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Abstract. In 2017, a practical attack, referred to as the signal leakage
attack, against reconciliation-based RLWE key exchange protocols was
proposed. In particular, this attack can recover a long-term private key
if a key pair is reused.
Directly motivated by this attack, recently, Ding et al. proposed two
countermeasures against the attack. One is the RLWE key exchange
protocol with reusable keys (KERK), which is included in the Ding Key
Exchange, a NIST submission. The idea for this construction is using zero
knowledge proof. The other is the practical randomized RLWE-based key
exchange (PRKE) (TOC’18), which mixes more randomization.
We found that the two countermeasures above can effectively prevent
malicious Alice from recovering the private key of Bob when keys are
reused. However, both countermeasures don’t consider the case where
malicious Bob tries to recover the private key of Alice. In particular,
malicious Bob can recover the private key of Alice by carefully choosing
what he sends and observing whether shared keys match. By analyz-
ing the complexities of these attacks, the results show these attacks are
practical and effective.
Notice that the key to carry out these attacks is that malicious Bob
chooses a RLWE sample with the special structure as his public key.
Therefore, other RLWE-based schemes, including KEM (or key exchange)
and PKE, are also vulnerable to these attacks. In response to these at-
tacks, we propose a mechanism where one party can construct a new
”public key” of the other party, and in order to illustrate the mechanis-
m, we give an improved KERK.

Keywords: RLWE · key exchange · post-quantum · key reuse · analysis
· active attacks.

1 Introduction

Key exchange is an important cryptography primitive. It allows two or more
parties to agree on the same key, which is used in symmetric ciphers to en-
crypt and decrypt traffic data. Since the groundbreaking work of Diffie-Hellman
key exchange [1], various key exchange protocols following this idea have been
designed, implemented and deployed in real-world applications.

In 1994, Shor proposed a quantum algorithm in [2], which can break most
current public key cryptosystems based on integer factoring problem, discrete
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logarithm problem etc. Cryptographic algorithms designed based on these hard
problems are no longer secure when large quantum computers are implemented.
Fortunately, there are several approaches that can defeat such attacks, including
lattice-based, multivariate-based, hash-based, code-based, and others. In partic-
ular, lattice-based cryptography is regarded as a very promising one because
construction based on lattice problems are extremely hard to solve, even against
quantum computers. It also enjoys strong provable security and very high effi-
ciency. An important line of lattice-based cryptography is constructions based
on the Ring-Learning with Error(RLWE) problem [4].

RLWE-based key exchange protocol was introduced in 2012 (denoted as D-
ING12)[5], which gives RLWE variant of Diffie-Hellman key exchange. Following
the idea of this work, various RLWE-based key exchange protocols have been
designed and implemented, including [6]-[12]. One common approach to achieve
RLWE-based key exchange is error reconciliation. In particular, DING12, PK-
T14 [6], NewHope [9] and HILA5 [26] belong to reconciliation-based RLWE key
exchange protocol.

Recently, a practical attack, referred to as the signal leakage attack, against
reconciliation-based RLWE key exchange protocols was proposed [13]. This at-
tack can recover a long-term private key if a key pair is reused. It is known
that in the real world, key reuse is commonly adopted in applications like the
Transport Layer Security (TLS) protocol to improve performance. In TLS v1.2,
the resumption mode allows key reuse, and this reduces online computations sig-
nificantly. Another instance of key reuse appears in the Internet Key Exchange
(IKE). Currently with classical DH, some implementations of IKE do reuse the
keys for improved computational efficiency and latency. If RLWE-based key ex-
change protocols that are vulnerable to key reuse attack are adopted in TLS and
IKE with reused keys, the security of communication is compromised.

Directly motivated by this attack, Ding et al. constructed two countermea-
sures against the attack. One is called the RLWE key exchange protocol with
reusable keys (KERK), which was proposed in the Ding Key Exchange, a NIST
submission. The idea for this construction is using zero knowledge proof. In par-
ticular, the key exchange is based on the authentication protocol proposed in
[27], where they firstly designed a zero knowledge-based authentication proto-
col. It is a novel application of the signal function used for reconciliation in key
exchange to derive a secure authentication protocol. The other is the practi-
cal randomized RLWE-based key exchange (PRKE)[15]. The protocol extends
DING12 and incorporates an additional ephemeral public error term into key
exchange materials so that the practical signal leakage attack does not work.
The protocol has two modes: regular mode and key reuse mode. Regular mode
is for the fresh key exchange scenario that two parties do not have a prior key
negotiation or they do not want to reuse keys. Key reuse mode is a simplified
version of regular mode that is for the key reuse case.
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1.1 Related Work

In 2015, Kirkwood et al. from National Security Agency(NSA) revealed an issue
in reconciliation-based key exchange protocols [16]. They suggested that if a
public and private key pairs is reused, current reconciliation-based LWE-based
and RLWE-based key exchange protocols may suffer from an attack that can
reveal a private key with multiple key exchange executions.

In 2016, Fluhrer [17] gave cryptanalysis on RLWE-based key exchange pro-
tocols . This work gives the basic structure of the attack and shows that RLWE-
based key exchange can be broken when a key pair is reused. In 2017, Ding et
al. [13] presented a signal leakage attack with two extensions. They also showed
that attacks are indeed practical with an actual attack example on the RLWE-
based key exchange. In 2017, Bernstein et al. [18] demonstrated a key-recovery
attack on HILA5 using an active attack on reused keys. The attack applies to the
HILA5 key-encapsulation mechanism (KEM), and also to the public-key encryp-
tion mechanism (PKE) obtained by NIST’s procedure for combining the KEM
with authenticated encryption.

In December 2017, NIST announced 69 post-quantum cryptosystems entered
the Round 1. As one of the submissions, Ding Key Exchange includes a KERE,
which can achieve secure key reuse.In 2018, Ding et al. [19] described a new attack
on Ding’s one pass case without relying on the signal function output but using
only the information of whether the final key of both parties agree. Moreover,
they showed that the previous signal leakage attack [13] can be made more
efficient with fewer communications and how it can be extended to Peikert’s key
exchange [6]. In 2018, Ding et al. [15] constructed a new randomized RLWE-
based key exchange protocol against the signal leakage attack. In particular,
they incorporate an additional ephemeral public error term into key exchange
materials.

Recently, Liu et al. [28] describe a new key reuse attack against the NewHope
key exchange protocol proposed by Alkim et al. in 2016. They give a detailed
analysis of the signal function of the NewHope and describe a new key recov-
ering technique based on the special property of NewHope’s signal. In addition,
D’Anvers et al. [29] investigate the impact of decryption failures on the chosen-
ciphertext security of (Ring/Module)-Learning With Errors and (Ring/Module)-
Learning with Rounding based primitives. In particular, they introduce a tech-
nique to increase the failure rate of these schemes called failure boosting. They
also examine the amount of information that an adversary can derive from failing
ciphertexts. Chen Li [30] also takes advantage of the information leakage from
the decapsulation feedback and provide an efficient key recovery attack on the
Streamlined NTRU Prime.

1.2 Our Contributions

In this work, we analyze two countermeasures against the signal leakage attack:
KERK and PRKE. In particular, we develop two attacks on these two counter-
measures. In these attacks, malicious Bob can recover the private key of Alice
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by carefully choosing what he sends to Alice and observing whether the final
shared keys match or not. Further, we give analyses of the complexities of these
attacks, which shows these attacks are practical and effective.

Notice that the key to carry out these attack is malicious Bob chooses a RL-
WE sample with the special structure as his public key. Therefore, these attacks
also work for other RLWE-based schemes, including KEM (or key exchange) and
PKE. In particular, we propose a mechanism which can resist these attacks, and
give an improved KERK to illustrate the mechanism.

2 Organization

In section 3, we introduce some notations, background on RLWE, the error rec-
onciliation mechanism from DING12 and RLWE key exchange. In Section 4 and
Section 5, we revisit the signal leakage attack on DING12 and two countermea-
sures, which consist of KERK and PRKE. In section 6, we analyze these two
countermeasures and give corresponding attacks and the complexities of attacks.
Finally, we discuss the scope of these attacks, propose a mechanism which can
resist these attacks and give an improved KERK in Section 7. In Section 8, we
make a conclusion.

3 Preliminaries

Notation Let n be an integer and a power of 2. Define f(x) = xn + 1 and
consider the ring R := Z[x]/⟨f(x)⟩. For any positive integer q, we define Rq =
R/qR ∼= Zq[x]/⟨f(x)⟩ analogously, where the ring of polynomials over Z (respec-
tively Zq = Z/qZ) we denote by Z[x] (respectively Zq[x])). For any polynomial
p ∈ R (or Rq), let p[i] denote the i-th coefficient of p.

Discrete Gaussian Distribution For any positive real σ ∈ R, and vector c ∈
Rn, the continuous Gaussian distribution over Rn with standard deviation σ cen-

tered at c is defined by the probability function ρσ,c(x) = ( 1√
2πσ2

)nexp(−∥x−c∥2

2σ2 ).

For integer vectors c ∈ Rn, let ρσ,c(Zn) =
∑

x∈Zn ρσ,c(x). Then, we define the

discrete Gaussian distribution over Zn as DZn,σ,c(x) =
ρσ,c(x)
ρσ,c(Zn) , where x ∈ Zn.

The subscripts σ and c are taken to be 1 and 0 (respectively) when omitted.

Ring Learning with Errors(RLWE) A Lattice L(b1, ..., bn) = {
∑n

i=1 xibi|xi ∈
Z} is formed by integer linear combinations of n linearly independent vectors
b1, ..., bn ∈ Rn called the Lattice Basis. In 1996, Ajtais seminal result[21] herald-
ed the use of lattices for constructing cryptographic systems, with the security
based on hardness of problems such as the Shortest Vector Problem (SVP) and
Closest Vector Problem (CVP). The Learning with Errors (LWE) problem in-
troduced by Oded Regev in 2005[4] is a generalization of the parity-learning
problem. The reduction from solving hard problems in lattices in the worst case
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to solving LWE in the average case provides strong security guarantees for L-
WE based cryptosystems, yet it is not efficient enough for practical applications
due to its large key sizes of O(n2). Ring-Learning with Errors(RLWE) is the
version of LWE in the ring setting, that overcomes the efficiency disadvantages
of LWE. Similar to LWE, there is a quantum reduction from solving worst case
lattice problems in ideal lattices to solving the RLWE problem in average case.
The search version of RLWE is to find a secret s in Rq given (a, as + e) for
polynomial number of samples, where a is sampled uniform from Rq and e is
sampled according to the error distribution DZn,σ. An equivalent problem of
the search version is the decision version which is commonly used for security
proof of cryptographic algorithms based on RLWE. Let As,DZn,σ

denote the dis-
tribution of the pair (a, as + e), where a, s is sampled uniformly from Rq and
e is sampled according to the error distribution DZn,σ. The decision version of
the RLWE problem is to distinguish As,DZn,σ

from the uniform distribution on
Rq × Rq with polynomial number of samples. The normal form [22, 23] of the
RLWE problem is by modifying the above definition by choosing s from the error
distribution DZn,σ rather than uniformly. It has been proven that the ring-LWE
assumption still holds even with this variant [24, 4].

The Error Reconciliation Mechanism from DING12 The error reconcil-
iation mechanism in DING12 mainly consists of a signal function and a robust
extractor. More specifically, in the protocol, two parties will compute two very
close values in Zq. In order to agree on a common value, one party additionally
sends a signal of his value. Then both parties compute their shared keys using
the robust extractor.

Signal Function For the Key Exchange from RLWE presented in [5], the
signal function is required for the two parties in the key exchange to derive a
final shared key. The signal function is usually sent by the responding party
to the initiator of the key exchange, which gives additional information about
whether the responder’s key computed lies in a specific region.

For prime q > 2, hint functions σ0(x), σ1(x) from Zq to {0, 1} are defined as:

σ0(x) =

{
0, x ∈ [−⌊ q4⌋, ⌊

q
4⌋]

1, otherwise

σ1(x) =

{
0, x ∈ [−⌊ q4⌋+ 1, ⌊ q4⌋+ 1]
1, otherwise

Signal function Cha() is defined as: For any y ∈ Zq, Cha(y) = σb(y), where

b
$←− {0, 1}.
Robust Extractor Informally, a robust extractor enables two parties to

extract an identical information from two close elements with some additional
hint. The robust extractor is defined as:

Mod2(x,w) = (x+ w · q − 1

2
mod q)mod 2
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Mod2() is a robust exactor on Zq with error tolerance δ with respect to signal
function, if the following holds:

– The deterministic algorithm Mod2() takes input x ∈ Zq and signal w,
output k = Mod2(x,w) ∈ {0, 1}.

– Cha() takes an input y ∈ Zp and outputs signal w ←− Cha(y) ∈ {0, 1}.
For any x, y ∈ Zq such that x− y is even and ∥x− y∥ ≤ δ, then it holds that

Mod2(x,w) = Mod2(y, w), where w ←− Cha(y).

Let q > 8 be an odd integer, the function Mod2() defined above is a robust
extractor with respect to Mod with error tolerance q

4 − 2.

For any odd q > 2, if x is uniformly random in Zq, then Mod2(x) is uniformly
random conditioned on w, where w ←− Cha(x).

RLWE-Based Key Exchange Protocol In 2012, Ding et al. introduced the
the first RLWE-based key exchange protocols [5]. This is the first work that gives
practical and provable secure RLWE-based key exchange protocols. DING12 can
be regarded as RLWE variant of the classical Diffie-Hellman key exchange pro-
tocol. They introduced robust extractor, allowing both sides to reconcile errors
between approximately equal values to agree on the same key using an addi-
tional signal value. DING12 is proven secure under attacks from passive proba-
bilistic polynomial time (PPT) adversaries. In 2014, Peikert presented a slightly
modified reconciliation mechanism (denoted as PKT14) [6]. In 2015, Bos et al.
instantiated PKT14 with practical parameter choice, implementation and inte-
gration into OpenSSL as a post-quantum TLS ciphersuite (denoted as BCNS15)
[7]. In 2015, Zhang et al. introduced a RLWE-based AKE protocol (denoted as
AKE15) [8]. AKE15 is a RLWE variant of HMQV and it is proven secure un-
der the Bellare-Rogaway model. In 2016, Alkim et al. improved the efficiency
and security of BCNS15 with a new error reconciliation mechanism, detailed
security analysis, removal of fixed parameter a and optimized implementation
(denoted as NewHope) [9]. In late 2016, a variant of NewHope without using the
error reconciliation mechanism was introduced (denoted as NewHope-Simple)
[11]. This work gives an encryption-based approach to realize key exchange. In
2017, Ding et al. introduced two proven secure password-based RLWE key ex-
change protocols that are RLWE analogue of PAK and PPK [12]. Gao et al.
presented a much optimized implementation of [12] and integration into TLS
as post-quantum TLS ciphersuite [25]. Gao et al. introduced a RLWE variant
of Secure Remote Password(SRP) protocol [20], which is an augmented PAKE
protocol.

Reconciliation-based Key Exchange It is an approach to construct a pas-
sively secure lattice-based Key Exchange scheme [11]. In particular, we take
NewHope for example. As shown in the Table 1, in Reconciliation-based Key
Exchange, the final shared key skB (skA) is derived from kB (kA) and w, where
w is also derived from kB too.



Analysis of Two Countermeasures against the Signal Leakage Attack 7

KEM.Setup(): a
$←− Rq

Alice Bob

KEM.Gen(a): KEM.Encaps(a, b):

sA, eA
$←− DZn,σ sB , eB , e

′
B

$←− DZn,σ

pA ←− asA + eA pA−−−−−−→
pB ←− asB + eB

kB ←− pAsB + e′B

KEM.Decaps(sA, (pB , w)) pB , w←−−−−−−−−
w

$←− HelpRec(kB)

kA ←− pBsA skB ←− Rec(kB , w)
skA ←− Rec(kA, w)

Table 1. Reconciliation-based key exchange

4 Revisit the Signal Leakage Attack on DING12

Alice Bob
Public key: pA = asA + 2eA ∈ Rq Public key: pB = asB + 2eB ∈ Rq

Private key: sA ∈ Rq Private key: sB ∈ Rq

where sA, eA ←− DZn,σ where sB , eB ←− DZn,σ

pA−−−−−−→
kB = pAsB + 2e′B
where e′B ←− DZn,σ

w = Cha(kB) ∈ {0, 1}n
pB , w←−−−−−−−

ki = pBsA + 2e′A σB = Mod2(kB , w) ∈ {0, 1}n
where e′A ←− DZn,σ skB = SHA2− 256(σB)
σA = Mod2(kA, w) ∈ {0, 1}n
skA = SHA2− 256(σA)

Table 2. DING12 key exchange

In this section, we briefly recall the signal leakage attack [13] on DING12
(Table 2). If Alice is malicious, this attack can recover Bob’s private key within
multiple queries if key pair (sB, pB) is reused.

– In step 1 of the attack, malicious Alice chooses secret key sA = 0 and error
term eA = 1, therefore public key pA = asA + keA = k and signal value 1

w[i] = Cha(kB[i]) = Cha(pAsB[i]) = Cha(ksB [i]). (1)

According to the definition of signal function Cha, signal value w[i] flips
when ksB[i] enters or exits inner region [−q/4, q/4]. When k loops from 0

1 First consider a simple case without adding 2e′B , where kB = pAsB .
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to q− 1, signal value w[i] flips exactly 2sB [i] times. By communicating with
Bob with k looping from 0 to q− 1, Alice can get the value of sB [i] based on
the number of times that signal w[i] changes, therefore, Alice can find the
absolute value of 2sB [i] without knowing the sign.

– In step 2, Alice sends (1+x)pA to Bob. By looping k from 0 to q−1 once again,
Alice can get the absolute value of sB[0] − sB [n − 1], sB [1] + sB [2], sB [2] +
sB [3], ..., sB [n− 2] + sB [n− 1] without knowing the actual signs.

– In steps 3 and 4, Alice can reveal the relationship between the signs of
neighboring coefficients using all information from previous steps.

– In step 5, Alice verifies his guess on signs by checking the distribution of
pB − asB . If it follows the distribution of eB (normally is discrete Gaussian
distribution), then the guess is correct and the secret key is successfully
recovered. If not, then flips the signs and obtain the correct sB .

The above attack does not take account of additional errors 2e′B , but this is
not an issue. When adding 2e′B , the attack steps remain the same. Although the
error term causes some fluctuations, it is relatively small and can be ignored.
The private key can also be recovered successfully.

More generally, the attack still works if pA is chosen with sA ̸= 0. In this
case,

w[i] = Cha(kB [i]) = Cha(pAsB [i]) = Cha(asAsB [i] + ksB [i]). (2)

The value asAsB [i] is constant when looping over k value. So, Alice still can get
the value of sB [i] by looking at the number of times that signal w[i] changes. Alice
only needs to sample sA according to the distribution defined in key exchange
protocol and the rest of the attack remains the same. This attack can be done
within 2q online queries with Bob.

5 Revisit Two Countermeasures against the Signal
Leakage Attack

In this section, we revisit two countermeasures against the signal leakage attack.
The first one was abbreviated as KERK and proposed in the Ding Key Exchange,
a NIST submission. The idea for this construction is using zero knowledge proof
[27]. The other is PRKE in [15], which mixes more randomization.

5.1 KERK

Firstly, we revisit KERK (Table 3). The construction of the key exchange is
based on the zero knowledge-based authentication protocol proposed in [27]. It
can prevent malicious Alice from recovering the private key of Bob when keys
are reused. In particular, if malicious Alice chooses secret key sA = 0 and error
term eA = 1 such that public key pA = asA + keA = k, then

w = Cha(kB) = Cha(pAsB + 2e′′B)

= Cha((a · Samp(H(pA)) + 2e′B + pA)sB + 2e′′B)

= Cha((a · Samp(H(k)) + 2e′B + k)sB + 2e′′B), (3)
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Alice Bob
Public key: pA = asA + 2eA ∈ Rq Public key: pB = asB + 2eB ∈ Rq

Private key: sA ∈ Rq Private key: sB ∈ Rq

where sA, eA ←− DZn,σ where sB , eB ←− DZn,σ

pA−−−−−−→
Sample e′B , e

′′
B ←− DZn,σ

Samp(H(pA))←− DZn,σ

pA = a· Samp(H(pA)) + 2e′B + pA
Sample e′A ←− DZn,σ kB = pAsB + 2e′′B
Samp(H(pA))←− DZn,σ w = Cha(kB) ∈ {0, 1}n

pB , w←−−−−−−−
kA = pB · (sA + Samp(H(pA))) + 2e′A skB = Mod2(kB , w) ∈ {0, 1}n
skA = Mod2(kA, w) ∈ {0, 1}n

Table 3. KERK

where Samp() is a function which generates polynomial in Rp using output of H
according to distribution DZn,σ, Samp(H(k)) is indistinguishable from uniform
and e′B is chosen by Bob. Therefore, a · Samp(H(k)) + 2e′B can be regarded as
a RLWE sample and is indistinguishable from uniform. By looping k from 0 to
q− 1, Alice can’t get the value of sB [i] based on the number of times that signal
w[i] changes.

5.2 PRKE

In this section, we revisit PRKE in [15]. As shown in Table 3 and Table 4,
it has two modes: regular mode and key reuse mode, which share the same
structure. Key reuse mode is a simplified version of regular mode, which reduces
computation and communication costs with reused keys.

Alice Bob
Reused public key: pA = asA + 2eA Reused public key: pB = asB + 2eB
Reused private key: sA Reused private key: sB

Session ID−−−−−−−−−−−−→
kB = (pAsB + 2ep) · ep + 2e′B
where ep, e

′
B ←− DZn,σ

w = Cha(kB) ∈ {0, 1}n
w, ep←−−−−−−−−−−−−

kA = (pBsA + 2ep) · ep + 2e′A σB = Mod2(kB , w) ∈ {0, 1}n
where e′A ←− DZn,σ skB = SHA2− 256(σB)
σA = Mod2(kA, w) ∈ {0, 1}n
skA = SHA2− 256(σA)

Table 4. Key reuse mode
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Alice Bob
Public key: pA = asA + 2eA ∈ Rq Public key: pB = asB + 2eB ∈ Rq

Private key: sA ∈ Rq Private key: sB ∈ Rq

where sA, eA ←− DZn,σ where sB , eB ←− DZn,σ

pA−−−−−−−−→
kB = (pAsB + 2ep) · ep + 2e′B
where ep, e

′
B ←− DZn,σ

w = Cha(kB) ∈ {0, 1}n
pB , w, ep←−−−−−−−−−

ki = (pBsA + 2ep) · ep + 2e′A σB = Mod2(kB , w) ∈ {0, 1}n
where e′A ←− DZn,σ skB = SHA2− 256(σB)
σA = Mod2(kA, w) ∈ {0, 1}n
skA = SHA2− 256(σA)

Table 5. Regular mode

Regular mode is designed for common key exchange between two parties with-
out reused keys. In this mode, two parties exchange their public keys, signal w
and a one-time public error ep to agree on the same session keys. There are
several preferable scenarios for this mode: (1)The two parties have never com-
municated before, and Alice dose not share Bob’s public key. (2)The two parties
performed key exchange sometime before, but it has been too long since their
last communication, therefore they need to generate new public and private key
pairs and start key exchange.

Key reuse mode is designed for both parties wanting to reuse a key pair and it
is directly derived from the regular mode. The main motivation for key reuse is
for better performance because generating the key pair is somewhat expensive.
Alice needs to send a 256-bit session id to Bob, notifying Bob that he wants
to reuse the key from a previous session. Bob retrieves keys of Alice from the
database, generates a fresh public error ep and returns signal w and ep to Alice
to generate a fresh session key.

The key exchange in key reuse mode can prevent malicious Alice from re-
covering the private key of Bob when keys are reused. In particular, if malicious
Alice chooses secret key sA = 0 and error term eA = 1 such that public key
pA = asA + keA = k, then

w = Cha(kB) = Cha((pAsB + 2ep) · ep + 2e′B)

= Cha((ksB + 2ep) · ep + 2e′B)

= Cha(ksBep + 2e2p + 2e′B), (4)

where ep is chosen by Bob to mix more randomization. By looping k from 0 to
q− 1, Alice can’t get the value of sB [i] based on the number of times that signal
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w[i] changes. In fact, the approach of mixing more randomization is a common
and practical solution, for example, using public random one-time initialization
vector (IV) in encryption, nonce in various cryptography protocols, long and
random salt in password-based key derivation function.

6 Analysis of Two Countermeasures

The two countermeasures above can effectively prevent malicious Alice from
recovering the private key of Bob when keys are reused. However, both coun-
termeasures don’t consider the case where malicious Bob tries to recover the
private key of Alice. In particular, malicious Bob can recover the private key sA
of Alice by carefully choosing what he sends and observing whether shared keys
match.

6.1 Attack on the KERK

Firstly, we consider the KERK, where malicious Bob deliberately chooses pB,
and w with special structure to recover the private key of Alice. In the attack,
Bob is an active adversary intending to recover the private key sA of the Alice.
In every communication, Alice executes the key exchange honestly and Bob
carefully chooses pB and w.

Alice Bob
Public key: pA = asA + 2eA ∈ Rq Public key: pB = asB + 2eB ∈ Rq

Private key: sA ∈ Rq Private key: sB ∈ Rq

where sA, eA ←− DZn,σ where sB , eB ←− DZn,σ

pA−−−−−−→
Sample e′B , e

′′
B ←− DZn,σ

Samp(H(pA))←− DZn,σ

pA = a · sA + 2e′A
Sample e′A ←− DZn,σ kB = pAsB + 2e′′B
Samp(H(pA))←− DZn,σ w = Sig(kB) ∈ {0, 1}n

pB , w←−−−−−−−
kA = pB · sA + 2e′A skB = Mod2(kB , w) ∈ {0, 1}n
skA = Mod2(kA, w) ∈ {0, 1}n

Table 6. new expression of Table 3

For convenience, we denote sA + Samp(H(pA)) by sA, then in the key ex-
change (Table 6), kA and pA can be expressed as follow:

kA = pB · (sA + Samp(H(pA))) + 2e′A = pB · sA + 2e′A. (5)
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pA = a · Samp(H(pA)) + 2e′B + pA

= a · Samp(H(pA)) + 2e′B + asA + 2eA

= a · (Samp(H(pA)) + sA) + 2e′B + 2eA

= a · sA + 2(e′B + eA)

= a · sA + 2e′A. (6)

where we denote e′B + eA by e′A, and Table 3 can be expressed as Table 6.
In particular, in order to recover sA, Bob firstly recovers sA. Here we intro-

duce two methods to recover sA.

Method 1: We first adopt the method proposed in [19], where in order to
recover the i-th coefficient sA[i], Bob chooses

– sB to be 0
– eB such that eB [t] = 0 for all t = 0, ..., n− 1 except t = n− 1− i, n− 1− j

and eB[n− 1− i] = 1, eB [n− 1− j] = k, namely, eB = eB[n− 1− i]xn−1−i +
eB [n− 1− j]xn−1−j

– j such that sA[j] = 1 2

– k is a small integer

He then performs the protocol honestly, except that he deliberately flips bit
w[n− 1] to be 1.

In this way 3,

kA = pBsA = eBsA

= (2eB[n− 1− i]xn−1−i + 2eB [n− 1− j]xn−1−j)sA

= (2xn−1−i + 2kxn−1−j)sA. (7)

and kA[n − 1]xn−1 only depends on two terms of sA, and they are sA[i]x
i

and sA[j]x
j , which results in

kA[n− 1] = 2sA[i] + 2ksA[j] = 2sA[i] + 2k. (8)

skA[n− 1] = Mod2(kA[n− 1], w)

= kA[n− 1] + w[n− 1] · q − 1

2
mod q mod 2

= 2sA[i] + 2k +
q − 1

2
mod q mod 2. (9)

2 [19] proposed a method of hypothesis verification to choose j such that sA[j] = ±1
and this method can be applied to other values except ±1. Here we use the same
method and take sA[j] = 1 for example. In fact, it is possible that no coefficient of
sA is equal to one and our analysis is applicable other values as well.

3 Similarly, first consider a simple case without adding 2e′A, where kA = pBsA.
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Next, we show that the k value reveals the value of sA[i] when there is a
change in the value of skA[n− 1]. Notice that the terms 2sA[i] + 2k is even and
also from the usual choice of parameters for RLWE such that q = 1 mod 2n, we
have q−1

2 to be even.

– First consider the sign of sA[i]: Alice chooses eB [n − 1 − j] = k = 0, which
will result in kA[n− 1] = 2sA[i] and.

skA[n− 1] = 2sA[i] +
q − 1

2
mod q mod 2. (10)

If sA[i] is negative, 2sA[i] +
q−1
2 mod q is even and skA[n − 1] = 0; If sA[i]

is positive, 2sA[i] +
q−1
2 mod q is odd since the addition of q−1

2 to a positive

value changes its parity by the representation of Zq to be {− q−1
2 ... q−1

2 },
thus skA[n − 1] = 1. In addition, Alice can choose eB [n − 1 − i] = −1
to identify whether sA[i] is 0, which results in kA[n − 1] = −2sA[i] and
skA[n− 1] = −2sA[i] + q−1

2 mod q mod 2.
– Next consider that case where sA[i] is negative: notice that

skA[n− 1] = 2sA[i] + 2k +
q − 1

2
mod q mod 2. (11)

and when k is small, skA[n − 1] = 0 as long as 2sA[i] + 2k is negative. As
k increases, 2sA[i] + 2k changes from negative to positive. As this happens,
we have skA[n − 1] = 1 . Thus, the k value reveals the value of sA[i] when
there is a change in the value of skA[n− 1].

– Then when sA[i] is positive, the situation is the same except that Bob chooses
eB [n− 1− j] = −k such that kA[n− 1] = 2sA[i]− 2k, which results in

skA[n− 1] = 2sA[i]− 2k +
q − 1

2
mod q mod 2. (12)

In this case, when k is small, skA[n−1] = 1 as long as 2sA[i]−2k is positive.
As k increases, 2sA[i]−2k changes from positive to negative. As this happens,
we have skA[n− 1] = 0.

– Therefore, looking for the k value when skA[n−1] changes from 0 to 1 reveals
the exact value of a negative sA[i] and a change from 1 to 0 reveals the value
of a positive sA[i].

As Bob performs the protocol mostly honestly (and both sB and eB qualify
as small vectors until k remains small), Bob can compute the value skA, except
for index n − 1, for which he flips the signal bit. Bob can guess a skA[n − 1]
= 0 and communicating with Alice to see if his guess was correct. Finally, the
recovered secret sA can be verified by checking the distribution of pA − asA.

When Alice adds the error term 2e′A to the key kA, the number of queries
required to recover sA[i] increases, due to the complexity involved in eliminating
the effect of the noise 2e′A. Here we adopt the strategy in [19], which is to run the
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attack on the same coefficient of sA multiple times and look at the distribution
of k.

More generally, Bob can choose public key pB with sB ̸= 04. In this way,
kA = pBsA, which results in kA[n−1] = asBsA[n−1]+2sA[i]+2k. In particular,
Bob firstly chooses eB [n−1−i] = 1 to recover the value of 1

2asBsA[n−1]+sA[i],
then chooses eB [n − 1 − i] = 2 to recover the value of 1

2asBsA[n − 1] + 2sA[i],
thus recover sA[i].

To compute the query complexity of the method 1, we compute the query
complexity of each phase of the attack:

– 1) When sB ̸= 0 and the error term 2e′A is added to the key kA, determining
the sign of each coefficient requires querying with pB , where eB [n−1−i] = ±4
5 and eB[n − 1 − j] = k = 0, a small constant number of times. Thus, the
query complexity is constant for each coefficient, and the query complexity
to recover the signs of all the coefficients of sA is 2c′n, where c′ is a constant.

– 2) When sB = 0 and the error term 2e′A is added to the key kA, recovering
complete sA needs ntα queries6. In addition, in order to eliminate the effect
of the noise 2e′A, Bob needs to run the attack on the same coefficient of
sA multiple times. Thus, the attack complexity in this case would be Cnα,
where C is the constant.

– 3) When sB ̸= 0, recovering the secret sA is run twice with different eB . So,
the number of queries required is 2Cnα.

– 4) Determining index j such that sA[j] = 1 requires running the attack for
every coefficient i assuming that sA[j] = 1 starting with the first positive
coefficient until such a j is found. So, the best case query complexity is
2Cnα, when the first positive coefficient turns out to be the required index
with sA[j] = 1. The worst case query complexity is 2Cn2α.

Thus the query complexity of the complete attack would be 2c′n + 2Cn2α ≈
O(n2α) in the worst case and 2c′n+ 2Cnα ≈ O(nα) in the best case.

Method 2: In addition to the above method, we propose another simple method
to recover the coefficients sA, where Bob chooses pB = c(kasB + eB), where sB

4 In particular, Bob chooses sB such that pAsB [n−1] = 0. This way Bob can obtain a
sB such that the value of asBsA[n− 1] is small since pAsB = asBsA +2eAsB , where
eAsB is small. We require such a sB so that the term asBsA[n−1] in kA[n−1] cannot
override 2sA[i] + 2k and the attack strategy can still be used. Since pA is known to
the Bob, he can solve the polynomial equation to find sB such that pAsB [n − 1] =
0.

5 when sB = 0 and the error term 2e′A is added to the key kA, Choosing k = 0 and
eB [n − 1 − i] = ±4 will result in kA[n − 1] = asBsA[n − 1] + 8sA[i] + 2e′A[n − 1],
where asBsA[n− 1] and 2e′A[n− 1] cannot override 8sA[i].

6 sA consists of sA and Samp(H(pA)), where sA is sampled from the error distribution
that has standard deviation α. Determining a coefficient value sA[i] needs at most
tα queries, where t is a constant.
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and eB satisfy that (asBsA)[0] = 1 7 and eBsA[0] = sA[i]
8. Thus, (pBsA)[0] =

c(kasBsA[0] + eBsA[0]) = c(sA[i] + k). He then performs the protocol honestly,
except that he deliberately flips bit w[0] to be 0.

In this way, kA = pBsA, which results in

kA[0] = (pBsA)[0] = c(sA[i] + k). (13)

skA[0] = c(sA[i] + k) mod q mod 2. (14)

Notice that if skA[0] = 0 for all different c’s, then sA[i] + k = 0 mod q. Thus,
the k value reveals the value of sA[i].

Similarly, as Bob performs the protocol mostly honestly (and both sB and
eB qualify as small vectors until k and c remains small), Bob can compute the
value skA, except for index 0, for which he flips the signal bit. Bob can guess a
skA[0] = 0 and communicating with Alice to see if his guess was correct.

Analysis of the Complexity of the Attack Bob can adopt the technology in
[17] to choose sB and eB , which can be done off-line. Therefore, the complexity
of the attack is to query sA[i] for each i. In particular, we can adopt the analysis
in [19] to estimated complexity and the attack complexity is C ′nα ≈ O(nα),
where C ′ is the constant.

6.2 Attack on the PRKE in Key Reuse Mode

In this section, we consider PRKE in key reuse mode, where malicious Bob
deliberately chooses pB , w, and ep with special structure to recover the private
key sA of Alice. In the attack, Bob is an active adversary intending to recover
the private key sA of the Alice. In every communication, Alice executes the key
exchange honestly and Bob carefully chooses pB, w and ep.

Attack Principle In general, let’s consider recovering coefficient sA[i], i ∈
[0, n − 1]. In the key exchange, if Bob chooses c (c is a non-zero constant) and
k (k is a small integer) such that his public key pB = 2c and ep = kxic, flips bit
w[2i] to be 0, then9

kA = (pBsA + 2ep) · ep = (2csA + 2kxic) · kxic

= (sA + kxi) · 2kxic2

= [(
n−1∑

j=0,j ̸=i

sA[j]x
j) + (sA[i] + k)xi] · 2kxic2 (15)

7 [17] proposed an offline method to search sA and here we adopt the same method.
8 Specifically, he can choose eB such that eB [t] = 0 for all t = 0, ..., n − 1 except
t = n− i and eB [n− i] = 1, namely, eB = eB [n− i]xn−i

9 Similarly, first consider a simple case without adding 2e′A, where kA = (pBsA+2ep) ·
ep.
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kA[2i] = (sA[i] + k) · 2kc2 (16)

σA[2i] = Mod2(kA[2i], w[2i]) = (kA[2i] + w[2i] · q − 1

2
mod q)mod 2

= (((sA[i] + k) · 2kc2) + w[2i] · q − 1

2
mod q)mod 2

= (((sA[i] + k) · 2kc2)mod q)mod 2 (17)

Notice that if σA[2i] = 0 for different c’s, then sA[i] + k = 0 mod q. Thus,
the k value reveals the value of sA[i].

Similarly, as Bob performs the protocol mostly honestly, Bob can compute
the value σA, except for index 2i, for which he flips the signal bit. Bob can guess
a σA[2i] = 0 and communicating with Alice to see if his guess was correct.

Remark: In fact, Bob has many choices to choose pB and ep.
10

Next, we describe how to extend the attack in simple case to general case that
includes addition of an error term 2e′A, namely, kA = (pBsA +2ep) · ep +2e′A. In
previous section, it is easy to see that as Bob tries different k’s, Bob can always
determine the coefficient sA[i] from sA[i] + k = 0 mod q. However, when the
error term 2e′A[2i] is added to kA[2i],

kA[2i] = (sA[i] + k) · 2kc2 + 2e′A[2i] (18)

σA[2i] = Mod2(kA[2i], w[2i]) = (((sA[i] + k) · 2kc2 + 2e′A[2i])mod q)mod 2
(19)

if Bob dose as before, what he recovers is sA[i] with perturbations.
In this case, the choice of pB , ep and σB remain the same as in simple

case but there is difference in determining the value of sA[i]. The strategy here
is to run the attack on the same coefficient sA[i] multiple times and look at
the distribution ofsA[i]. Compared to the simple case above, the number of
communications increases due to the complexity involved in eliminating the effect
of the noise 2e′A[2i].

Analysis of the Complexity of the Attack The complexity of the attack is
to query sA[i] for each i. In particular, to determine sA[i], firstly, Bob needs to
try different k’s. And for the same k, Bob needs to try different c’s. In addition,
Bob needs to repeat a certain number of communications to eliminate the effect
of the noise 2e′A[2i]. Thus, to recover the coefficients of sA, Bob needs almost
tnα communications , where t is a constant, and the attack complexity is O(nα).

10 In particular, to recover coefficient sA[i], Bob chooses pB such that pB [t] = 0 for
all t = 0, ..., n − 1 except t = 0 and pB [0] = 1, and ep such that ep[t] = 0 for all
t = 0, ..., n− 1 except t = 0, t = 1, t = i− 1 and ep[0] = 2c, ep[1] = 1, ep[i− 1] = kc.
Thus, kA[i] = (pBsAep)[i] + (2epep)[i] = 2csA[i] + 2ck = 2c(sA[i] + k).
Bob can also chooses sB such that asAsB [0] = 1 [17], and eB such that eB [t] = 0 for
all t = 0, ..., n− 1 except for n− i and eB [n− i] = 1, and ep such that ep[t] = 0 for
all t = 0, ..., n− 1 except t = 0 and ep[0] = 1. In addition, Bob chooses pB such that
pB = 2kcasB + 2eB . Thus, kA[0] = (pBsAep)[0] + (2epep)[0] = 2c(k + sA[i]).
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7 An Improved KERK

In RLWE key exchange, the public key is required to be a RLWE sample. If one
party chooses a RLWE sample with special structure, it could cause trouble to
the other party. In fact, the reason Bob can successfully recover the private key
of Alice is that Alice can’t check Bob’s public key. And the key to carry out the
signal leakage attack [15] is that Bob can’t check Alice’s public key. Although
we discuss the Ding12 in this paper, we believe the same goes for other other
RLWE-based schemes, including KEM (or key exchange) and PKE.

Alice Bob
Public key: pA = asA + 2eA ∈ Rq Public key: pB = asB + 2eB ∈ Rq

Private key: sA ∈ Rq Private key: sB ∈ Rq

where sA, eA ←− DZn,σ where sB , eB ←− DZn,σ

pA−−−−−−→
Sample e′B , e

′′
B ←− DZn,σ

Samp(H(pA))←− DZn,σ

Samp(H(pB))←− DZn,σ

Sample e′A, e
′′
A ←− DZn,σ pA = a· Samp(H(pA)) + 2e′B + pA

Samp(H(pA))←− DZn,σ kB = pA(sB + Samp(H(pB))) + 2e′′B
Samp(H(pB))←− DZn,σ w = Sig(kB) ∈ {0, 1}n

pB , w←−−−−−−−
pB = a· Samp(H(pB)) + 2e′A + pB skB = Mod2(kB , w) ∈ {0, 1}n
kA = pB · (sA + Samp(H(pA))) + 2e′′A
skA = Mod2(kA, w) ∈ {0, 1}n

Table 7. an improved KERK

Therefore, in order to solve the trouble, we need a mechanism where any party
can check the public key of the other party, or can construct a new ”public key”
of the other party, which is a good RLWE sample. In particular, in this section
we provide a mechanism where any party can construct a new ”public key”,
which is a good RLWE sample.

Similarly, we also take DING12 as an example. Recall in the key exchange
(Table 3), Bob constructs a new ”public key” of Alice, pA = a· Samp(H(pA))
+ 2e′B + pA, where Samp(H(pA)) is indistinguishable from uniform and 2e′B is
chosen by Bob. Therefore, pA can be regarded as a RLWE sample and is indistin-
guishable from uniform. Although malicious Alice chooses a RLWE sample pA
with special structure, pA is a good RLWE sample. Therefore, it can effectively
prevent malicious Alice from recovering the private key of Bob when keys are
reused.

Based on the Table 2, we propose an improved KERK (Table 5), which can
prevent malicious Bob from recovering the private key of Alice. In the improved
key exchange, Alice constructs a new ”public key” of Bob, pB = a· Samp(H(pB))
+ 2e′A + pB , which can be regarded as a RLWE sample and is indistinguishable
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from uniform. Although malicious Bob chooses a bad RLWE sample pB with
special structure, pB is a good RLWE sample. Therefore, it can effectively pre-
vent any malicious party from recovering the private key of the other party when
keys are reused.

8 Conclusion

In this work, we have analyzed two countermeasures against the signal leakage
attack: KERK and PRKE. In particular, we develop two attacks on these two
countermeasures. In these attacks, malicious Bob can recover the private key of
Alice by carefully choosing what he sends and observing whether the final shared
keys match or not. After analyzing the complexities, we get the conclusion that
these attacks are practical and effective. In fact, other RLWE-based schemes,
including KEM (or key exchange) and PKE, are also vulnerable to these attacks.
In response to these attacks, we propose a mechanism which can resist these
attacks and give an improved KERK to illustrate the mechanism.
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