers

and dealer do not need a lot of storage space.

Fig. 2 presents a illustrative architecture of blockchain-based BeeHive. We495

would not present too much details of blockchain-based BeeHive since it is sim-

ilar to BeeKeeper [26]. The details can be found in [26]. In the following text,

we will present the rough working process.

In this architecture, there are two groups of participants. The first group con-

tains the record-nodes of blockchain. Record-nodes are full nodes of blockchain500

who are responsible for verifying all publicly verifiable data. Once the data are

22



confirmed to be valid, related transactions including these data will be recorded

in the blockchain by record-nodes. Otherwise, the related transaction will not

be recorded. The second group contains ”dealer and servers”. All these partici-

pants only trust information recorded in the blockchain, and they communicate505

to others with the payload field of a transaction in the blockchain system.

The working process of blockchain-based BeeHive are as follows:

1. Dealer generates VK, core-shares and encrypted numbers. He writes VK

and encrypted numbers in transaction TV K and Tenumbers respective-

ly. After that, he computes commitments of core-shares and encrypts510

core-shares with corresponding servers’ public keys, then he writes these

commitments and encrypted core-shares in Tcore−share. Finally, he sends

TV K , Tenumbers and Tcore−share to blockchain network. After record-

nodes receive TV K and Tcore−share, they verify whether VK and commit-

ments of core-shares are valid. If they are valid, record-nodes record these515

data in the blockchain, else they reject corresponding transactions.

2. After seeing Tcore−share in the blockchain, servers can consider these com-

mitments of cores-shares are valid. Servers can decrypt encrypted core-

shares by using their private keys respectively. After that, a server just

need to check whether the commitments of plain-text of core-share are520

equal to commitments recorded in the Tcore−share. If they are equal to

each other, the server’s core-share can be seen as valid, else the server can

ask dealer to resend his core-share.

3. When the dealer wants to get a result, he can send a transaction Trequest

including his request to the blockchain network.525

4. After seeing Trequest in the blockchain, an active server will generate a re-

sponse according dealer’s request with encrypted numbers recorded in the

blockchain, then he would encrypt his response with dealer’s public key.

After that, he would send a transaction Tresponse including the encrypted

response and a commitment of this response to the blockchain network.530

After record-nodes receive Tresponse, they verify whether the commitment
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of response is valid. If the commitment is valid, then record-nodes will

record Tresponse in the blockchain, otherwise they reject this transaction.

5. After seeing Tresponse in the blockchain, the dealer can consider that the

commitment of response included in the Tresponse is valid. Then the535

dealer decrypts the encrypted response with his private key. After that,

the dealer just needs to check whether the commitment of the plain-text

response is equal to the commitment recorded in Tresponse. If the two

commitments are the same, the response can be seen as valid, otherwise

the dealer can ask corresponding server to resend a response to dealer.540

6. If the dealer can collect at least threshold number of responses, the desired

result can be recovered correctly, else the scheme fails.

5. Performance Evaluation

In this section, we will present a performance evaluation of BeeHive by de-

ploying BeeHive on a Ubuntu 16.04 environment laptop. Specifically, the Bee-545

Hive was implemented in Python on a two core of a 2.60GHz Intel(R) Core

(TM) i7-6500U CPU with 8G RAM. We used high-speed Python Pairing-Based

Cryptography (PBC) library [30] to compute point multiplication of elliptic

curve and pairing, and utilized Python GNU Multiple Precision (GMP) Arith-

metic Library [31] to calculate big number computation.550

In the our experiments, BeeHive was divided into seven functions: Gen VK,

Ver VK, Gen core-share, Ver core-share, Gen response, Ver response and Rec result.

These functions are used as follows:

• Gen VK: Dealer uses Gen VK to generate verification key (VK).

• Ver VK: Servers can use Ver VK to verify the validation of VK.555

• Gen core-share: Dealer uses Gen core-share to generate core-shares for

servers.

• Ver core-share: Servers can use Ver core-share and VK to verify core-

shares sent by dealer.
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• Gen response: Servers can use Gen response to generate responses accord-560

ing to the request sent by dealer.

• Ver response: Dealer can use Ver response and VK to verify the validation

of responses sent by servers.

• Rec result: Dealer can use Rec result to recover desired result with the

threshold number of correct responses.565

In practical applications, these functions belong to different participants

(dealer and servers). The affiliation of these functions is shown in Table 1.

Table 1: Functions of Participant

Participant Functions of Participant

Dealer
Gen VK, Gen core-share, Ver VK

Ver response, Rec result

Server Ver VK, Ver core-share, Gen response

Essentially, we performed two types of tests as follows:

• Test 1: We deployed (3,7) BeeHive (a total 7 servers, and the desired

result can be recovered with at least 3 valid responses) on our laptop. Let570

k be the largest degree of addressable request, we set k from 4 to 10. We

tested the performance of Gen core-share, Gen VK, Ver core-share and

Ver VK. The results of Test 1 are shown in Table 2.

• Test 2: We also deployed (3,7) BeeHive on our laptop. Let the largest

degree of addressable request be constant 10. We set the degree of request575

from 2 to 10. We tested the performance of Rec result, Gen response and

Ver response. The results of Test 2 are shown in Table 3.
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Table 2: Performance of functions with the change of the largest degree of

addressable request (second)

k Gen core-share Ver core-share Gen VK Ver VK

4 0.000329733 0.003045559 0.127948046 0.148387432

5 0.000474215 0.004627943 0.155535466 0.237745762

6 0.000656843 0.005952125 0.201929808 0.368674755

7 0.000918154 0.007400751 0.259971857 0.536798954

8 0.001402143 0.010572672 0.317357063 0.766717434

9 0.001489878 0.012337208 0.375114679 1.056947708

10 0.002088308 0.014226913 0.435570243 1.331381321

11 0.002505302 0.017073154 0.493043661 1.681715012

12 0.003757325 0.021838427 0.572894812 2.194091082

We deployed (3,7) BeeHive to show the performance of Gen core-share, Gen VK, Ver core-share

and Ver VK. k denotes the largest degree of addressable request. The finite field is based on a

256-bit big prime number.

6. Security Analysis

In this section, we will take the (t, n) BeeHive as an example to discuss the

confidentiality of the proposed BeeHive, and the highest degree of polynomial580

that the dealer can query is k. Because the BeeHive is a threshold cryptography

scheme, its confidentiality means that t − 1 malicious servers cannot jointly

recover the key secret value s, unless the number of servers reaches t. According

to Sec. 4.1, the secretly shared polynomials are:

f(x), h2(x), h3(x), ..., hk(x).

Moreover, each honest server secretly keeps his core-share. For instance, the585

server Sri (i = 1, 2, ..., n) secretly keeps his core-share:

f(IDi), h2(IDi), h3(IDi), ..., hk(IDi).

Besides, we know cj(x) = f(x)j − hj(x)− sj (j = 2, 3, ..., k) due to hj(x) =

f(x)j − cj(x)− sj as mentioned in Sec. 4.1. Therefore, secretly shared polyno-

26



Table 3: Performance of functions with the change of degree of request (second)

Degree of request Rec result Gen response Ver response

2 0.000478268 0.001681805 0.007747173

3 0.000378373 0.001621246 0.016930582

4 0.000452042 0.001915455 0.023883823

5 0.000365019 0.001704931 0.032199383

6 0.000339508 0.001774073 0.049633026

7 0.000391245 0.001723289 0.065804005

8 0.000404119 0.001615524 0.081865788

9 0.000323057 0.001732349 0.096564293

10 0.000386238 0.001726389 0.122139454

We deployed (3,7) BeeHive with the largest degree of addressable request being 10 to show the

performance of Rec result, Gen response and Ver response. Moreover, the finite field is based on

a 256-bit big prime number.

mials are equivalent to:

f(x), c2(x), c3(x), ..., ck(x).

The t−1 malicious servers do not know anything about f(x), c2(x), c3(x), ..., ck(x)590

except that f(x), c2(x), c3(x), ..., ck(x) are polynomials of degree t−1 and cj(0) =

0, j=2,3,...,k. In other words, they only know f(x), c2(x), c3(x), ..., ck(x) have

the following expressions, but they have no idea about the coefficients of these

equations.

f(x) = bft−1x
t−1 + bft−2x

t−2 + ...+ bf1x+ s,

c2(x) = bc2t−1x
t−1 + bc2t−2x

t−2 + ...+ bc21 x,

c3(x) = bc3t−1x
t−1 + bc3t−2x

t−2 + ...+ bc31 x,

...... .. ................................................

ck(x) = bckt−1x
t−1 + bckt−2x

t−2 + ...+ bck1 x.

Essentially, we want to discuss why the t − 1 malicious servers cannot re-595

cover s by using their core-shares although they work together. Without loss of

generality, we assume that Sr1, Sr2, ..., Srt−1 are the t− 1 malicious servers as
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well as other servers are honest. According to Sec. 4.1, we know that core-share

kept by Sri (i = 1, 2, ..., t−1) is f(IDi), h2(IDi), h3(IDi), ..., hk(IDi) as shown

in Table 4.600

Table 4: Core-shares of servers

Server Sr1 Sr2 ... Srt−1

Core-shares

f(ID1) f(ID2) ... f(IDt−1)

h2(ID1) h2(ID2) ... h2(IDt−1)

h3(ID1) h3(ID2) ... h3(IDt−1)

... ... ... ...

hk(ID1) hk(ID2) ... hk(IDt−1)

In order to solve coefficients of f(x), c2(x), c3(x), ..., ck(x), the t−1 malicious

servers can construct linear equations by using their core-shares as follows:



b
f
t−1

(ID1)t−1 + ... + b
f
1 ID1 + s = f(ID1)

b
f
t−1

(ID2)t−1 + ... + b
f
1 ID2 + s = f(ID2)

............................. ...........

b
f
t−1

(IDt−1)t−1 + ... + b
f
1 IDt−1 + s = f(IDt−1)

(4)



b
c2
t−1

(ID1)t−1 + ... + b
c2
1 ID1 + s2 = f(ID1)2 − h2(ID1)

b
c2
t−1

(ID2)t−1 + ... + b
c2
1 ID2 + s2 = f(ID2)2 − h2(ID2)

............................. ...........

b
c2
t−1

(IDt−1)t−1 + ... + b
c2
1 IDt−1 + s2 = f(IDt−1)2 − h2(IDt−1)

(5)



b
c3
t−1

(ID1)t−1 + ... + b
c3
1 ID1 + s3 = f(ID1)3 − h3(ID1)

b
c3
t−1

(ID2)t−1 + ... + b
c3
1 ID2 + s3 = f(ID2)3 − h3(ID2)

............................. ...........

b
c3
t−1

(IDt−1)t−1 + ... + b
c3
1 IDt−1 + s3 = f(IDt−1)3 − h3(IDt−1)

(6)

...........................................



b
ck
t−1

(ID1)t−1 + ... + b
ck
1 ID1 + sk = f(ID1)k − hk(ID1)

b
ck
t−1

(ID2)t−1 + ... + b
ck
1 ID2 + sk = f(ID2)k − hk(ID2)

............................. ...........

b
ck
t−1

(IDt−1)t−1 + ... + b
ck
1 IDt−1 + sk = f(IDt−1)k − hk(IDt−1)

(7)

For Eq.4, there are t − 1 equations and t variables. The t variables are

bft−1, b
f
t−2, ..., b

f
1 , s. Moreover, according to the theory of linear algebra, we know605

that s is a free variable. Namely, s can be any number. Consequently, s cannot

be determined by Eq.4.

28



For Eq.5, there are t − 1 equations and t variables. The t variables are

bc2t−1, b
c2
t−2, ..., b

c2
1 , s. Moreover, according to the theory of linear algebra, we can

also know that s is a free variable. Consequently, s cannot be determined by610

Eq.4 and Eq.5.

Similarly, for Eq.6 and Eq.7, s is a free variable still. Consequently, s cannot

be determined by Eq.4, Eq.5, Eq.6..., Eq.7.

Finally, s is always un-determined, therefore, the t − 1 malicious servers

cannot recover the key secret value s although they jointly work together.615

7. Conclusions

In this paper, a novel double non-interactive multi-party computation (Bee-

Hive) is proposed. Specifically, it realized that shareholders can help dealer

to calculate any-degree polynomial of secret numbers in a non-interactive way,

and the dealer can verify the correctness of responses sent by shareholders in620

the same way. Moreover, a detailed performance evaluation is presented. Fi-

nally, we presented a security proof of BeeHive, which proved that shareholders

cannot get any information if the number of malicious shareholders is less than

the threshold number.
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