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Abstract

Secure sketch produces public information of its input w without revealing it, yet, allows the
exact recovery of w given another value w′ that is close to w. Therefore, it can be used to reliably
reproduce any error-prone biometric data stored in a database, without jeopardizing the user privacy.
In addition to this, secure sketch enables fuzzy extractor, by using a randomness extractor to convert
the noisy reading w′ of its original value w into the same uniform key R. Standard secure sketch
should work on all type of available input sources. However, some sources have lower entropy
compared to the error itself, formally called “more error than entropy”, a standard secure sketch
cannot show its security promise perfectly to these kinds of sources. Besides, when same input
is reused for multiple sketches generation, the complex error process of the input further results to
security uncertainty, and offer no security guarantee. Fuller et al., (Asiacrypt 2016) defined the fuzzy
min-entropy is necessary to show security for different kind of sources over different distributions.

This paper focuses on secure sketch. We propose a new technique to generate re-usable secure
sketch. We show security to low entropy sources and enable error correction up to Shannon bound.
Our security defined information theoretically with fuzzy min-entropy under distribution uncertain
setting. In other words, our new technique offers security guarantee for all family of input distribu-
tion, as long as the sources possessing “meaningful amount” of fuzzy min-entropy over some random
distributions, parametrized by a chosen error correction code.

1 Introduction

Traditional cryptography systems rely on uniformly distributed and recoverable random strings for secret.
For example, random passwords, tokens, and keys, all are commonly used secrets for deterministic
cryptographic applications, i.e., encryption/decryption and password authentication. These secrets must
present precisely on every query for a user to be authenticated and get accessed into the system. Besides,
it must also consist of high enough entropy, thus making it very long and complicated, further resulted
in the difficulty in memorizing it. On the other hand, there existed plentiful non-uniform strings to be
utilized for secrets in practice. For instance, biometrics (i.e., human iris, fingerprint) which can be used
for human recognition/identification purpose. Similarly, long passphrase (S. N. Porter, 1982 [Por82]),
answering several questions for secure access (Niklas Frykholm et al., 2001 [FJ01]) or personal entropy
system (Ellison et al., 2000 [EHMS00]), and list of favorite movies (Juels and Sudan, 2006 [JS06]), all
are non-uniformly distributed random strings that can be utilized for secrets.

As a solution by utilizing non-uniform input for secrets, it raised several security and practicability
concerns. Firstly, since it is not truly random and uniform, this increased the risk where an adversary
may easily be guessed and compromised it, thus reveals the underlying secret. Secondly, most of the
available non-uniform strings are not exactly recoverable. Therefore, they cannot be used for a typical
deterministic cryptographic application. For instance, human biometric data, it is well understood that
two biometric readings sourced from the same individual are rarely to be identical. Additionally, precise
answer to multiple questions, or entering a password through keyboard consistently, from time to time,
would be a challenge for human memory although the provided answers are likely to be similar.

Nevertheless, these non-uniform measurements that always selected by human or naturally existing
are believed to offer higher entropy than human-memorable password. Especially, higher security level
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can be achieved by using longer/more complex human biological measurements, i.e., fingerprint, voice,
retina scan, handwriting signature, and others. (N. Frykholm, 2000 [FJ01]), (Jain et al., 2016 [JNR16]).
Most importantly, it is memory-free and somewhat difficult to steal, or loss compared to using external
key storage, e.g., smart card, token, keys.

The availability of non-uniform information prompted the generation of uniform random string from
non-uniform materials. Started by Bennette et al., (1988) [BBR88], identified two major approaches to
derive a uniform string from noisy non-uniform sources. The first approach is information-reconciliation,
by tolerating the errors contained inside the sources without leaking any information. The second
approach refers to the privacy amplification, which converts high entropy input into uniform random
input. The information-reconciliation process can be classified into interactive (includes multi messages)
and non-interactive (only includes single message) versions. For non-interactive line of work, it has been
first defined by Dodis et al., (2004) [DRS04] called the fuzzy extractor. Likewise, the fuzzy extractor used
two approaches to accomplish the task, which are the secure sketch - for error tolerance, and randomness
extractor - for uniform string generation.

In this work, we only focus on the secure sketch. Secure sketch is more demanding because it allows
information-reconciliation, e.g., exact recovery of any noisy secret while showing security guarantee to
the input. Moreover, it can be easily extended to a fuzzy extractor by using a randomness extractor.

There existing various secure sketch constructions in the literature. Some notable constructions
involved the code-offset construction proposed by Juels and Wattenberg (1999) [JW99] that operates
perfectly over hamming matric space. This work generates a sketch through encoding a uniform string
with error correction code, then leaving an offset through performing XOR operation with a noisy string.
The uniform string can be reproduced with another noisy string through of error tolerance, provided the
noisy level is lower than a specified threshold. Besides, Juels and Sudan (2006) [JS06] have also proposed
another construction for metric other than hamming called the fuzzy vault. A fuzzy vault is a vault over
a field F× F that protecting an unorder sets, often represented as different genuine points. The genuine
points reveal a secret which is encoded by using error correction code. Protection of the genuine points
can be done by adding extra chaff points into the vault to conceal the genuine points. Given another
set of query points matched with the genuine points in at least some reasonable number, the secret can
be reproduced through error tolerance. An improved version of the fuzzy vault is proposed by Dodis
et al., (2004) [DRS04], and also the Pin-sketch that relies on syndrome encoding/decoding with t-error
correcting BCH code C, which works well for non-fixed length input over a universe U [DRS04].

1.1 Existing Issues in Secure Sketch

We here review some existing issues in a secure sketch. As a highlight, these issues are mainly due to
the trade-off between security and error tolerance, and they have not considered by the constructions we
have previously mentioned. Recently, an alternative approach has introduced to solve these issues, yet
diverged from the original definition of a secure sketch.

More error than entropy: The secure sketch must contain some information about the sources to
tolerate the errors. More generally, given a point (some value) w, the sketch would allow the acceptance
of its nearby point w′ within distance t. Therefore, if an adversary can predict an accepting w′ with
noticeable probability, the sketch must reveal w to the adversary with noticeable probability as well.
The tension between the security and error tolerance capability is very strong. Precisely, the security
is measured in term of the residue entropy, which is the starting entropy of w minus the entropy loss.
Often, larger tolerance distance is required to tolerate more errors. However, exercising larger tolerance
distance will offer greater advantages to the adversary in predicting w′ within larger distance. In the end,
the residue entropy becomes lower by the increment of t. Conversely, an upper bound of the tolerance
distance translated to a lower bound on the entropy loss of the input.

Recent works by Fuller et al., (2009) [FRS16] have defined the min-entropy with maximized chances
for a variable W within distance t of w′, as the fuzzy min-entropy

Hfuzz
t,∞(W ) = − log

(
max
w′

Pr[W ∈ Bt(w′)]
)

where Bt(w
′) denoted a hamming ball of radius t around w′. Conceivably, the fuzzy min-entropy is

equivalent to the residue entropy, it can be bounded by the min-entropy H∞ (W ) − log(Bt(w
′)) ≤

Hfuzz
t,∞(W ) minus the loss signified by the hamming ball Bt(w

′) of radius t, due to error tolerance.

2



However, certain non-uniform sources come with more error than entropy itself are not able to sustain
under this crude measurement. Canetti et al., (2016) [CFP+16] gave much of discussion on how the low
entropy sources must be taken into consideration when constructing a fuzzy extractor (trivially, also
refer to a secure sketch). Since the source entropy rate is lower than the error rate, simply deducting
the entropy loss from the sources’ min-entropy always output a negative value, hence, show no security.
One typical example refers to biometric, i.e., IrisCode (Daugman, 2006) [Dau06]. The IrisCode is said to
provide entropy of 249 bits. Whereas, for two IrisCode generated from the same user of each 2048 bits,
have shown far more than 249 bits of errors. Therefore, this more error than entropy problem is indeed
limiting the usage of a secure sketch from all kind of available sources.

Distribution uncertainty: The predictability of nearby point w′ is not merely entropically con-
nected, but it is also closely tied to the distribution of the sources. Given a source under a distribution
where all points are far apart (larger than t), then, one has no scruple to tolerate the errors, since, it also
means the probability for an adversary to predict the nearby string w′ within distance t is small. How-
ever, standard secure sketch must work on all distributions (when the input distribution is unknown).
Under the worst scenario, the points might be distributed very close to each other. For any variable
W over this ‘worse case’ distribution, the sketch must lose entropy, by means of the number of similar
points within distance t, which allows error tolerance. Therefore, the entropy loss of the sketch would
be bounded that is proportional to this value.

Fuller et al., (2013) [FMR13] have shown that under the event when the input distribution is precisely
known, and the security is defined computationally, the crude entropy loss can be avoided by the mea-
surement of fuzzy min-entropy. However, it is imprudent to assume the source distribution is precisely
known, especially for high entropy sources. The adversary may have higher computation power to model
and exam the distribution compared to the designer. This leads to another problem called distribution
uncertainty.

The distribution uncertainty problem potentially to be resolved by showing security to a family of
distributions, rather than a single distribution, which can be easily achieved by using the traditional
way of measurement, e.g., min-entropy minus the loss, which is also the straightforward way to measure
the residue entropy. Most importantly, the notion of min-entropy is also known as worst case entropy,
which has considered all family of distribution, included the worst case distribution with error tolerance
distance t. Therefore, it indeed captured more meaningful security property for a secure sketch, covering
the worst cases. Nonetheless, doing so will reduce to the precedent more error then entropy problem
which is intended to be solved by using fuzzy min-entropy.

Reusability: Reusability property is introduced by Boyen (2004) [Boy04]. Given a user comes with
a noisy input w (i.e., biometric), the user may enrol w for different applications. Each time the user
enrols using w, he/she must provide slightly different reading wi due to the noise. Therefore, different
sketches ssi and keys Ri can be generated for different applications respectively. The security property of
individual sketches and keys should hold with all existing sketches ss1, ss2, . . . , ssq. In fact, this property
has been well studied for current constructions of secure sketch and fuzzy extractor, but many of them
do not satisfied reusability [Boy04] [BA13] [BA11] [STP09].

1.2 Our Contributions

We highlighted our main contributions as follow:
Correcting more errors with average fuzzy min-entropy: To correct more errors, larger

error tolerance distance is desired. Unfortunately, larger tolerance distance means higher probability of
success in predicting w′ within more considerable distance around w, which will degrade the security.
Only relying on fuzzy min-entropy of single tolerance distance t′ is insufficient, additional property is
required.

Consider another variable Φ. To allow error tolerance within a larger distance t > t′, one must
maximize the total probability mass of Φ with larger ball Bt(φ

′)1 around string φ′. Suppose Φ is
correlated with some variable W , if the adversary finds out W 6∈ Bt′(w

′), then the predictability of

Φ becomes Ew′←W
[
max
φ′

Pr[Φ ∈ Bt(φ′) |W 6∈ Bt′(w′) ]

]
. Therefore, on average, the average fuzzy min-

entropy is:

1Sometime, we omit φ′ or w′ to describe the ball Bt or Bt′ , when they are not depend upon their center φ′ and w′

respectively
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H̃
fuzz

t,∞(Φ|W 6∈ Bt′(w′)) = − log

(
Ew′←W

[
max
φ′

Pr[Φ ∈ Bt(φ′) |W 6∈ Bt′(w′) ]

])
Intuitively, we try to look for the fuzzy min-entropy of a variable Φ that is defined by a larger hamming

ball Bt, but comes with additional property: only the points outside the smaller ball Bt′ are considered.
Briefly, if one can show high fuzzy min-entropy for every point outside the ball Bt′ , it implies more errors
can be corrected over larger tolerance distance t > t′. Otherwise, the average fuzzy min-entropy must
offer security according to the maximized probability for a variable Φ ∈ Bt(φ′) within distance t that is
outside the ball Bt′ , by fuzzy min-entropy definition.

Obviously, correcting more errors means higher entropy loss, therefore, in some sense, average fuzzy

min-entropy H̃
fuzz

t,∞(Φ|W 6∈ Bt′(w′)) also reveals the entropy loss from the fuzzy min-entropy of W over
smaller tolerance distance t′. Since knowing some values outside the ball Bt′(w

′) must give advantages to
the adversary to predict a value inside the ball Bt′(w

′) as well. In other words, the lower bound security
can offer by average fuzzy min-entropy over larger tolerance distance t, translated to the lower bound
entropy loss of the fuzzy min-entropy over smaller tolerance distance t′. Therefore, the average-fuzzy
min-entropy is useful for better monitoring the loss of the fuzzy min-entropy while providing optimal
resilience. This definition is not new but combined merely the average min-entropy and fuzzy min-entropy
notions.

Info. theoretic secure sketch with fuzzy min-entropy: Info. theoretic secure sketch is always
desired. Because it does not introduce additional assumption of computational limits to the attacker, thus
offers better security guarantee. It also shows security to all family of input distribution, without putting
extra stringent distribution requirement to the sources. The cost imposed by info. theoretic secure sketch
to the source entropy requirement is too high, which is at least half of the length itself [DW09]. It means
that if the entropy is less than half of its input length, it achieves nothing where the underlying secret can
be easily revealed due to exhaustive entropy loss caused by error tolerance. For this reason, fuzzy min-
entropy takes the role to offer computational security for low entropy sources, without the need for info.
theoretic security. Fuller et al., [FMR13] have shown that, there existing some family of distribution,
where H∞ (W ) = Hfuzz

t,∞(W ), and yet the residue entropy is surprisingly low (i.e., at most 2 bits remaining)
to claim meaningful security. This suggested fuzzy min-entropy can be used to construct info. theoretic
secure sketch provided that, the source must possess “meaningful” amount of fuzzy min-entropy under
the worst case distribution.

We constructed a pair of sketching and recover algorithm that offers info. theoretical security, and
free from the stiff constraint, where the source entropy must be at least half of its input length. The
new construction is capable of achieving security bound that merely depends upon the input entropy
rather than its input length. Notably, it shows the best possible security which is at most half of the
input entropy could offer (i.e., m/2), regardless of its input length. Our construction relies on Local
Sensitive Hashing (LSH) to generate a resilient vector (trivially, a longer string with resilience property)
for sketching and recover instead of using the original input string. Doing so would allow us to apply
the average fuzzy min-entropy notion and correct more errors over a larger matrix space. In fact, in our
exposition, we show that the min-entropy of the resilient vector is equivalent to the fuzzy min-entropy of
the sources, which is parametrized by a randomly chosen error correction code. Our works supported a
statement: high fuzzy min-entropy is necessary for a source to show meaningful security. We portrayed
this with info. theoretic secure sketch.

Reusable secure sketch: Apart from this, the new construction offers extra security property,
which is the reusability. In the beginning, our design is meant to provide better security bound to the
secure sketch, through the insertion of additional random noise during the sketching phase. Eventually,
we find out the noise included implicitly allows reusability. We defined our reusability in information
theoretical sense, with a group of computational unbounded adversaries. Our results imply the flexibility
of independent re-enrolment of a single source with multiple providers, yet offer security guarantee to
each of them, as long as the noise is kept within specified range. Our reusability emphasizes the case
when the providers are not communicating with each other hence it supports security to all of them
individually.
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1.3 Our technique

Some notation need to know : This work focus on binary hamming metric where M1 = {0, 1}l, and
M2 = {0, 1}n denoted two different sizes of metric spaces with n > l. The distance between different
binary string w and w′ is the binary hamming distance (e.g., the number of disagree elements) denoted
as ‖w ⊕ w′‖ where ‖.‖ is the hamming weight that counts the number of non-zero elements, and ⊕ is the
addition modulo two operation (XOR). Besides, the error rate of w and w′ is denoted as ‖w ⊕ w′‖ / |w|
which is simply the normalized hamming distance, given their cardinality |w| = |w′|. For error correction
code notation, since we are more interested in tolerating the errors in a codeword c′, we used t instead
of d to explicitly represent an [n, k, t]2 binary code Cξ with the tolerance rate denoted as ξ = tn−1 over
larger binary matrix space {0, 1}n. At the same point, we let t′ = b(ξ − ε)lc to denote the error tolerance
distance over the smaller binary matrix space {0, 1}l, with some error parameter ε ∈ (0, 1/2).

Main idea: Suppose Alice wishes to conceal a noisy non-uniform string w ∈ {0, 1}l. Firstly, she has
to add additional random noise to w, which can be easily achieved by XORing the input with some noise
vector e ∈ {0, 1}l. We here described the noise added input with we = w ⊕ e. This initial step is a bit
counter-intuitive, but we will show later it is crucial to offer higher security protection and reusability.
Consequently, Alice has to tolerate the noise of the input including the newly introduced random noise,
for exact recovery of w. To do so, we invoke the use of error correction code. Suppose a [n, k, t]2 code Cξ
is chosen over {0, 1}n, in contrary to direct encoding w with Cξ, Alice encodes a longer string v ∈ {0, 1}k
by padding w with additional random bits string r ∈ {0, 1}k−l drawn uniformly at random, i.e., v = w‖r.
The output of the encoding process is a codeword c ∈ Cξ. After this, she conceals c by generating a sketch
ss = c⊕ δ which is then made public and leaving the offset δ in clear. The offset δ is characterized by a
pair of resilient vectors φ, φ′ ∈ {0, 1}n, which are generated from a pair of noisy strings we, w

′ ∈ {0, 1}l
through LSH. It offers resilience for the recovery of w from w′ if ‖δ‖ ≤ t.

Likewise the code-offset construction [JW99], our idea is conceptual simplistic but comes with some
significant differences in term of operations. Firstly, the code-offset construction concealing a random
and uniform string (called as the witness of w); our construction concealing a non-uniform input padded
with additional random bits. Therefore the concealed object is not entirely random and uniform in our
case. Secondly, despite the code-offset construction does not limit to particular type of error correction
code (i.e., not necessary to be linear), the sketch size is always bounded by the size of the input w. In
the same way to our case, Alice is free to choose any error correction code as she like, but with new
liberty, i.e., the sizes of the concealed object and output sketch have not bounded but parametrized
by the selected [n, k, t]2 code Cξ. Thirdly, of course, our operation comes with additional random noise
added to the input w while sketching.

In our work, for resilient vector generation, we only focus on a particular LSH family called hamming-
hash [GIM+99]. The hamming hash is considered as one of the easiest ways to construct an LSH family
by bit sampling technique. Since it will be a core element in our proposal, it is worth sketching in details
on how it works.

Hamming hash strategy. Let [l] = {1, . . . , l}. For Alice with w ∈ {0, 1}l and Bob with w′ ∈ {0, 1}l.
Alice and Bob agreed on this strategy as follow:

1. They are told to each other a common random integer N ∈ [l].

2. They separately output ‘0’ or ‘1’ depend upon their private string w and w′, i.e., Alice output ‘1’
if the N -th bit of w is ‘1’, else output ‘0’.

3. They win if they got the same output, i.e., w(N) = w′(N).

Based on above strategy, we are interested in the probability for Alice and Bob output the same value
which can be described with a similarity function S(w,w′) = P with probability P ∈ [0, 1].

Theorem 1. A hamming hash strategy is a LSH with similarity function S(w,w′) = 1− ‖w ⊕ w′‖l−1.

Theorem 1 concluded that Alice and Bob always win with probability described as 1 − P = 1 −
‖w ⊕ w′‖l−1. Observe that, the similarity function for hamming hash correspond to the hamming dis-
tance between w and w′.
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By repeat step 1 and step 2 of hamming hash strategy n times, with different random integers, Alice
and Bob able to output a n bits string φ, φ′ ∈ {0, 1}n respectively, which we have earlier named as
resilient vectors.

Theorem 2. Suppose two resilient vectors φ, φ′ ∈ {0, 1}n are generated from w,w′ ∈ {0, 1}l respectively,
by hamming hash strategy with a random integer string N ∈ [l]

n
, the expected hamming distance is

E[‖φ⊕ φ′‖ ] = n ‖w ⊕ w′‖ l−1.

Proof. Let ‖δ‖ = ‖φ⊕ φ′‖, base on Theorem 1, we know that, for each time in comparing the hamming
hash output (for i = 1, . . . , n), the probability of disagree is described as:

Pr[φ(i) 6= φ′(i)] = ‖w ⊕ w′‖ l−1 = 1− P

Therefore, one has i.i.d variable (or Bernoulli variable) for each offset element, δ(i) = 1 if φ(i) 6= φ′(i)
and δ(i) = 0 if φ(i) = φ′(i). Precisely, ‖δ‖ = ‖φ⊕ φ′‖ =

∑n
i=1 δ(i), thus, ‖δ‖ ∼Bin(n, 1 − P ) follows

binomial distribution of expected distance E [‖δ‖ ] = n(1 − P ) and s.d. σ =
√
nP (1− P ). Therefore

E[‖δ‖ ] = n(1− P ) = n ‖w ⊕ w′‖ l−1 and prove the theorem.

Theorem 2 concluded that, any changes in the input hamming distance ‖w ⊕ w′‖ can be described as
an Bernoulli variable corresponds to the offset elements δ(i). Therefore, by introducing additional noise
e ∈ {0, 1}l of weight ‖e‖ = lε to the inputs, where ε ∈ (0, 1/2) (e.g., adding the noise simply equivalent
to ‖w ⊕ w′ ⊕ e‖), the probability of disagreeing for each element between the resilient vectors φ, φ′ must
shifted by ε, which can be described as 1− P ± ε.

To make the above argument more precise, we provide the following corollaries to characterize the
effect on the offset ‖δ‖ with ε. To avoid notation clutter, we always refer to the resilient vectors generated
from LSH hamming using the same random integer string N ∈ [l]

n
. The corollaries are given as follow.

Corollary 1. Let W and Φ be some random variable over {0, 1}l and {0, 1}n respectively, let ε ∈ (0, 1
2 ) be

the noise parameter and ξ > 0 be the tolerance rate of a [n, k, t]2, code Cξ. Suppose a resilient vector φ′ ∈
Φ is generated from strings w′ ∈ W . For two hamming ball Bt(φ

′) and Bt′(w
′) of radius t′ = b(ξ − ε)lc

and t > t′, given a variable W ∈ Bt′(w′), then, one has the average minimum probability to find any

variable Φ ∈ Bt(φ′) described as Ew′←W
[

min
φ′

Pr[Φ ∈ Bt(φ′) |W ∈ Bt′(w′) ]

]
≥ 1− exp (−2nε2).

Proof. For W ∈ Bt′(w′), it means that any string w ∈W must show an error rate of ‖w ⊕ w′‖l−1 ≤ ξ − ε.
Based on Theorem 2 property, w can be used to produce its corresponding resilient vector φ ∈ Φ
that shows an expected offset with φ′ described as E [‖φ⊕ φ′‖ ] = E [‖δ‖] s.t. E [‖δ‖] ≤ t− nε (by
multiplying both sides of the inequality with n). It follows, there will be a minimum value of tmin s.t.
tmin = E[‖δ‖ ] + nε. Therefore, By using Hoeffding inequality, one able to calculate the average minimum
probability:

Ew′←W
[
min
φ′

Pr[Φ ∈ Bt(φ′) |W ∈ Bt′(w′) ]

]
= min
t=tmin

Pr[‖δ‖ ≤ t | ‖w ⊕ w′‖ ≤ t′ ]

≥ 1− exp (−2nε2) (1)

and complete the prove.

Corollary 2. Let W and Φ be some random variable over {0, 1}l and {0, 1}n respectively, let ε ∈ (0, 1
2 )

be the noise parameter and ξ > 0 be the tolerance rate of a [n, k, t]2, code Cξ. Suppose a resilient
vector φ′ ∈ Φ is generated from strings w′ ∈ W . For two hamming ball Bt(φ

′) and Bt′(w
′) of radius

t′ = b(ξ − ε)lc and t > t′, given a variable W 6∈ Bt′(w′), then, one has the average maximum probability

to find any variable Φ ∈ Bt(φ′) described as Ew′←W
[
max
φ′

Pr[Φ ∈ Bt(φ′) |W 6∈ Bt′(w′) ]

]
≤ exp (−2nε2).

Proof. This proof is instantiated from the proof of Corollary 1. For W 6∈ Bt′(w′), it means that any string
w ∈W must show error rate of ‖w ⊕ w′‖l−1 > ξ − ε which can also be integrated as ‖w ⊕ w′‖l−1 ≥ ξ + ε.
According to Theorem 2, w is capable to produce its corresponding resilient vector φ ∈ Φ that will has
an expected offset with φ′ described as E [‖δ‖ ] ≥ t+ nε. Thus, there will be a maximum value of tmax
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s.t. tmax = E[‖δ‖]− nε. Therefore, By using Hoeffding inequality, one able to calculate the average max
probability, by symmetry:

Ew′←W
[
max
φ′

Pr[Φ ∈ Bt(φ′) |W 6∈ Bt′(w′) ]

]
= max
t=tmax

Pr[‖δ‖ ≤ t | ‖w ⊕ w′‖ > t′ ]

≤ exp (−2nε2) (2)

and complete the prove.

The results obtained from Collorary 1 and Corollary 2 imply the following statement. Once the noise
is introduced into the input, the probability to find any resilient vector φ′ ∈ Φ close to its original reading
φ within the ball Bt(φ

′) will be bounded due to the noise effect. Conditioned on the input W , whether
W ∈ Bt′(w′) or W 6∈ Bt′(w′). This bound can be proven in either way, by minimizing/maximizing the
value of t = tmin/tmax respectively. Accordingly, we have the average fuzzy min-entropy can be described
as

H̃
fuzz

t,∞(Φ|W 6∈ Bt′(w′)) ≥ − log(exp(−2nε2))

by definition.

2 Preliminary

In this section, we briefly highlight and recall some classical notions required in our constructions.

Metric Spaces: A metric space definedM as finite set along with a distance function dis :M×M→
R+ = [0,∞). The distance function can take any non-negative real values and obey symmetric e.g.,
= dis(A,B) = dis(B,A), and triangle inequality, e.g., dis(A,C) ≤ dis(A,B) + dis(B,C).

Min-Entropy: For security, one is always interested in the probability for an adversary to predict a
random value, i.e., guessing a secret. For a random variable W , max

w
Pr[W = w ] is the adversary’s best

strategy to guess the most likely value, also known as the predictability of W . The min-entropy thus
defined as

H∞ (W ) = − log (max
w

Pr[W = w ])

min-entropy also viewed as worst case entropy.

Average min-entropy: Given pair of random variable W , and W ′ (possible correlated), given an
adversary find out w′ of W , the predictability of W is now conditioned as max

w
Pr[W = w |W ′ = w′ ].

The average min-entropy of W given W ′ is defined as

H̃∞ (W |W ′ ) = − log
(
Ew′←W ′

[
max
w

Pr[W = w |W ′ = w′ ]
])

Fuzzy min-entropy: Given an adversary try to find w′ that is within distance t of w, the fuzzy
min-entropy is the total maximized probability mass of W within the ball Bt(w

′) of radius t around w
defined as:

Hfuzz
t,∞(W ) = − log

(
max
w′

Pr[W ∈ Bt(w′)]
)

high fuzzy min-entropy is a necessary for strong key derivation.

Secure sketch[DRS04] A (M,m, m̃, t)-secure sketch is a pair of randomized procedures “sketch”
(SS) and “Recover” (Rec), with the following properties:

SS: takes input W ∈M returns a secure sketch (e.g., helper string) ss ∈ {0, 1}∗.
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Rec: takes an element W ′ ∈M and ss. If dis(w,w′) ≤ t, then Rec(w′, ss) = w with high probability
1− β. If dis(w,w′) > t, then no guarantee is provided about the output of Rec.

The security property of secure sketch guarantees that for any distribution W over M with min-
entropy m, the values of W can be recovered by the adversary who observes ss with probability no
greater than 2−m̃. That is the residue entropy H̃∞ (W |W ′ ) ≥ m̃.

Error correction code [Gur04]: Let q ≥ 2 be an integer, let [q] = {1, . . . , q}, we called an (n, k, d)q-
ary code C consist of following properties:

• C is a subset of [q]n, where n is an integer referring to the blocklength of C.

• The dimension of code C can be represented as |C| = [q]k = V

• The rate of code C to be the normalized quantity k
n

• The min-distance between different codewords defined as min
c,c∗∈C

dis(c, c∗)

It is convenient to view code C as a function C : [q]k → [q]
n
. Under this view, the elements of V can

be considered as a message v ∈ V and the process to generate its associated codeword C(v) = c is
called encoding. Viewed this way, encoding a message v of size k, always adding redundancy to produce
codeword c ∈ [q]n of longer size n.

Nevertheless, for any codeword c with at most t = bd−1
2 c symbols are being modified to form c′, it is

possible to uniquely recover c from c′ by using certain function f s.t. f(c′) = c. The procedure to find the
unique c ∈ C that satisfied dis(c, c′) ≤ t by using f is called as decoding. A code C is said to be efficient
if there exists a polynomial time algorithm for encoding and decoding.

Linear error correction code [Gur04]: Linear error correction code is a linear subspace of Fnq . A
q-ary linear code of blocklength n, dimension k and minimum distance d is represented as [n, k, d]q code
C. For a linear code, a string with all zeros 0n is always a codeword. It can be specified into one of two
equivalent ways with a generator matrix of parity check matrix:

• a [n, k, d]q linear code C can be specified as the set {Gv : v ∈ Fkq} for an n× k matrix which known
as the generator matrix of C.

• a [n, k, d]q linear code C can also be specified as the subspace {x : x ∈ Fnq and Hx = 0n} for an
(n− k)× n matrix which known as the parity check matrix of C.

For any linear code, the linear combination of any codewords is also considered as a codeword over
Fnq . Often, the encoding of any message v ∈ Fkq can be done with O(nk) operations (by multiplying it
with the generator matrix, i.e., Gv. The distance between two linear codewords refers to the number of
disagree elements between them, also known as the hamming distance.

Local Sensitive Hashing (LSH) [Cha02] Given that P2 > P1, while w,w′ ∈ M, and H =
hi :M→U , where U2 is the hashed metric space depends to similarity function defined by S and i
refers to the number of hash functions hi. A local sensitive hashing is a probability distribution on
a family H of hash functions such that Ph∈H[h(w) = h(w′)] = S(w,w′). With a similarity function S
define on the collection of w and w′.

Ph∈H(hi(w) = hi(w
′)) ≤ P1, if S(w,w′) < R1

Ph∈H(hi(w) = hi(w
′)) ≥ P2, if S(w,w′) > R2

LSH is the hashing of object collection w and w′ by means of multiple hash functions hi. The use of hi
enables decent approximation of the pair-wise distance of w and w′ in terms of collision probability. LSH
ensures that w and w′ with high similarity render higher probability of collision in the hashed domain;
on the contrary, the data points far apart each other result in a lower probability of hash collision.

2The notation used here is different with our exposition. In our exposition, M = M1 and U = M2, where |M1| < |M2|.
In traditional LSH, |U | is usually smaller than M for different objectives, i.e., fast similarity search.
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3 New Construction-LSH Secure Sketch

We hereby provide the detail of our new design and construction on a pair of sketching and recover
algorithm, that incorporated with LSH-hamming hash strategy.

3.1 LSH-Hamming hash

We first formulate the hamming-hash algorithm Ωham−h which will be used in our LSH-sketching and
recover algorithms, describe later. Generally, the hamming-hash algorithm Ωham−h :M1 × [l]n →M2 is
an iterative process through repeating the hamming hash strategy (steps 1 and 2) up to n > 1 times. It
serves to sample the input binary string of size l into a longer binary string a.k.a resilient vector of size
n.

Given input w ∈ {0, 1}l, and N ←$ [l]n, the LSH-hamming hash algorithm described as follow:

Ωham−h(w,N)

φ← ∅
for i = 1..n do

parse x = w(N(i))// x is the (N(i))-th bits of w

φ = φ‖x
endfor

return φ

3.2 LSH-Sketching

We denote the LSH-sketching algorithm that employed the hamming-hash algorithm, Ω and a code Cξ
as SSLSH

Ω,Cξ .
For sketching, one is required to generate a resilient vector φ by using the LSH hamming hash

algorithm. The size of the resilient vector must same as the sampled codeword c. Then, the sketch ss
can be constructed by simply perform an XOR operation, i.e., ss = c ⊕ φ. Remark that, we have the
newly introduced random noise of parameter ε ∈ (0, 1/2) in our sketching phase, the sketching algorithm
SSLSH

Ω,Cξ used input w,N and e described as follow:

SSLSH
Ω,Cξ(w,N, ε)

r←$ {0, 1}k−l// sample r uniformly at random

e←$ {0, 1}l// given the weight ‖e‖ = lε

wε = w ⊕ e;
v = w‖r;
c = Gv; // Given G is the generator matrix of Cξ

φ← Ωham−h(wε, N)

ss = c⊕ φ
return ss,N

Notice that, the size of v and ss are now depended upon the chosen code Cξ (parametrized by k and n
respectively). Often, the XOR operation c ⊕ φ works perfectly under the case when the cardinality of
the codeword and the resilient vector are equal, i.e., |c| = |φ| = n. Assuming in a scenario, without any
random bits padding. Direct encoding w must add n− l number of redundant symbols for |c| = |φ| = n
to hold, which will lead to exhaustive entropy loss when the sketch is published. As a solution to this,
we padded the input to form a longer string v before encoding takes place, hence reduced the number of
redundant symbols required to minimized the entropy loss.

In fact, the notable idea of using padding strategy to reduce entropy loss on secure sketch has been
earlier proposed by Woodage et al. [WCD+17] for password typo correction. Their works padded random
bits on shorter sketches that protecting the same password. The effort required to recover the password
from all sketches of the same size is increased, so, it reduced the entropy loss.
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3.3 LSH-Recover

For recovery, we denote the LSH-recover algorithm that employed the hamming-hash algorithm, Ω, and
a code Cξ with decoding algorithm f as RecLSH

Ω,Cξ,f
Suppose who wish to perform the recovery process with another string w′ ∈ {0, 1}l. He/she has to

provide another resilient vector φ′. The resilient vector can be generated by using the same hamming
hash with input w′ and the public known integer string N . The offset is manifested by simply measuring
the hamming distance of the resilient vectors pair, δ = φ⊕ φ′. The recover algorithm RecLSH

Ω,Cξ,f used

input string ss, w′ and N to recover w is described as follow:

RecLSH
Ω,Cξ,f(ss, w

′, N)

φ′ ← Ωham−h(w′, N)

c← f(ss⊕ φ′)// assume
∥∥ss⊕ φ′∥∥ ≤ t

v ← G−1c

// recover w through looking for the first l symbols of v

return w

If the final decoding process f(ss⊕ φ′) is successful, the algorithm returns a correct output w. Else,
it will output a null result.

A brief description of the recovery mechanism is given as follow. Saying that, the recovery is allowed to
success when the error rate ‖w ⊕ w′‖ l−1 ≤ ξ − ε. Suppose Bob has intercepted with a sketch ss = c⊕φ.
Firstly, he has to generate a resilient vector φ′ ← Ωham−h(w′, N). With the previous condition applied,
the number of disagreed position (i.e., the offset, δ) between φ and φ′, is expected to be low as well, by
means of LSH property. The hamming weight of the offset can be conveniently represented as ‖δ‖ ≤ t,
with some distance t. Immediately after this, Bob can simply performs ss ⊕ φ′ to output the nearest
codeword c′.

Given the original codeword c ∈ Cξ of tolerance distance t, it follows the decoding process f(c⊕ δ) =
f(c′) = f((c ⊕ φ) ⊕ φ′) = f(c ⊕ (φ ⊕ φ′)). Since ‖φ⊕ φ′‖ = ‖δ‖ ≤ t, it means the offset can be tolerated
through decoding to output c. Consequently, v can be recovered successfully and so w by looking at the
first l symbols of v.

4 Resilience

We now consider the resilience of the new proposed algorithm pair 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉. Generally, the

resilience measures on how probable the offset ‖δ‖ can be tolerated in facilitating the recovery of w
from the sketch. High resilience implies high probability to tolerate the offset, or more formally, high
probability of correcting the errors.

Obviously, the resilience of 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 is bounded below the resilience of the selected code Cξ.
However, choosing a ‘good’ code with a high value of ξ is non-trivial, this is because different code Cξ is
subjected to different set of parameters (n, k, t) and there is no straightforward way to determine which
the most efficient one is. The design of such code under different set of parameters (n, k, t) is another
broad research topic. We direct the interested user refer to the works of Macwilliams, (1977) [MS77],
and Peterson and Weldo, (1972) [Ber15]. In this section, we are more interested in the probability to
recover the original input w. We will leave the discussion of topic regarding resilience bound to the
following section. Nevertheless, for better illustration, we will use an efficient computational class of
error correction code-BCH code [Ber15] which is also considered as a [n, k, t]2 liner code, to show the
resilience of our proposal.

For the seek of simplicity, we combined the results from Corollary 1 and Corollary 2. Formally, we

let β = Ew′←W
[

max
φ′

Pr[Φ ∈ Bt(φ′) |W 6∈ Bt′(w′) ]

]
. Therefore, the average min probability to find Φ

in ball Bt(φ
′) can be represented as Ew′←W

[
min
φ′

Pr[Φ ∈ Bt(φ′) |W ∈ Bt′(w′) ]

]
= 1− β.

Further simplification is done by describing the term overwhelming if the value of 1− β comes with
some negligible quantity β. As we shall see, negligible value of β means high average fuzzy min entropy,
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since H̃
fuzz

t,∞(Φ|W 6∈ Bt′(w′)) = − log(β). Therefore, this realized that, apart from the security it could
offer with, the average fuzzy min entropy is promoting higher resilience.

Our explication of resilience evinced by the completeness of 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉. It captured the
scenario when the players are honest. It can be defined as following definition

Definition 1. Let W and Φ be some random variable over a matrix space M1 = {0, 1}l and M2 =
{0, 1}n respectively, where l < n. Given w,w′ ∈ W , N ∈ [l]n, ε ∈ (0, 1

2 ) and a [n, k, t]2 linear
code Cξ with ξ = tn−1. For a sketch ss generated through SSLSH

Ω,Cξ(w,N, ε) = ss, then the probabil-

ity for RecLSH
Ω,Cξ,f(ss, w

′, N) = w is overwhelming when the error rate ‖w ⊕ w′‖l−1 ≤ ξ − ε. We said

〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 is complete in (ξ, ε)-fuzziness if above statement holds.

We hereby provide a proposition with proof to characterize the resilience property of 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉.
For the sake of practicability, we choose to use the Berlekamp-Massey decoding algorithm [MS77] to de-
scribe our decoding function, f, which is an efficient one.

Proposition 1. Given Berlekamp-Massey decoding algorithm is used, 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 is complete in

(ξ, ε) is complete in (ξ, ε)-fuzziness if n is sufficiently large.

Proof. Recall that any offset as δ ∈ {0, 1}n with ‖δ‖ ≤ t is required for a successful decoding. For an
error correction threshold t > 0, the decoding function, f with Berlekamp-Massey decoding algorithm
can decode the corrupted codeword, c′ if ‖δ‖ ≤ t, described as f(c′) = f(c ⊕ (φ ⊕ φ′)) = c. Eventually,
one has RecLSH

Ω,Cξ,f(w
′, N) = w. The efficiency follows the decoding algorithm itself.

The remaining prove used the result in Corollary 1. Suppose ‖w ⊕ w′‖l−1 ≤ ξ, with additional
random noise e added to the input w, described as ‖w ⊕ w′ ⊕ e‖l−1. The noise included will lead to the
changes in the final error rate between w and w′, to either ‖w ⊕ w′‖l−1 ≤ ξ − ε or ‖w ⊕ w′‖l−1 ≤ ξ + ε.
Focusing on the case when ‖w ⊕ w′‖l−1 ≤ ξ − ε, one has:

1− β = Ew′←W
[

min
φ′

Pr[Φ ∈ Bt(φ′) |W ∈ Bt′(w′) ]

]
≥ 1− exp (−2nε2)

Observe that 1−β is overwhelming with negligible quantity β = exp (−2nε2) when n is sufficiently large
hence the proposition is prove.

Proposition 1 concluded that given a [n, k, t]2 code Cξ, under the condition where ‖w ⊕ w′‖l−1 ≤
ξ − ε, or formally, it also equivalent to the case when ‖w ⊕ w′‖ ≤ t′, the offset can be tolerated with
overwhelming probability if one has the value of n is sufficiently large.

Due to the newly introduced noise e during the sketching phase, we now have more errors need to be
corrected for the exact recovery of w. For this reason, the chosen value for ε is preferred to be as small
as possible, or one can always use a code Cξ with larger value of tolerance distance t (or larger value of
ξ). Precisely, the error parameter ε can set to minimum ε = l−1, since a single bit different in between
w and w′ always leads to the changes in error rate of l−1.

For better illustration, it is useful to have an example to show how our results can be applied
practically with a BCH code.

Example 13 Let w,w′ ∈ {0, 1}l, l = 100. Suppose one require to correct some errors say 5 bits. It
means 5/l = 0.05 = ‖w ⊕ w′‖l−1. Therefore, one require to choose a code Cξ comes with ξ ≥ 0.05 + ε
which can be easily achieved by using a [511, 103, 61]2 BCH code with ξ = 61/511 = 0.1194. On the next,
if one wishes to have overwhelming probability, i.e., 0.9 in correcting the errors, he/she must calculate
s.t. 1 − β = 0.9 = 1− exp(−2(511)ε2). Eventually, it follows that ε = ±0.04, which means that he/she
can add additional random noise e of weight ‖e‖ = lε = 4 bits while sketching.

4.1 Error Correction up to Shannon Bound

In the previous section, we have demonstrated the resilience of algorithm pair 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉, in term
of the probability in correcting the errors. Although, high probability in correcting the errors does not

3The example itself does not mean anything about security, but merely to show resilience
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always mean high number of errors can be corrected. Therefore, this section will provide the discussion
on how much errors can be corrected by using 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉. Formally, we called this as the resilience

bound of 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉.
Generally, to study the resilience bound, the error model of the system must be conceived. It is mean

to say that, without any knowledge on the error process of the input, it is difficult to precisely model
and determine the resilience bound of a given error correcting construction. It is also heedless for one
to believe that people have a complete understanding of the complex error pattern, or the distribution
that is overtaking by the noisy non-uniform sources, i.e., biometric.

Principally, to study the resilience bound without the knowledge of the input error process, one can
always use the perfect correctness model. Recall that, high resilience means the errors can be corrected
with overwhelming probability 1 − β. Ideally, it is natural to let β = 0, which will easily lead to the
perfect correctness model, so, the errors can be corrected with probability one. In this model, the fuzzy
min-entropy notion may not necessary, since one can easily show infinite fuzzy min-entropy without
any dissension for security. Therefore, this model is useful and suitable for who try to avoid certain
assumption about the exact properties of stochastic error process, or the computational power of an
adversary to carry out decoding successfully. For examples, it is imprudent to assume the errors occur
in a biometric always follow certain distribution. Other than this, computational hardness assumption
must be applied to show meaningful fuzzy min-entropy security in case of it is not infinite.

However, inevitably, under the perfect correctness model, one always tied to a very strong bound in
term of the resilience. Typically, one can only uniquely decode the codeword by using an error correction
code with min-distance d = 2t + 1. Saying so, the Plotkin bound (see [Sud01]) which has bounded
maximum number of codeword in a code of blocklength n and minimum distance d. For instance, there
can be only at most 2n codewords with d > n/2, which means that there have no error correction code
can correct 4/n errors with probability one and so for a secure sketch as well.

Nevertheless, we have shown that our construction is not in the perfect correctness model but rather
the slightly relaxed notion called probabilistic correctness. With this relaxed notion of correctness, the
decoding will not succeed with probability one, rather 1− β, with some probability to fail. This relaxed
notion of correctness is essential for 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉 to free from the Plotkin bound and allows it to

correct more errors. Besides, given β = 0, which implies the average fuzzy min-entropy is infinitely
large (− log(β)); Recall the average min-entropy also reveals to the losses of fuzzy min-entropy from the
sources, this will always lead to negative result to security. Therefore, slightly relaxed on the notion of
correctness is relevance to show security in our case.

We now show that the probabilistic correctness model has allowed us to correct more errors, arbitrarily
close to n/2. Credited by the LSH-hamming hash, the errors in a pair of resilient vectors can be described
by using the Bernoulli process. More formally, our works accordance with the random error model which
was famously considered by Shannon [Sha01]. Shannon provided the noisy channel coding theorem saying
that, for any discrete memoryless channel, the error tolerance rate is characterized by the maximum
mutual information between the input and outputs. Precisely, in a binary symmetric channel, like our
case, there exists a code encoding k bits into n bits which able to tolerate the error of probability p for
every single bit, if and only if:

k

n
< 1− h2(p)− δ(n)

where h2(p) = −p log(p) − (1 − p) log(1 − p) is the binary entropy function of error rate p and
δ(n) = o(1). Since h2(p) is maximally one when p = 1/2, conversely, this theorem indicates the existence
of a secure sketch even for high error rate p as long as p is smaller than 1/2. Therefore, we obtain

Proposition 2. With sufficiently large n, there exists a [n, k, t]2 code Cξ for 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 to correct

the errors with overwhelming probability as long as the total error rate satisfy ‖w ⊕ w′‖ l−1 + ε < 1/2.

Proof. This proof is straightforward by using the Shannon noisy channel coding theorem. Summing up
the effect due to the introduced random noise and the original offset between w and w′, the total error
rate can be described as p = ‖w ⊕ w′‖ l−1 + ε, hence, with p < 1/2, k

n < 1 − h2(p) − δ(n) is always
possible with sufficiently large n through LSH hamming strategy with n iteration. High resilience will
eventually follow with sufficiently large n reasoned by the completeness itself.
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Proposition 2 concluded that one could have a pair of LSH-sketching and recover algorithm 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉
which correct the errors up to Shannon bound with some code Cξ. Computationally efficient code achieve
this bound is later found by Forney in 1965, named as concatenated code [For65]. This outcome suggested
one can choose an appropriate concatenated code to apply on 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉 since the code can be

linear as well.

5 Security

We now formalize the security of algorithm pair 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉. We assume an original input w is

randomly sampled from a matrix space M1 = {0, 1}l, over some random distribution W ∈ M1 (not
mandatory uniform). Besides, we restrain another sample w′ ∈ W that show at least error rate of
‖w ⊕ w′‖ l−1 ≥ ξ with the original sample w. This assumption is orthodox to show error tolerance up to
distance t. We aim to characterize the security of 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉 by using an adversary A comes with

unlimited computation power. The security is formalized by using an attack running together with A.
Formally, A :M1×M2 × [l]

n →M1 is just an algorithm that is computationally unbounded, purposed
to recover w from a sketch ss ∈ M2, with integer string N ∈ [l]

n
and w′ ∈ M1, where M2 = {0, 1}n.

Meanwhile, we imposed an additional requirement for A in running the attack, to be specific, once
it has successfully outputted the original string w, the attack is consider succeeded only if the error
rate ‖w ⊕ w′‖ l−1 ≤ ξ − ε. The attack is denoted as Attack(SSLSH

Ω,Cξ ,N, ε,A) with input LSH-sketching

algorithm SSLSH
Ω,Cξ , N , ε, and A as follow:

Attack(SSLSH
Ω,Cξ ,N, ε,A)

1 : w←$ {0, 1}l, w′ ←$ {0, 1}l,
2 : if

∥∥w ⊕ w′∥∥ l−1 ≤ ξ, repeat step 1 until
∥∥w ⊕ w′∥∥ l−1 ≥ ξ

3 : if A(SSLSH
Ω,Cξ (w,N, ε), w′, N) = w &

∥∥w ⊕ w′∥∥ l−1 ≤ ξ − ε
4 : Output true

5 : else

6 : Output false

The additional requirement we have imposed, is meant to provide a more complete security evaluation
on the input W . More explicitly, once the errors e has added to the input during the sketching phase, it
should introduce some uncertainty to the total error rate between w and w′ over the resilient vectors. This
noise effect must be taken into account for retrospective security study. For instance, given ‖w ⊕ w′‖ ≥ ξ,
after additional noise e of weight ‖e‖ = lε is included, it may lead to either ‖w ⊕ w′‖ ≥ ξ + ε or
‖w ⊕ w′‖ ≥ ξ − ε. Since the correctness result can be applied to the case when ‖w ⊕ w′‖ ≤ ξ − ε,
focusing on both cases when ‖w ⊕ w′‖ ≥ ξ + ε and ‖w ⊕ w′‖ ≤ ξ − ε should complete our security
evaluation. Therefore, the step 2 and 3 of the attack is carefully designed for this purpose, to cover both
scenarios when ‖w ⊕ w′‖ l−1 ≥ ξ and ‖w ⊕ w′‖ l−1 ≤ ξ. Therefore, we have the following definition.

Definition 2. Let β and β′ be some negligible quantity. Let W and Φ be some random variable over
a matrix space M1 = {0, 1}l and M2 = {0, 1}n respectively, where l < n. Given N ∈ [l]n, ε ∈ (0, 1

2 ),
and ξ > 0, the algorithm pair 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉 is a (M2,m,min{− log(β),− log(β′)}, t) secure sketch

if Pr
[

Attack(SSLSH
Ω,Cξ ,N, ε,A) = true

]
≤ β′ and Pr

[
A(SSLSH

Ω,Cξ(w,N, ε), w
′, N) = w

]
≤ β for any compu-

tational unbounded adversary A.

Finally, we provide a general characterization of the information theoretical security of algorithm
pair 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉, and show that it is a (M2,m,min{− log(β),− log(β′)}, t) secure sketch. This

proposition comes with a proof according to Definition 2

Theorem 3. The algorithm pair 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 is a (M2,m,min{− log(β),− log(β′)}, t) secure sketch

with β′ = 2−m/β and β = exp(−2nε2) if n is sufficiently large.

Proof. (sketch): We here provide a brief overview of the main proof. More complete and detail proof can
be found in the appendix. The correctness is clear, simply follow the completeness(resilience) of the
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algorithm itself. Formally, given any pair of string w,w′ ∈M1, under the case when ‖w ⊕ w′‖ l−1 ≤ ξ − ε,
the offset can be tolerated with overwhelming probability at least 1− β = 1− exp(−2nε2) for negligible
β if n is sufficiently large.

Due to the introduced noise effect, the error rate in the resilient vectors can simply described into
two different cases, which are ‖w ⊕ w′‖l−1 ≥ ξ + ε and ‖w ⊕ w′‖l−1 < ξ + ε. Based on this, our se-
curity proof only need to focus on two different parts: (1) when ‖w ⊕ w′‖l−1 ≥ ξ + ε, and (2) when
‖w ⊕ w′‖ l−1 ≤ ξ − ε. The second part of the inequality comes with slight refinement but still con-
served the original interpretation, since, it embodies all possible error rates in the resilient vectors when
‖w ⊕ w′‖ < ξ + ε.

Proof for part (1): Given any pair w,w′ ∈W with ‖w ⊕ w′‖l−1 ≥ ξ + ε, it follows that:

Pr
[
A(SSLSH

Ω,Cξ(w,N, ε), w
′, N) = w

]
= Pr

[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖l−1 ≥ ξ + ε
]

≤ max
t=tmax

Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖l−1 ≥ ξ + ε
]

= exp (−2nε2)

Thus, we found β = exp(2nε2) and claim our security for this part.
However, since the noise added is random during the sketching, the condition ‖w ⊕ w′‖l−1 ≥ ξ + ε

must not hold every time. Therefore, we then proceed to the proof for the remaining part (2).
Proof for Part (2): This proves follow the terminology in Attack. This attack will output true if the

adversary A succeeded in recover w and able to show the sampled pair (w,w′) comes with ‖w ⊕ w′‖ l−1 ≤
ξ − ε. It should be described as follow:

Pr
[

Attack(SSLSH
Ω,Cξ ,N, ε,A) = true

]
= Pr

[
‖w ⊕ w′‖ l−1 ≤ ξ − ε

∣∣ ‖δ‖ ≤ t ]
=

Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖ l−1 ≤ ξ − ε
]

Pr
[
‖w ⊕ w′‖ l−1 ≤ ξ − ε

]
Pr[‖δ‖ ≤ t ]

=
(1− β)α

(1− β)α+ (1− α)β
=
α

β

(
1− β
1− α

)
≤ α

β
= β′

The second line result obtained by using Bayesian law. For the third line result, it follows: given
t′ = b(ξ − ε)lc, and let α = Pr[‖w ⊕ w′‖ ≤ t′ ] ≤ max

w′
Pr[W ∈ Bt′(w′)]. Then, by combining the result

from Corollary 1 and 2, Pr[‖δ ≤ t‖ ] = (1− β)α+ β(1− α). We also claim that α ≤ β since − log(α) =
Hfuzz
t′,∞(W ) and − log(β) = Hfuzz

t,∞(Φ|W 6∈ Bt′(w′). Recall the average fuzzy min-entropy reveals the loss of
fuzzy min-entropy which supported the claim.

In the end, the maximum probability of recovering w for both part (1) and part (2) described as
max {β, β′}. Converting the above result into entropy calculation, since the sources must contain certain
amount of fuzzy min-entropy, − log(α) = Hfuzz

t′,∞(W ) ≥ m, with m > 0. This result applies to Hfuzz
t,∞(Φ) can

be described as the min-entropy of Φ with larger tolerance distance t. Precisely, Hfuzz
t,∞(Φ) ≥ Hfuzz

t′,∞(W ) =
H∞ (Φ) ≥ m. Thus:

Hfuzz
t,∞(Φ|W, ss) ≥ min{− log(α/β),− log(β)}
≥ min{− log(2−m/β),− log(β)}

with β = exp(−2nε2).

Remark: The events when ‖w ⊕ w′‖ l−1 ≥ ξ + ε and ‖w ⊕ w′‖ l−1 ≤ ξ − ε can also be represented as
the cases when ‖w ⊕ w′‖ > t′ and ‖w ⊕ w′‖ ≤ t′ respectively. In our exposition, we usually refer to the
former representation to show more meaningful details with ξ and ε. This show 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉 offers

correctness when ‖w ⊕ w′‖ ≤ t′ but no guarantee for the case when ‖w ⊕ w′‖ > t′ further supported the
definition for a standard secure sketch.

The proof of Theorem 3 demonstrated the fuzzy min-entropy notion can use to construct info. theo-
retic secure sketch.

Therefore, to show meaningful security, the sources must at least come with sufficient amount of
fuzzy min-entropy (with tolerance distance t′) that merely depends upon the system requirements. An
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alternative to always ensure meaningful security can be provided is to have a precise knowledge setting for
the input distribution during the sketching process. This setting can be achieved by using the universal
hashing to disambiguate the points as proposed by Fuller et al., [FRS16].

Given the source in certain distribution W overM1, which has no fuzzy min-entropy (with tolerance
distance t′) to support meaningful security, showing security on it seems to be an extra move. Never-
theless, there have a plethora of sources with “reasonable” amount of fuzzy min-entropy, we do not give
up the forest for one tree. For this reason, showing security to all family of distribution is necessary but
not always all of them are meaningful ones.

5.1 Security Bound on Secure Sketch

In this section, we consider the security bound on the secure sketch. Formally, this security bound also
refer to the best possible security can offer by a secure sketch construction. Particularly, we are interested
in the best possible security by using the new sketching and recover algorithm pair 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉.

Table 1 tabulated the security bound for various β-correct secure sketch.

Security Bound for β-Correct Secure Sketch

Computational Best possible security Hfuzz
t,∞(W )− log(1− β)

Computational
FRS sketch(universal
hash functions) [FRS16]

Hfuzz
t,∞(W )− log( 1

β )− log log(supp(W))− 1

Computational
Layer hiding hash (strong
universal hash
function)[WCD+17]

Hfuzz
t,∞(W )− log( 1

β )− 1

Info. theoretic LSH sketch min{Hfuzz
t′,∞(W ) + log(β),− log(β)}4

Table 1: Summary of security bound of β-correct secure sketch in term of fuzzy-min entropy.

If a secure sketch allows recovery of the input from some errors with high probability, it must consist
enough information to describe the error pattern. According to Dodis et al. [DRS04], in a random error
model, under the relaxed correctness notion, describing the outcome of n independent coin flips with
probability of error, p requires nh2(p) bits of entropy. Therefore, the sketch must loss nh2(p) bits of
entropy. They used the Shannon entropy to described the security bound in this model by assuming W
is drawn from uniform. Since nh2(p) bits of entropy is loss from the sketch, the upper bound residue
entropy is thus reduced to n(1−h2(p)−o(1)). larger value of p ∈ (0, 1/2) results to lower residue entropy.

Under the same model, the bound with nh2(p) bits entropy loss is possible to be applied in our case as
well, by letting p = ‖w ⊕ w′‖ l−1 + ε. However, through comparing the mathematical description of the
average fuzzy min-entropy − log(β) and nh2(p), it shows that there is no compiling need to consider the
error rate of the input ‖w ⊕ w′‖ l−1 to outline the entropy loss. Clearly, − log(β) = − log(exp(−2nε2))
will show lower value with smaller ε without the knowledge of the input error rate ‖w ⊕ w′‖ l−1. This
result suggested a better achievable lower bound to describe the error pattern in the resilient vectors of
size n by using − log(β) rather than nh2(p). Additionally, it is well-understood that W is not uniform
in our case, therefore, the lower bound residue entropy described by n(1−h2(p)− o(1)) may not directly
applicable to us. In fact, we have shown that, the upper bound residue entropy in our construction
is min{Hfuzz

t′,∞(W ) + log(β),− log(β)}. Apparently, this residue entropy is always bounded by the fuzzy
min-entropy of the source instead of the blocklength of the code n.

Therefore, these results have encouraged the usage of fuzzy min-entropy instead of Shannon entropy,
to avoid overestimation on the residue entropy.

When comes into the discussion related to resilience, the Shannon bound is always a good reference
point to exam the existence of such a code for error correction. However, for security, fuzzy min-entropy
indeed offered more meaningful results. Especially, for the case when the inputs are not uniform. This
result is essential for cryptographic application s.t. randomness extraction or key derivation.

We now have the following proposition to describe the best possible security for 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉,
whose proof is straightforward.

4we used t′ instead of t to remark the LSH sketch emphasis on different tolerance distances explicitly
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Proposition 3. The best security with algorithm pair 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 is m/2 and the errors can be

corrected with overwhelming probability at least 1− 2−m/2.

Proof. Since we have a (M2,m,min{− log(β),− log(β′)}, t) secure sketch with β′ = 2−m/β and β =
exp(−2nε2) (Theorem 3). Therefore, the best possible security balances both sites which is:

m+ log(β) = − log(β)

m/2 = − log(β)

It follows that, the errors can be corrected with overwhelming probability at least 1−β = 1− 2−m/2

5.2 A Toy Example

In this section, a toy example is given to demonstrate how 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 can be practically ap-
plies to real cases. This example focuses on one of the common-known noisy sources which consist of
“more error than entropy”-IrisCode. The IrisCode is a binary representation extracted from the human
iris, and it is being used to perform biometric authentication. It has been viewed as the strongest bio-
metric [PPJ03] due to its uniqueness and resistant against false matching. We adopted the IrisCode
of vector w ∈ {0, 1}l with l = 2048, which is first considered by Daugman in 2006. [Dau06]. Based
on the degree of freedom argument, this IrisCode is believed to come with entropy around 249 bits.
Additionally, it is commonly conceived that depends on different transformation, from the original eye
images to IrisCode generation, the noise content in different IrisCode of the same user lye in between
10%− 35% [FSS17].

Suppose one wishes to correct l/3 number of errors, given the desired security of 40 bits, therefore:

β = 2−40

exp(−2nε2) = 2−40

ε = ±
√

1

3n
(13.8629)

We reason that, using average fuzzy min-entropy should enough to show security, because we have
min{m+ log(β),− log(β)}, where m ≈ 249 in this example. Therefore, the best possible security β ≤
2−249/2 must hold.

If one wishes to choose a [n, k, t]2 code Cξ with n = 213, then ξ must come as:

ξ = tn−1 ≥ 1/3 + ε

t ≥ 213(1/3 + 0.0238) ≥ 2926

The errors can be corrected with overwhelming probability of 1−2−40. As shown by the above example,
in order to correct 1/3 fraction of errors, one must choose a code Cξ with ξ ≥ 1/3 + ε.

The security level can be increased through the increment of ε, but this will lead to a higher value
of ξ is required for a chosen code Cξ. If one wishes to show higher security, then he/she has no choice
to increase the blocklength n, since the errors will not be able to get corrected if the total error rate
1/3 + ε ≥ 1/2 due to Shannon bound.

6 Reusability

We focus on the reusability of 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 in this section. First stated by Boyen, 2004 [Boy04], any
information theoretical secure sketch or fuzzy extractor must leak certain amount of fresh information
about the input for each time it reuses/re-enrols. The reusability property allows the reuse/re-enrolment
of the noisy data with multiple providers. Trivially, if 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉 can show reusability property,

it also suggested a reusable fuzzy extractor for uniform random strings generation.
In the context of showing reusability, SSLSH

Ω,Cξ may run in multiple times for enrolment of correlating
samples w1, w2, . . . , wq. Each enrolment should return a sketch ssi which possesses individual security
that holds even under the existence of other sketches for i ∈ {1, . . . , q}. Boyens works on assuming a
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single adversary should be able to perform some perturbation on the original input w∗ to yield a list
of correlating samples w1, w2, . . . , wq, further gains advantages in recovering wi from its corresponding
sketch ssi. The works of Boyen on reusability has focused on a particular class of perturbation which
is the transitive and isometry permutation applied to w∗. This constraint applied to the perturbation
is unlikely in a real and practical scenario. However, his work has encouraged the needs of showing
reusability for a secure sketch to offer stronger security guarantee.

Apart from Boyen works, Fuller et al., (2016) [FRS16] provided a modified definition of reusability
that covered a more realistic scenario. In their works, they split the adversary into a group of adversaries
{A1, . . . ,Aq}. This group of adversaries implicitly defined different distributions over the published
sketch {ss1, . . . , ssq}. Each sketch is subjected to a particular adversary in the group to show secu-
rity individually. The act of showing security for a group of adversaries manifested the reusability for
independent re-enrolment of the original input with multiple providers that may not trust each other.
They utilized set of functions f1, . . . , fq to sample w′, . . . , wq s.t. wi = fi(w

∗, ss1, . . . , ssi). These set of
functions come with the main property, is to offer fresh min-entropy to the new sample wi over particular
distribution Wi. The security is defined computationally by using fuzzy min-entropy and holds for large
class of family of distributions {W1, . . . ,Wq} over M.

We now formalize the reusability of algorithm pair 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉. Basically, it follows the previous

security setting, but only comes with slight extension (from single adversary to multi adversaries setting).
We assume an original input w∗ is randomly sampled from a matrix space M1 = {0, 1}l, over some
random distribution W ∈M1 (not mandatory uniform). Again, we restrain another sample w′ ∈W that
show at least error rate of ‖w∗ ⊕ w′‖ l−1 ≥ ξ. We aim to characterize the reusability of 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉

by using a group of adversaries {A1, . . . ,Aq} comes with unlimited computation power. To do so, we
have introduced additional random noise {e′1, . . . , e′q}, s.t. |e′i| ≤ lε′ where ε′ < ε acting as perturbation
to the input w∗ to sample a list of correlating reading {w1, . . . , wq}. The usage of random noise is better
fit to real case scenario, since any perturbation occurs during re-enrolment must cause certain amount
of bits flip to the original sample w∗.

Briefly, we seek to show reusability defined in the information-theoretical sense as well. Our work
is a stronger notion of reusability compare to the previous case studied by Boyen and Fuller et al.,. It
means to show security for any perturbation applied to the input as long as the perturbation is kept
within some limited strength, i.e., the maximum number of altered bits is bounded. This notion is more
applicable as it does not exert any assumption on the type of perturbation applied to the input but only
provides a bound on it.

The security is formalized by using an attack running together with {A1, . . . ,Aq}. Formally, each
adversary Ai : M1×M2 × [l]

n → M1 is simply an algorithm that is computationally unbounded to
output wi with a public sketch, ss ∈ M2, an integer string N ∈ [l]

n
and w′ ∈ M1. Follow previous

security setting, similar requirement, but slight adjustment is imposed on Ai in running the attack.
Once Ai has successfully outputted the string wi, the attack is only considered succeeded if the error
rate ‖wi ⊕ w′‖ ≤ ξ − ε + ε′. The attack is denoted as Attack2(SSLSH

Ω,Cξ ,N, ε, ε
′, {A1, . . . ,Aq}) with input

LSH-sketching algorithm SSLSH
Ω,Cξ , N , ε, ε′ and Ai as follow:

Attack2(SSLSH
Ω,Cξ ,N, ε, ε

′, {A1, . . . ,Aq})

1 : w∗ ←$ {0, 1}l, w′ ←$ {0, 1}l

2 : if
∥∥w∗ ⊕ w′∥∥ l−1 ≤ ξ, repeat step 1 until

∥∥w∗ ⊕ w′∥∥ l−1 ≥ ξ
3 : for i = 1 : q

4 : e′i ←$ {0, 1}l// the weight
∥∥e′i∥∥ = lε

′
i ≤ lε

′

5 : wi = w∗ ⊕ e′i
6 : if Ai(SSLSH

Ω,Cξ (wi,N, ε), w
′, N) = wi &

∥∥wi ⊕ w′∥∥ l−1 ≤ ξ − ε+ ε′

7 : Output true

8 : else

9 : Output false

10 : endfor

Recall we have initially introduced an error e of weight ‖e‖ = lε during sketching. Given so ε′ < ε, it
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means ‖e′ ⊕ e‖ = l(ε± ε′). Therefore, suppose the error rate between w∗ and w′ satisfies ‖w∗ ⊕ w′‖ ≥ ξ,
the total noise effect (for sketching and perturbation) will eventually lead to either ‖w∗ ⊕ w′‖ l−1 ≥
ξ + (ε± ε′) or ‖w∗ ⊕ w′‖ l−1 ≥ ξ − (ε± ε′). Manifestly, one can easily simplify these to ‖w∗ ⊕ w′‖ l−1 ≥
ξ + ε∗ and ‖w∗ ⊕ w′‖ l−1 ≥ ξ − ε∗ by letting ε∗ = ε + ε′ or ε∗ = ε − ε′. Doing so can easily reduce
our result from multi adversaries to single adversary setting, which will follow the prove in Theorem 3.
Indeed, our exposition under Attack2 refers to the second result, with ε∗ = ε− ε′.

In a nutshell, by reasoning above, adding noise while sketching allows reusability implicitly. Therefore,
the proof of reusability is trivial in our case. Nevertheless, it is worth to show the differences between sin-
gle adversary and multiple adversaries setting, in term of their security property over 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉.

Our intuition of showing reusability for a group of adversary follows the works proposed by Fuller
et at., [FRS16]. The goal is to show security to the original sample w∗ for different independent re-
enrolment, with some perturbation. Reusability can only be claimed if the security holds for all adver-
saries corresponds to individual re-enrolment of w∗ respectively. Since each re-enrolment is subjected to
different providers, and the providers may not communicating and trusted to each other, therefore show-
ing security individually to each adversary Ai is necessary to support our claim. We give the definition
below to characterized the reusability of 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉.

Definition 3. Let β2 and β′2 be some negligible quantities. Let W and Φ be some random variable over
a matrix space M1 = {0, 1}l and M2 = {0, 1}n respectively, where l < n. Given N ∈ [l]n, (ε, ε′) ∈
(0, 1

2 ), and ξ > 0, suppose ε > ε′, a pair of LSH-sketching and recover algorithm 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 is

(max{β2, β
′
2}, ε∗, q)-reusable if the probabilities max

q
Pr
[

Attack2(SSLSH
Ω,Cξ ,N, ε, ε

′,{A1, . . . ,Aq}) = true
]
≤

β′2 and max
i

Pr
[
Ai(SSLSH

Ω,Cξ(wi,N, ε), w
′, N) = wi

]
≤ β2 for a group of computational unbounded adversary

{A1, . . . ,Aq}, with ε∗ = ε− ε′.

We provide the following lemma to characterize the reusability of 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉.

Lemma 1. The algorithm pair 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 is (max{β2, β
′
2}, ε∗,∞)-reusable, with β′2 = 2−m/β2

and β2 = exp(−2n(ε∗)2) given some value m > 0.

Proof. (Sketch) The proof of this lemma is similar to the proof of the security in Theorem 3 (under
multiple adversaries setting). We briefly highlighted the main prove as follows.

There have only two errors we have introduced, e of weight ‖e‖ = lε during sketching, and e′ of
weight ‖ei‖ = lε′i ≤ lε′ to show reusability. Given the error rate for w∗ and w′ satisfies ‖w∗ ⊕ w′‖ ≥ ξ,
the noise (for reusability) will lead to either ‖wi ⊕ w′‖ l−1 ≥ ξ + ε′i or ‖wi ⊕ w′‖ l−1 ≥ ξ − ε′i. Together
with the noise added in during sketching phase, The final error rate thus can be likely described as
‖wi ⊕ w′‖ l−1 ≥ ξ + ε± ε′i and ‖wi ⊕ w′‖ l−1 ≥ ξ − ε± ε′i. Likewise the single adversary setting, the
second scenario can be conservatively interpreted by using the inequality ‖wi ⊕ w′‖ l−1 ≤ ξ − ε± ε′i

Therefore, the error rate in the resilient vectors can simply analysed under these two cases, hence,
our proof can be divided into two parts, part(1): when ‖wi ⊕ w′‖ l−1 ≥ ξ + ε± ε′i, and part(2): when
‖wi ⊕ w′‖ l−1 ≤ ξ − ε± ε′i. We will let, ε∗ = ε− ε′ throughout the whole prove to picture the simplifica-
tion of our result from multiple adversaries to single adversary setting.

Proof for part (1): Since we have multiple adversaries needed to consider, this part is simply finding
the maximum probability to correct the offset among all of them. Let β2,i = exp(−2n(ε± ε′i)2), the
maximum probability described as follow:

max
i

Pr
[
Ai(SSLSH

Ω,Cξ(wi,N, ε), w
′, N) = wi

]
= max

wi
Pr
[
‖δ‖ ≤ t

∣∣ ‖wi ⊕ w′‖l−1 ≥ ξ + ε± ε′i
]

= max
i
β2,i ≤ exp (−2n(ε∗)2)

The last line result follows by taking the maximum value for β2,i, clearly, the maximum value of
β2,i = exp(−2n(ε± ε′i)2) refer to the case when ε ± ε′i is minimum, which is ε − ε′, since ε′i ≤ ε′. Let
β2 = exp (−2n(ε− ε′)2) = exp (−2n(ε∗)2), the security for part (1) is claimed.
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Proof for part (2): The main proof for part (2) is to show security hold for all adversaries {A1, . . . ,Aq}.
Formally, it characterizd by Attack2 which can be described as:

max
q

Pr
[

Attack2(SSLSH
Ω,Cξ ,N, ε, ε

′,{A1, . . . ,Aq}) = true
]

= max
wi

Pr
[
‖wi ⊕ w′‖ l−1 ≤ ξ − ε± ε′i

∣∣ ‖δ‖ ≤ t ]
Firstly, we have to solve for Pr

[
‖wi ⊕ w′‖ l−1 ≤ ξ − ε± ε′i

∣∣ ‖δ‖ ≤ t ], then only follow by its maximum
value. We can use the Bayesian rules, and the result from Corollary 1 and 2. The final outcome should
follow the prove in Theorem 3 (part (2)) described as:

Pr
[
‖wi ⊕ w′‖ l−1 ≤ ξ − ε± ε′i

∣∣ ‖δ‖ ≤ t ] =
1− β2,i

β2,i

(
α2,i

1− α2,i

)
≤ α2,i

β2,i

This result depends upon the noise parameter εi for each Ai. Accordingly, t′i is now described as
t′i = b(ξ − ε± ε′i)lc, and α2,i = Pr[‖wi ⊕ w′‖ ≤ t′i ] ≤ max

w′
Pr
[
W ∈ Bt′i

]
.

With α2 ≤ max
w′

Pr[W ∈ Bt′ ], where t′ = b(ξ − ε∗)lc refers to the maximum value of t′i (e.g., max
i

(t′i)),

and also, by max
i
β2,i = β2 (prove in part (1)), the maximum probability is thus:

max
q

Pr
[

Attack2(SSLSH
Ω,Cξ ,N, ε, ε

′,{A1, . . . ,Aq}) = true
]

= max
wi

Pr
[
‖wi ⊕ w′‖ l−1 ≤ ξ − ε± ε′i

∣∣ ‖δ‖ ≤ t ]
≤ max

i

α2,i

β2,i
=
α2

β2

The maximum value of t′ is reasoned as follow: we refer +ε′i instead of −ε′i to maximize t′i, since
(ξ − ε+ ε′) ≥ (ξ − ε− ε′). It follows, max

i
(t′i) = max

ε′i

b(ξ − ε+ ε′i)lc = b(ξ − ε+ ε′)lc = b(ξ − ε∗)lc.

This proves itself follows Attack2 terminology, a true result can only obtain if the adversary Ai
succeeded in recovered wi, and able to show the sampled pair (wi, w

′) comes with ‖wi ⊕ w′‖ l−1 ≤
ξ − ε∗ ≤ ξ − ε+ ε′, without contradiction.

The last is to assign some value m > 0 to bound α2 ≤ 2−m, since − log(α) is the fuzzy min-entropy
of source W with tolerance distance t′ = b(ξ − ε∗)lc, some minimum value of entropy is required to show
security. Eventually, this leads to the new security results in a multiple adversaries setting (a group
of adversary). The maximum probability for all the adversaries {A1, . . . ,Aq} to decode the codeword
successfully is max{β′2, β2} with β′2 = 2−m/β2 and β2 = exp(−2n(ε∗)2). The prove follows with q =∞.

With the proof of Lemma 1, we concluded that 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 allows the re-enrolment of the

input w∗ for q =∞ number of times as long as the error (perturbation) e′ has bounded weight ‖e′i‖ ≤ e′
for i = {1, . . . , q}. The security holds for all adversaries is min{− log(β2),− log(β′2)}. Noticeably, the
security over multi adversaries setting is similar to single adversary setting, with the only changed
error parameter from ε (single adversary) to ε∗ (multi adversaries). We therefore obtain the following
proposition

Proposition 4. If a pair of LSH-sketching and recover algorithm 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 is (max{β2, β
′
2}, ε∗, q)-

reusable, it is also a (M2,m,min{− log(β2),− log(β′2)}, t) secure sketch.
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8 Appendix

Proof of Theorem 3:

Proof. Correctness: The correctness property follows the completeness of 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 itself

(proven in Proposition 1). Particularly, for any input string w′ ∈ W that is at most t′ = b(ξ − ε)lc
close to its original value w ∈ W , formally, it means ‖w ⊕ w′‖ l−1 ≤ ξ − ε, then, RecLSH

Ω,Cξ,f(w
′, N) = w is

overwhelming, with probability at least 1 − β ≥ 1− exp(−2nε2), for negligible β. This argument holds
for any [n, k, t]2 linear code Cξ with suitable choice of error tolerance rate ξ = tn−1, given n is sufficiently
large.

Security: We now argue in the security of 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉. For the seek of completeness, the proof
of security can be divided into two parts:

Proof for Part (1), when ‖w ⊕ w′‖l−1 ≥ ξ + ε: Recall after noise e of weight ‖e‖ = lε is included,
initially, ‖w ⊕ w′‖ l−1 ≥ ξ, it may lead to either ‖w ⊕ w′‖ ≥ ξ + ε or ‖w ⊕ w′‖ ≥ ξ − ε. The prove for
this part is to show security on the first case.

Observe that, given a sketch ss = c ⊕ φ, no doubt that, the best strategy to recover w is through
decoding the nearest codeword. In fact, this corresponds to the well-known problem of decoding a
random linear code that is considered to be NP-hard [BMVT78]. Given any pair w,w′ ∈ W with
‖w ⊕ w′‖l−1 ≥ ξ + ε, it follows that (proven in Corollary 2):

Pr
[
A(SSLSH

Ω,Cξ(w,N, ε), w
′, N) = w

]
= Pr

[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖l−1 ≥ ξ + ε
]

≤ max
t=tmax

Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖l−1 ≥ ξ + ε
]
≤ exp (−2nε2) = β

This result depicted the upper bound advantages for A to decode the codeword c′ when ‖w ⊕ w′‖l−1 ≥
ξ + ε, formally holds for any variable W 6∈ Bt′(w′). Thus we found β = exp(2nε2) and claim our security
for this part.
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However, since the noise added is random during sketching, the condition ‖w ⊕ w′‖l−1 ≥ ξ + ε must
not holds every times. Particularly, one may also have ‖w ⊕ w′‖l−1 < ξ + ε. Merely focusing on decoding
the codeword might not sufficient to claim our security in this case. Therefore, we must proceed to part
(2) to complete our proof of security.

Proof for Part (2), when ‖w ⊕ w′‖l−1 < ξ + ε: Recall after the noise e of weight ‖e‖ = lε is included,
it may lead to either ‖w ⊕ w′‖ ≥ ξ + ε or ‖w ⊕ w′‖ ≥ ξ − ε. To show security when ‖w ⊕ w′‖l−1 <
ξ + ε, it is enough to just focus on the case when ‖w ⊕ w′‖l−1 ≤ ξ − ε, since, it conserves the original
interpretation and embodies all possible error rate in the resilient vectors as well. Based on the attack
given above, adversary A is given ss,N and w′. If the adversary A able to carry out decoding successfully,
this attack will output true only if the sampled pair (w,w′) comes with error rate ‖w ⊕ w′‖ l−1 ≤ ξ − ε.
We need to measure the probability as follow:

Pr
[

Attack(SSLSH
Ω,Cξ ,N, ε,A) = true

]
= Pr

[
‖w ⊕ w′‖ l−1 ≤ ξ − ε

∣∣ ‖δ‖ ≤ t ]
To do so, we denote two events {Eventa,Eventb} where a, b ∈ {0, 1} as follow:

Eventa =

{
‖δ‖ ≤ t, a = 0

‖δ‖ > t, a = 1

Eventb =

{
‖w ⊕ w′‖ l−1 ≤ ξ − ε, b = 0

‖w ⊕ w′‖ l−1 ≥ ξ + ε, b = 1

By using Bayesian law :

Pr
[
‖w ⊕ w′‖ l−1 ≤ ξ − ε

∣∣ ‖δ‖ ≤ t ] =
Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖ l−1 ≤ ξ − ε
]

Pr
[
‖w ⊕ w′‖ l−1 ≤ ξ − ε

]
Pr[‖δ‖ ≤ t ]

=
Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ]

Pr[Eventa=0 ]

=
Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ]

Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ] + Pr[Eventa=0 |Eventb=1 ] Pr[Eventb=1 ]

=
Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ]

Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ] + Pr[Eventa=0 |Eventb=1 ] (1− Pr[Eventb=0 ])

=
1

1 + Pr[Eventa=0 | Eventb=1 ](1−Pr[Eventb=0 ])
Pr[Eventa=0 | Eventb=0 ]Pr[Eventb=0 ]

≤ 1
Pr[Eventa=0 | Eventb=1 ](1−Pr[Eventb=0 ])

Pr[Eventa=0 | Eventb=0 ]Pr[Eventb=0 ]

≤ Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ]

Pr[Eventa=0 |Eventb=1 ] (1− Pr[Eventb=0 ])
=

(
Pr[Eventa=0 |Eventb=0 ]

Pr[Eventa=0 |Eventb=1 ]

)(
Pr[Eventb=0 ]

1− Pr[Eventb=0 ]

)
(3)

Let α = Pr[Eventb=0 ], as t′ = b(ξ − ε)lc, α can be rewritten as:

α = Pr[Eventb=0 ] = Pr[‖w ⊕ w′‖ ≤ t′ ]
≤ max

w′
Pr[W ∈ Bt′(w′)]

Straight away, we use the results from Corollary 1 and Corollary 2 to compute the maximum and
minimum probability for the events Pr[Eventa=0 |Eventb=0 ] and Pr[Eventa=0 |Eventb=0 ] to occur re-
spectively. It follows:

Pr[Eventa=0 |Eventb=1 ] ≤ max
t=tmax

Pr[‖δ‖ ≤ t | ‖w ⊕ w′‖ > t′ ] ≤ exp(−2nε2) = β

also,

Pr[Eventa=0 |Eventb=0 ] ≥ min
t=tmin

Pr[‖δ‖ ≤ t | ‖w ⊕ w′‖ ≤ t′ ] ≥ 1− β
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Recall the definitions:

− log(α) = − log
(

max
w′

Pr[W ∈ Bt′(w′)]
)

= Hfuzz
t′,∞(W )

− log(β) = − log

(
Ew′←W

[
max
φ′

Pr[Φ ∈ Bt(φ′) |W 6∈ Bt′(w′) ]

])
= H̃

fuzz

t,∞(Φ|W 6∈ Bt′(w′))

Since the average fuzzy min-entropy indicate the loss of the fuzzy min-entropy of the source, repre-
sented by variable W , therefore, α ≤ β must hold, if not, there will have no security to show. With this
argument, Eq. (3) can further simplify as

(
Pr[Eventa=0 |Eventb=0 ]

Pr[Eventa=0 |Eventb=1 ]

)(
Pr[Eventb=0 ]

1− Pr[Eventb=0 ]

)
=
α

β

(
1− β
1− α

)
≤ α

β

Eventually, letting β′ = α/β we obtain the final result for part (2):

Pr
[

Attack(SSLSH
Ω,Cξ ,N, ε,A) = true

]
≤ β′ =

α

β

Combining the results from part (1) and part (2), it follows that, the maximum probability to decode
the codeword is thus described as:

max
{

Pr
[

Attack(SSLSH
Ω,Cξ ,N, ε,A) = true

]
,Pr

[
A(SSLSH

Ω,Cξ(w,N, ε), w
′, N) = w

]}
= max{β′, β}

The remaining prove follows by simply convert the above result into entropy calculation. One has
the min-entropy required to decode the codeword described as min{− log(β′),− log(β)}, thus:

Hfuzz
t,∞(Φ|W, ss) ≥ min{− log(β′),− log(β)} (4)

≥ min{− log(α/β),− log(β)}
≥ min{Hfuzz

t′,∞(W ) + log(β),− log(β)}
≥ min{m+ log(β),− log(β)}

The last line conversion argued as follow. Since − log(β) = H̃
fuzz

t,∞(Φ|W 6∈ Bt′(w′)) is always considered

as the loss of Hfuzz
t′,∞(W ), therefore, this means Hfuzz

t′,∞(W ) is indeed the worst case min-entropy of Φ with

error tolerance distance t. Formally, one has Hfuzz
t,∞(Φ) ≥ Hfuzz

t′,∞(W ), we utilize the min-entropy notion by

simply provide some value to Hfuzz
t′,∞(W ) ≥ m, where m > 0, and this gives us the bound Hfuzz

t,∞(Φ) ≥ m.
So as the probability:

Pr
[

Attack(SSLSH
Ω,Cξ ,N, ε,A) = true

]
≤ β′ = 2−m/β

Above result shown that, even for computationally unbounded adversary A, he/she must at least
works with entropy min{m+ log(β),− log(β)}. Thus, one has a (M2,m,min{− log(β),− log(β′)}, t)
secure sketch with β′ = 2−m/β and β = exp(−2nε2) in larger matrix space M2 = {0, 1}n and complete
the prove.

23


	Introduction
	Existing Issues in Secure Sketch
	Our Contributions
	Our technique

	Preliminary
	New Construction-LSH Secure Sketch 
	LSH-Hamming hash
	LSH-Sketching
	LSH-Recover

	Resilience
	Error Correction up to Shannon Bound

	Security
	Security Bound on Secure Sketch
	A Toy Example

	Reusability
	Acknowledgement
	Appendix

