
Turbospeedz: Double Your Online SPDZ!
Improving SPDZ using Function Dependent Preprocessing

Aner Ben-Efraim∗ and Eran Omri∗

Department of Computer Science, Ariel University, Ariel, Israel
anermosh@post.bgu.ac.il

omrier@gmail.com

Abstract. Secure multiparty computation allows a set of mutually distrusting parties to securely
compute a function of their private inputs, revealing only the output, even if some of the parties are
corrupt. Recent years have seen an enormous amount of work that drastically improved the concrete
efficiency of secure multiparty computation protocols. Many secure multiparty protocols work in an
“offline-online” model. In this model, the computation is split into two main phases: a relatively slow
“offline phase”, which the parties execute before they know their input, and a fast “online phase”, which
the parties execute after receiving their input.
One of the most popular and efficient protocols for secure multiparty computation working in this
model is the SPDZ protocol (Damg̊ard et al., CRYPTO 2012). The SPDZ offline phase is function
independent, i.e., does not requires knowledge of the computed function at the offline phase. Thus, a
natural question is: can the efficiency of the SPDZ protocol be improved if the function is known at
the offline phase?
In this work, we answer the above question affirmatively. We show that by using a function depen-
dent preprocessing protocol, the online communication of the SPDZ protocol can be brought down
significantly, almost by a factor of 2, and the online computation is often also significantly reduced.
In scenarios where communication is the bottleneck, such as strong computers on low bandwidth net-
works, this could potentially almost double the online throughput of the SPDZ protocol, when securely
computing the same circuit many times in parallel (on different inputs).
We present two versions of our protocol: Our first version uses the SPDZ offline phase protocol as
a black-box, which achieves the improved online communication at the cost of slightly increasing the
offline communication. Our second version works by modifying the state-of-the-art SPDZ preprocessing
protocol, Overdrive (Keller et al., Eurocrypt 2018). This version improves the overall communication
over the state-of-the-art SPDZ when the function is known at the offline phase.

Keywords: Secure Multiparty Computation, SPDZ, concrete efficiency, offline/online

1 Introduction

Secure multiparty computation allows a set of mutually distrusting parties to securely compute a function of
their private inputs, revealing only the output, even if some of the parties are corrupt. Secure computation
was introduced by Yao [39] for 2 parties and by Goldreich et al. [24] for the multiparty case. Soon afterwards
strong feasibility results were established, e.g., [24, 12, 9, 14, 36, 32]. Establishment of feasibility led to
research of efficiency, and a long series of works, [28, 17, 18, 27, 20, 1, 4] and others, reduced the asymptotic
communication and computational complexity of secure computation to almost optimal.

However, many of these asymptotically efficient protocols perform poorly when it comes to real world
applications. For example, secure multiparty protocols based on fully-homomorphic encryption, e.g., [4],
have almost optimal communication and computational complexity, but their concrete efficiency (i.e., their
run-time in practice on real world problems) makes them somewhat impractical. The necessity of secure
computation in real-world applications has therefore encouraged the study of concretely efficient protocols.

∗Research supported by ISF grant 152/17.

Recent years have seen an enormous amount of work in this direction, and the concrete efficiency of secure
multiparty computation protocols has also been significantly improved, e.g., [15, 22, 21, 33, 11, 38].

Real world scenarios have also led to the study of the “preprocessing” or “offline-online” model. In this
model, the parties run a relatively expensive “offline” phase, i.e., a preprocessing protocol, before they know
their inputs. After receiving their inputs, the parties then run a very efficient “online” protocol that uses the
computations made at the offline phase. Such protocols can be used to make “real-time” secure computations,
when it is known well in advance that these computations would take place.

Some of the works in the offline-online model, most notably SPDZ [22, 21], have a function independent
offline phase, i.e., they assume the parties do not know the function to be computed during the preprocessing.
Other works, such as most concretely efficient constant round secure multiparty protocols [34, 11, 26, 38],
have a function dependent offline phase, i.e., they assume the parties already know the function at the
expensive offline phase.

Both function independent offline and function dependent offline make sense in different real world
applications. For example, assume a set of parties wish to securely compute an online auction at a specific
date. On the one hand, a function dependent offline phase might allow the parties to run the auction more
quickly. On the other hand, a function independent preprocessing would allow the parties more flexibility, such
as changing the auction details up to the last minute. Therefore, it is important to study both of these models.
In fact, several recent works in concretely efficient secure multiparty protocols, e.g., [34, 26, 38], separate
the offline phase into two parts: a function independent preprocessing phase and a function dependent
preprocessing phase.

Despite the SPDZ protocol being one of the most popular and efficient secure multiparty computation
protocols, we observe that all previous works on the SPDZ protocol, e.g. [22, 21, 16, 6, 37], have only a
function independent preprocessing phase. Thus, a natural question arises:

Question 1. Can the famous SPDZ protocol profit from using a function dependent preprocessing protocol?

1.1 Our Contribution and Techniques

In this work we answer Question 1 affirmatively. We present a new “SPDZ-like” protocol for secure com-
putation against malicious adversaries, which requires approximately only half the communication in the
online phase compared to the current state-of-the-art SPDZ online [21]. Furthermore, our protocol requires
approximately only half the computation in the online MACCheck protocol, which is one of the main com-
putational costs of the SPDZ online phase. Thus, we expect that our protocol could almost double the online
throughput compared to SPDZ in some scenarios, e.g., strong machines on low-bandwidth networks that
securely compute the same function multiple times in parallel on different inputs. We remark that these
scenarios are of interest in real world applications; for example, increasing the throughput of secure multiple
parallel AES computations has been discussed in [2] for Kerberos.

Our technique can be seen as adding additional randomness to the SPDZ protocol, so that more values
can be seen in the clear. These values, which appear random to the adversary, aid in computing the secret-
shared values of the following gates. More specifically, in our preprocessing protocol, the parties compute at
each output wire of a multiplication gate an additional secret-shared random value. At the online phase, the
parties reveal the sum of the real value and this random value. Then, using this revealed sum and additional
information revealed at our preprocessing protocol, the parties can locally compute the shares for the output
wires of the multiplication gates of the following layer in the circuit. Therefore, the only communication
in the online phase for multiplication gates is revealing a single secret-shared value – the sum of the real
value and a random value – whereas in [21] they reveal two values at each multiplication gate. However, our
preprocessing protocol requires knowledge of the computed function. So in contrast to previous works on
SPDZ, such as [22, 21, 16, 6, 37], our protocol’s offline phase is function dependent.

For intuition, one could see this as follows: the extra randomness allows “shifting” the revealed values
from corresponding to the input wires of multiplication gates (2 input wires for each gate) to corresponding
to the output wires of the multiplication gates (1 output wire per gate) in the previous layer of the circuit.
This “shift” is made possible because we know the function at the offline phase. Thus, our online protocol

2

requires only half the amount of revealed values per multiplication gate compared to the improved online
SPDZ [21], and additionally, we also save revealing values for input wires by observing that random values
used for input distribution, which are “thrown out” in SPDZ, can be reused securely in our protocol. Since
almost all the online communication comes from the revealing of these values, our online protocol requires
almost half the amount of communication required by the online protocol in [21].1 We further observe that
the number of revealed values directly affects the amount of computation in the SPDZ MACCheck protocol,
which is run at the end of the online phase to verify no cheating has occurred.

We show two variants to achieve our improved online phase. In the first version, we build on top of the
SPDZ offline phase; that is, we first run the SPDZ offline preprocessing protocol (with values as detailed
below), and then run another preprocessing protocol. Our additional preprocessing protocol is constant-
round and its communication and computation is comparable to the SPDZ online phase, i.e., relatively small
compared to the main cost of the SPDZ offline phase.

The number of Beaver triples (see Section 2 for the definition of Beaver triples) we need for the our
protocol is exactly the same as in SPDZ. In this version of our protocol, we also require generating an
additional (in comparison with SPDZ) random shared value for each multiplication gate at the function
independent preprocessing. However, we note that generating a random shared value is significantly cheaper
than generating a Beaver triple. Thus, in total, our offline phase, including both our new function dependent
preprocessing protocol and the SPDZ preprocessing with additional random shared values, should not be
significantly worse than the SPDZ offline phase.

Our second manner for achieving our improved online is by modifying the state-of-the-art SPDZ pre-
processing protocol, Overdrive [31]. In this version of our protocol, we “align” randomness generated in
Overdrive with the randomness needed for our online protocol. As a result, in this second version of the
protocol we require at most the same amount of offline communication as Overdrive, and in some cases
(depending on the computed circuit) even less. In order to “align” the randomness, our offline phase requires
some extra computation (compared to Overdrive), but this computation consists of simple additions. Exper-
iments in Overdrive suggest that communication is often the bottleneck also in the offline phase. Therefore,
we expect our offline to improve the offline time in many instances (since we save communication), and even
in circuits where we do not save offline communication, the extra additions needed for our protocol should
not significantly increase the offline time.

To summarize, our protocol significantly improves over the SPDZ protocol in the online phase. If we
modify the state-of-the-art Overdrive, we also improve the overall communication, while if we use the SPDZ
offline phase as a black-box our offline phase is only slightly worse (which is still desirable in accordance with
the spirit of the offline-online model). Thus, in cases where the computed function is known in advance, our
protocol should be preferred over SPDZ.

1.2 Related Works

Works that focus on the preprocessing phase of the SPDZ protocol, such as MASCOT [29], Overdrive [31],
and others, e.g., [7], are somewhat complementary to our work, since we use them for our offline phase. In
the first version of our protocol we use these protocols as a black-box. In the second version of our protocol,
we show that if the function is known at the offline phase, Overdrive can be slightly modified to “align” with
our online protocol, increasing the efficiency (of the overall time) even further.2

There have also been several works that modified the SPDZ online phase in order to achieve additional
properties, such as public auditability [6], efficient cheater detection [37], and extension to the integers modulo
2k [16]. It is interesting to check if our ideas can also be used to improve the online phase in these protocols.

1Additional online communication includes squaring gates and communication in the MACCheck protocol, where
we do not improve over [21]. However, this communication is relatively small, especially in large circuits. Therefore,
our online communication is only slightly more than half the online communication of [21].

2We note that our “aligning” method works even better with the SPDZ preprocessing of [21], but the overall
improvement would still probably not surpass using Overdrive. In contrast, due to a randomization technique used
in MASCOT [29] triple generation, it is not clear if this “alignment” can also be applied to MASCOT preprocessing.

3

Another line of related works is secure computation based on lookup-tables, e.g. [23, 30]. Similarly to our
work, these protocols require a function dependent offline phase, and further require sending only a single
field element to each other party per gate at the online phase. Furthermore, protocols based on lookup-
tables can have significantly more sophisticated gates, whereas we only have addition and multiplication
gates. However, protocols based on lookup-tables require memory that grows linearly with the size of the
field, per gate. Therefore, in contrast to our protocol (and SPDZ), protocols based on lookup-tables are
useful mainly over small fields.3

A different approach to secure multiparty computation is based on garbled circuits. In the garbled circuit
approach, the parties in some sense encrypt the function circuit at the offline phase. Then, at the online
phase, the parties reveal keys for the inputs and locally compute the output of the circuit. This approach,
for the multiparty setting, was originally proposed by Beaver et al. [9], and has recently received significant
attention for concrete efficiency in several works, e.g., [34, 11, 26, 38, 10]. In contrast to SPDZ and protocols
based on look-up tables, these protocols are constant round. Thus, the main advantage of secure multiparty
protocols based on garbled circuits is to reduce the online time of deep circuits over high-latency networks.
However, due to their large online computation complexity (for a large number of parties) they are generally
not suitable for a high-throughput online goal, which is the main advantage of our protocol. Furthermore, it
was shown (e.g., [11]) that in low-latency networks (e.g., LAN), protocols based on garbled circuits perform
relatively poorly. And last, similarly to protocols based on lookup-tables, protocols based on garbled circuits
require memory that is linear in the field size per gate, and are therefore impractical over large fields.3

We remark that there are also secure computation protocols which are specialized for restricted scenarios
such as a semi-honest adversary, an honest majority, and/or a small number of parties, e.g. [19, 2, 3, 25]. We
cannot compete with these protocols since achieving malicious security for any number of corrupt parties is
significantly harder.

Regarding technique, our method can be seen as optimizing the computation by computing the gates
on random values revealed on the wires. Similar ideas have been considered in previous works in various
scenarios, such as the point-and-permute technique for garbled circuits [9] (that this technique implies com-
puting the gates on revealed random values is seen more clearly in arithmetic garbled circuits [35, 5, 10]),
in protocols based on look-up tables [23, 30], in protocols for an honest majority, e.g., [19], and recently
for an extremely efficient protocol for 4 parties with an honest majority [25]. Our protocols show that this
technique can also be used to improve the well studied SPDZ protocol.

Organization. In Section 2 we recall the ideas of the SPDZ protocol and Overdrive. In Section 3 we describe
our function dependent offline protocols that uses SPDZ offline as a black-box, and our new online protocol.
In Section 4 we explain how to improve the overall time of our protocol when using Overdrive. In Section 5
we prove correctness and the security of our protocols.

Notation and conventions. Similarly to SPDZ, throughout this paper we assume the computation is per-
formed by n parties over some finite field F. We also assume that |F| is exponential in the security parameter
κ. When we refer to the computed function, we assume it is encoded as an arithmetic circuit C over F.

2 Review of the SPDZ Protocol and Overdrive

In this section, we briefly review the (improved) SPDZ protocol presented in [21]. Then we partially explain
how Overdrive [31] generates multiplication triples using a public-key semi-homomorphic encryption. We
follow [21] for SPDZ because it has the currently most efficient online phase. Overdrive [31] is currently the
state-of-the-art protocol for generating multiplication triples. The results in this section are given only as a
preliminary to our work in the following sections, and are taken mainly from [21] and [31].

3To be more precise, these protocols perform best over small characteristic fields. However, they can be somewhat
efficiently extended to arithmetic computations over the integers using the Chinese Remainder Theorem, e.g., [5, 10],
and to extension fields with small characteristic using multiplication embedding.

4

The SPDZ protocol executes a relatively expensive “offline” preprocessing phase in order to achieve a
very efficient online phase, which is secure against any number of corruptions (in the model of security with
abort). Before giving an overview of the SPDZ protocol, we recall Beaver multiplication triples [8], which is
one of the main building blocks of the SPDZ protocol.

Definitions of [[·]]-shared elements and Beaver multiplication triples. Assume each party has a uniform
additive share αi ∈ F of a secret global MAC value α = Σn

i=1αi. An element a ∈ F is [[·]]-shared if
each party holds a pair (ai, γ(a)i), where ai is an additive secret-sharing of a, i.e., a = Σn

i=1ai, and γ(a)i
is an additive secret-sharing of γ(a) = α · a, i.e., γ(α) = Σn

i=1γ(a)i. For an element a ∈ F we denote
[[a]] def= ((a1, . . . , an), (γ(a)1, . . . , γ(a)n)).

A nice feature of [[·]]-shared elements is that addition of 2 [[·]]-shared elements, addition of a public scalar,
and multiplication by a public scalar can be computed locally.

Property 1. For a, b, e ∈ F with [[a]], [[b]] being [[·]]-shares of a,b respectively and e a public value

– [[a]] + [[b]] def= ((a1 + b1, . . . , an + bn), (γ(a)1 + γ(b)1, . . . , γ(a)n + γ(b)n)) is a [[·]]-share of a+ b,
– e · [[a]] def= ((e · a1, . . . , e · an), (e · γ(a)1, . . . , e · γ(a)n)) is a [[·]]-share of e · a,
– e+ [[a]] def= ((e+ a1, a2, . . . , an), (γ(a)1 + e · α1, . . . , γ(a)n + e · αn)) is a [[·]]-share of e+ a.

However, to perform multiplication of 2 [[·]]-shared elements in the SPDZ protocol, the parties require
interaction and a Beaver multiplication triple [8].

A Beaver multiplication triple is a triple, ([[a]], [[b]], [[c]]), of [[·]]-shared values such that c = a·b. Similarly,
a squaring pair is a pair, ([[a]], [[c]]), of [[·]]-shared values such that c = a2; squaring pairs are used in [21] to
compute the square of a [[·]]-shared value more efficiently.

MACCheck protocol. During both the offline and the online phase of the SPDZ protocol, certain [[·]]-shared
values are (partially) revealed to some or all of the parties. I.e., the parties learn the shared value (but not
the MAC). A malicious adversary may attempt to manipulate its shares to reveal different values than the
ones actually shared. Thus, some procedure must be run to ensure such a cheating does not occur.

This procedure is the MACCheck protocol of [21], which receives a set of revealed [[·]]-shared values
and efficiently verifies, with failure probability ≤ 2

|F| (|F| being the size of the field), that no cheating has
occurred. Note that in this paper we discuss only large fields (i.e., F is exponential in the security parameter),
so MACCheck verifies that the adversary did not cheat except with negligible probability. For completeness,
this protocol is given in Appendix C, but we shall only require the following claim:

Claim 1 (Informal) [21, Lemma 1] Given a set of partially revealed [[·]]-shared values, if the revealed
values do not match the [[·]]-shared values, MACCheck aborts except with probability ≤ 2

|F| . Furthermore, if
the adversary does not cheat, MACCheck leaks no information on the queried values, the global MAC α, and
the honest parties’ shares.

The SPDZ offline phase. The main part of the SPDZ offline phase is a preprocessing protocol that securely
generates Beaver triples and additional random [[·]]-shared values. There have been several works that sig-
nificantly improved the original SPDZ preprocessing protocol, e.g., [31, 29, 7]. The current state-of-the-art
protocols are Overdrive [31] for large prime fields, which is based on semi-homomorphic encryption, and
MASCOT [29] for large fields of characteristic 2, which is based on oblivious transfer.

In Section 3 we assume black-box access to the SPDZ offline functionality (which in practice would prob-
ably be implemented using Overdrive). I.e., we assume that the parties can access a functionality FPrep that
gives the parties the shares of the requested number of Beaver triples ([[a]], [[b]], [[c]]), square pairs ([[a]], [[c]]),
random [[·]]-shared elements [[r]], and input maskings (ri, [[ri]]).4 For completeness, the functionality FPrep,
taken from [21], is given in Appendix D. For concrete protocols, one should look at [31, 29, 7, 21].

4An input masking (ri, [[ri]]) is a random [[·]]-shared element, where the value ri is known to party i.

5

In Section 4 we show how to modify Overdrive (SPDZ offline protocol) so that the values generated at
the offline are “aligned” with the values needed in our online protocol. A partial overview of Overdrive, in
particular of the triple generation protocol and the SPDZ sacrifice step, is given at the end of this section,
and the modification is explained in Section 4.

The SPDZ online phase. As mentioned, one of the highlights of the SPDZ protocol is its very efficient
online protocol that is secure against any number of corruptions (in the model of security with abort),
which is achieved using the relatively expensive preprocessing protocol. In the online protocol, the parties
first compute [[·]]-shares of their inputs as follows: party i shares its input xi by revealing xi − ri, where
ri is an input masking that was generated at the offline phase. The parties then locally compute [[xi]] ←
[[ri]] + (xi − ri) using Property 1.

Addition gates are computed locally: let the input wires be x, y and the output wire be z. The parties
locally compute [[z]]← [[x]] + [[y]] using Property 1.

In order to compute multiplication gates, the parties use a Beaver triple ([[a]], [[b]], [[c]]) as follows: let
the input wires be x, y and the output wire be z. The parties locally compute [[ε]] ← [[x]] − [[a]] and
[[ρ]] ← [[y]] − [[b]], and then communicate to partially reveal ε and ρ. Then, the parties use Property 1 to
locally compute

[[x · y]]← [[c]] + ε · [[b]] + ρ · [[a]] + ε · ρ. (1)

Squaring gates are computed in a similar but slightly simpler way, using a square pair.
At the end of the protocol, before outputting the result, the parties run a MACCheck protocol to verify

that the corrupt parties did not cheat. If the corrupt parties did attempt to cheat, the cheating is detected
with overwhelming probability, and the honest parties abort. Note that fairness is not guaranteed, i.e., the
adversary can learn the output while the honest parties do not.

Triple Generation using Overdrive. Overdrive [31] (and previously [13]) construct multiplication triples
using a public-key semi-homomorphic encryption Enc. For efficiency, Overdrive uses the BGV encryption
that introduces noise, which needs to be “drowned” for security reasons. Furthermore, the parties need to
prove that some encryptions are generated correctly using zero-knowledge proofs. Due to space constraints
we do not go into the details here, and encourage the reader to read [31] for the details.

The multiplication scheme is as follows: assume the parties hold additive shares a = Σiai, b = Σibi, then
ab = (Σiai · Σbi) = Σiaibi + Σi 6=jaibj . Each aibi can be computed locally by party i, and (shares of) aibj
are computed using the following two party protocol: Party i sends Enc(ai) encrypted under its own public
key. Party j, using Party i’s public key and the received Enc(ai), responds with Ci = bj ·Enc(ai)−Enc(cj),
where cj is a randomly chosen share. Then party i decrypts ci = Dec(Ci) and by the homomorphic property
ci + cj = aibj , so (ci, cj) is a secret-sharing of aibj .

The above multiplication is used in two places in Overdrive: (1) To compute the shares of c = ab in
the multiplication triple, and (2) To generate the MACed shares [[a]], [[b]], [[c]]; we shall assume the latter is
done by calling the functionality F[[]]. An implementation of F[[]] and the original Overdrive triple generation
protocol can be found in [31, Figures 4 and 7]. Our modified version of the triple generation protocol, used
for our protocol in Section 4, is given in Figure 3.

One issue that arises is that the adversary might attempt to cheat in the triple generation. For efficiency
reasons, only some of this is captured in Overdrive using zero-knowledge proofs. In particular, the adversary
is able to create triples (a, b, ab + e) for some error e of her choice. This is solved in Overdrive using the
“SPDZ sacrifice” – triples are generated in pairs, and one is “sacrificed” to ensure the other triple is correct.
The SPDZ sacrifice was slightly improved in [29], showing that it suffices to use correlated triple pairs
([[a]], [[b]], [[c]]), ([[a]], [[b̂]], [[ĉ]]).

The (improved) SPDZ sacrifice works roughly as follows: a random element r is chosen after the triples
are (possibly incorrectly) generated. Then, ρ = rb− b̂ is partially opened. Using ρ, the parties compute (using
Property 1) and partially reveal τ = rc − ĉ − ρa, and abort if τ 6= 0. It can be shown that if the adversary
cheated in generating the triples, i.e., c = ab + e and ĉ = ab̂ + ê with e 6= 0 and/or ê 6= 0, then τ 6= 0 with

6

overwhelming probability. If the adversary tries to cheat in the revealing of ρ and/or τ , she is later be caught
by the MACCheck protocol with overwhelming probability. It is easy to see that if the adversary does not
cheat then the parties do not abort. And because b̂ and ĉ are “sacrificed” (i.e., not used elsewhere in the
protocol), ρ does not leak any information on ([[a]], [[b]], [[c]]).

3 Our New Protocol, using SPDZ Offline as Black-Box

In this section we describe our two new protocols – our added function dependent offline protocol and our
new “SPDZ-like” online protocol. The offline protocol in this section uses the SPDZ preprocessing protocol
as a black-box. A more efficient version of our protocol achieved by modifying the state-of-the-art SPDZ
preprocessing protocol, Overdrive, is given in Section 4.

We use slightly different notation and equations than the ones explained in Section 2, so we first give the
details of our notation and equations.

3.1 Notation and Equations

Similarly to the online phase of the SPDZ protocol, in our online protocol the parties compute (in topological
order on the circuit) for each wire a [[·]]-shared value that corresponds to the real value on the wire. We
denote the real value on wire ω by vω and correspondingly its [[·]]-shared value by [[vω]].5 Observe that the
real values depend on the inputs, and are thus determined only at the online phase.

In our online protocol, the parties additionally hold at each wire ω shares of a random field element,
which we term the permutation element and denote by λω (and its [[·]]-share by [[λω]]). The shares of these
permutation elements are generated and computed in the offline phase. Note that these permutation elements
are independent of the real values. It is also important that the permutation elements are independent of
the multiplication triples, see Section B.

At the online phase, after computing the shares corresponding to the real value, the parties open the
sum of the real value and the permutation element. We call this sum the external value, and denote it by
eω

def= vω + λω. The important observation is that since the permutation element is independently random
and unknown, the external value reveals no information on the real value; similar observations are implicitly
used in SPDZ, e.g., when revealing ε, ρ of multiplication input wires.

For addition gates with input wires x, y, we let the permutation element of the output wire z be the sum
of the permutation elements on the input wires, i.e., λz = λx + λy. Thus, the shares of λz can be computed
locally by the parties from the shares of λx and λy. Furthermore, we observe that during the online phase,
the external value on the output wire can also be computed locally by the parties, since the above implies
that the external value of the output wire is the sum of the external values of the input wires:

ez = vz + λz = (vx + vy) + (λx + λy) = (vx + λx) + (vy + λy) = ex + ey (2)

For a multiplication gate with input wires x and y and output wire z, assume the beaver triple
([[a]], [[b]], [[c]]) is associated with the multiplication gate. We denote the input offsets by

λ̃x
def= a− λx (3)

and
λ̃y

def= b− λy. (4)

We further denote the adjusted external values on the input wires by

êx
def= ex + λ̃x = (vx + λx) + (a− λx) = vx + a, (5)

5In [22, 21] they do not distinguish between the wire and its value – there vω and [[vω]] are denoted ω and [[ω]],
respectively. Our notation is similar to notations used for multiparty garbled circuits, e.g., [9, 11].

7

êy
def= ey + λ̃y = (vy + λy) + (b− λy) = vy + b. (6)

Then, we have the following resulting equation:

vxvy = (vx + a)(vy + b)− a(vy + b)− b(vx + a) + ab = êxêy − êya− êxb+ c (7)

Equation (7) is used in our online protocol in order to compute the shares of the multiplication. For the
output wire, we set the permutation element on the output wire to be λz = c+ r, where r is a fresh random
[[·]]-shared value.6

Remark 1. Note that Equation (7) we use is slightly different than Equation (1) used in [22, 21] – Equation
(1) uses the values ε = vx − a and ρ = vy − b instead of the values êx = vx + a and êy = vy + b. However,
this change is only semantic.

Similarly to [21] we observe that squaring gates can be computed using a square pair, i.e., a pair ([[a]], [[c]])
such that c = a2, instead of a multiplication triple.Squaring gates are computed using the following equation:

(vx)2 = (vx + a)2 − 2a(vy + a) + a2 = (êx)2 − 2êxa+ c (8)

Remark 2. In [21] squaring requires partially revealing only a single value, and therefore we do not have any
saving over [21] for squaring gates. Due to the similarity with regular multiplication gates, we omit further
discussion on squaring gates.

3.2 Function Dependent Offline Protocol

In this section we describe our new function dependent offline protocol and the functionality it implements.
Our offline protocol and its functionality and simulator (in the proof, see Appendix 5.1) use the SPDZ
offline protocol, functionality, and simulator. For completeness, we include the SPDZ offline functionality in
Appendix D. For clarification, we denote the SPDZ offline of [21] using “Prep” and the new offline using
“FDPrep”, i.e.,

– The protocols are denoted ΠPrep and ΠFDPrep.
– The functionalities are denoted FPrep and FFDPrep.
– The simulators are denoted SPrep and SFDPrep.

Our function dependent offline protocol is formally described in Figure 1. Our offline protocol runs the
original SPDZ offline as a sub-protocol, and implements a very similar functionality to the SPDZ offline
functionality. Our offline functionality is formally described in Figure 4. The main differences of our new
offline from the original SPDZ offline are:

1. The new offline protocol/functionality receives the circuit as input. The original SPDZ proto-
col/functionality is then run with the number of multiplication gates and input wires as in the circuit.
For each multiplication gate, the SPDZ offline also generates an additional random [[·]]-shared element.

2. Each generated multiplication triple is associated with a specific multiplication gate. Similarly, each input
wire is assigned a specific random [[·]]-shared element revealed only to Party i.

3. For each multiplication gate, the protocol/functionality also associates a random [[·]]-shared element,
called the permutation element.

4. The protocol/functionality reveals specific “offset values”, where an “offset value” is the difference be-
tween 2 random [[·]]-shared elements. The protocol runs a MACCheck on these revealed values to ensure
the adversary did not cheat on any of these values.

Notice that all the offsets can be revealed in parallel. Therefore, we added only a constant number of
communication rounds to the SPDZ preprocessing protocol.

6It might be tempting to näıvely set λz = c, but this would not work, as λz must be independently random, see
Appendix B for details. However, in Section 4 we show that by modifying Overdrive this part can be optimized.

8

Protocol ΠFDPrep

Initialize: The parties call ΠPrep (i.e., a secure implementation of FPrep) with the number of multiplica-
tion gates, squaring gates, and input wires to receive the desired number of input maskings, multiplication
triples, squaring pairs, and random [[·]]-shared elements.a
The parties then perform the following local computations in topological order on the gates of the circuit:
Input Wires: For every i ∈ [n], for each input wire of party i the parties associate an available masking
(ri, [[ri]]) (i.e., a random [[·]]-shared element revealed to party i).
Addition gates: On an addition gate with input permutation element shares [[λx]] and [[λy]] the parties
locally compute the output permutation element shares [[λz]]← [[λx]] + [[λy]].
Multiplication gates: On a multiplication gate with input permutation element shares [[λx]] and [[λy]]
the parties assign to the gate the next available multiplication triple ([[a]], [[b]], [[c]]) and the next available
[[·]]-shared random element [[r]], and locally compute:

– [[·]]-shares of the offset values [[λ̃x]]← [[a]]− [[λx]] and [[λ̃y]]← [[b]]− [[λy]].
– [[·]]-shares of the permutation element on the output wire [[λz]]← [[c]] + [[r]].

Output: After performing all the above local computation, the parties partially reveal the offset values
λ̃x, λ̃y for every multiplication gate and λ̃x for every squaring gate.
Output verification: This procedure is entered once the parties have finished the above function de-
pendent preprocessing phase.
The parties call the MACCheck protocol with the input being all the opened values so far. If MACCheck
fails, they output φ and abort, otherwise they accept the partially opened offset values.

aRecall that we require an additional [[·]]-shared element for each multiplication/squaring gate.

Fig. 1: Our new function dependent preprocessing protocol

3.3 New Online Protocol

In this section we explain our new online protocol, which is formally given in Figure 2. As explained in
the introduction, the main difference of our new online protocol from previous SPDZ online protocols,
e.g., [22, 21], is that the parties have at each wire more values, which helps them compute the output
values more efficiently. Concretely, in the SPDZ online phase only the real value on the wire is secret-shared
amongst the parties. In our protocol, another random field element, the permutation element, is secret-shared
amongst the parties. Furthermore, in our protocol the external value, i.e., the sum of the real value and the
permutation element, is revealed to all the parties.

These external values, after certain adjustment, help in computing [[·]]-shares of the output value of
multiplication gates: In order to connect the shared and revealed values on the output wire to the input
wires of the following multiplication gates, the parties use the revealed offsets from the function dependent
preprocessing, to compute the adjusted external values on the input wires. The permutation elements that
correspond to these adjusted external values match the shared values of the multiplication triples, which
allows the parties to use Equation (7). Thus, the [[·]]-shares of the product and the [[·]]-shares of the output
external value are in fact computed locally, and all that remains (to continue this process to the following
gates) is to partially reveal the output external value.

We observe that we also save communication on input wires compared to [21] because we “reuse” the
shares used for distribution of the input (ri in Input part of Figure 2) by letting ri be equal to the permu-
tation element on that wire.

The main advantage of our new protocol over the SPDZ protocol of [21] is that it requires opening only a
single value for each multiplication gate at the online phase. However, notice that in the function dependent
preprocessing we open 2 additional values, so in total we open 1.5 times more values than SPDZ. To counter
this undesirable side-effect, we present in Section 4 a more efficient version of our protocol that works by
modifying Overdrive.

9

Protocol ΠOnline

Initialize: The parties call FFDPrep (Figure 4 in Appendix 5.1) with the circuit to receive the masking
values at each of the input wires and the random elements, the Beaver triples/squaring pairs, and the
revealed offsets at each of the multiplication/squaring gates.
Input: To share his input vxi , party i takes the associated mask value (ri, [[ri]]) and does the following:

– Broadcast exi = vxi + ri.
– The parties compute [[vxi]]← exi − [[ri]].
– The parties store exi as the external value on the wire, and [[ri]] as shares of the permutation element,
λxi .

Add: On an addition gate with input wires x, y, input shared values ([[vx]], [[vy]]), input shared permuta-
tion elements ([[λx]], [[λy]]), and input external values (ex, ey), the parties locally compute the following
for the output wire z:

1. [[vz]]← [[vx]] + [[vy]]
2. [[λz]]← [[λx]] + [[λy]]a
3. ez ← ex + ey

Multiply: On a multiplication gate with input shared values ([[vx]], [[vy]])and input external values
(ex, ey), the parties take the associated multiplication triple ([[a]], [[b]], [[c]]), the partially opened offsets
λ̃x, λ̃y, and the associated random [[·]]-shared value [[r]] and perform the following steps:

1. Locally compute:
– êx ← ex + λ̃x and êy ← ey + λ̃y.
– [[vz]]← êxêy − êy[[a]]− êx[[b]] + [[c]].b
– [[λz]]← [[c]] + [[r]].a

2. Partially open [[ez]]← [[vz]] + [[λz]].

Output: This procedure is entered once the parties have finished the circuit evaluation, but still the final
output vz has not been opened.

1. The parties call the MACCheck protocol with the input being all the opened values so far in the
online phase. If MACCheck fails, they output φ and abort.c

2. The parties open vz and call MACCheck with input vz, to verify its MAC. If the check fails, they
output φ and abort, otherwise they accept vz as a valid output.

aThis computation was performed at the function dependent offline phase.
bBy Equation (7), vz holds the value vx · vy .
c
φ represents that the corrupted parties remain undetected.

Fig. 2: Our new online phase protocol

10

4 Improvement via Modification in Overdrive

In this section we explain how to improve the overall time of our protocol, by modifying Overdrive (SPDZ
offline protocol), instead of using it as a black-box. The main idea of this optimization is to (1) Avoid creating
more random elements in the offline phase than in SPDZ, and (2) Avoid partially opening more elements in
the offline phase than in SPDZ.

A first näıve attempt might be to set the permutation element of the output wire to equal c of the
multiplication triple, but we show this is insecure in Appendix B. In contrast, if the output wire is an input
to a multiplication gate, then setting the permutation element to equal a of the multiplication triple of the
following gate is secure. It turns out that by a slight tweak, this can also be extended to general arithmetic
circuits.

Furthermore, the efficiency can be even further improved by setting all a’s corresponding to the same
wire to be equal. Clearly, this cannot be done using SPDZ offline in a black-box fashion, since SPDZ offline
generates independently random multiplication triples. Therefore, it is not clear that this optimization can be
achieved for every SPDZ offline protocol. Nevertheless, we show that it is possible to achieve this optimization
securely by modifying some SPDZ offline protocols, and in particular Overdrive, which is currently the state-
of-the-art SPDZ preprocessing protocol. The formal details of creating these correlated triples are given in
Figure 3.

Protocol ΠFDTriple

Initialize: Each party Pi randomly chooses λω,i ← F for every wire ω that is an input wire of the circuita

or an output wire of a multiplication gate. Then, in topological order on the circuit, for each addition
gate with input wires x, y and output wire z, party Pi computes λz,i = λx,i + λy,i.
Multiplication: For each multiplication gate with input wires x, y

1. Each party Pi sets ai = λx,i, bi = λy,i and randomly selects b̂i ← F.
2. Every unordered pair (Pi, Pj) executes the following 2-party multiplication as in [31]:

(a) Pi sends Pj the encryption Enci(ai).b
(b) Pj responds with C(ij) = bj · Enci(ai)− Enci(e(ij)) for a random e(ij) ← F.b
(c) Pi decrypts d(ij) = Deci(C(ij)).
(d) The last two steps are repeated with b̂j to get ê(ij) and d̂(ij).

3. Each party Pi computes ci = aibi +Σi6=j(e(ji) + d(ij)), and ĉi similarly.

Authentication: Each party Pi inputs to F[[]] the shares λω,i for each wire ω that is an input wire of
the circuit or an output wire of a multiplication gate, and additionally the shares ci, b̂i, and ĉi for each
multiplication gate; for each such value the functionality outputs to the parties [[λω]], [[c]], [[b̂]], or [[ĉ]],
respectively, where λω = Σiλω,i, etc.
Sacrifice: The parties do the following for each multiplication triple pair ([[a]], [[b]], [[c]]), ([[a]], [[b̂]], [[ĉ]]):

1. Call r ← FRAND.
2. Compute and partially open [[ρ]] = r[[b]]− [[b̂]].c
3. Compute and partially open [[τ]] = r · [[c]]− [[ĉ]]− ρ · [[a]].c If τ 6= 0 then abort.

MACCheck and Output: Run MACCheck on all opened values. If the check fails then abort. Otherwise,
output all non-sacrificed computed triples ([[a]], [[b]], [[c]]).

aThe value λω = Σiλω,i is the random value used in ΠOnline for the input distribution, and therefore is later partially
revealed to the relevant party.

bFor simplicity, the details of the zero-knowledge proofs and of the noise drowning have been omitted; the complete
details of this 2-party protocol can be found in [31, Figure 7].

cNote that a and b are linear combinations of the permutation elements λω input to F[[]], and thus [[a]] and [[b]] can
be locally computed by the parties.

Fig. 3: Our modified triple generation protocol

11

The result of this optimization is that λ̃x, λ̃y in Equations (3),(4) always equal 0, implying that during
the online phase the adjusted external values ê are equal to the external values e on the gates’ input wires.
Thus, this optimization also slightly simplifies and improves our online protocol.

Additionally, depending on the circuit, in some cases the same encryptions Enc(ai) in Step 2a could be
used in several multiplications. For example, this may be possible when the same wire is input to several
gates7 (or even using the semi-homomorphic property Enc(a + a′) = Enc(a) + Enc(a′)). Reusing the same
encryption reduces both the computation and communication, and choosing which wires should play a and
b in the 2-party protocol to gain maximal reduction can be computed based solely on the circuit.

Since the only operations we perform in addition to those already necessary in Overdrive are additions
corresponding to addition gates, we do not increase communication and only slightly increase computation
in the worst case. Furthermore, due to reusing the encryptions, in many circuits our offline protocol will even
have less computation and communication then using Overdrive for generating independent triples.

Note that since we changed the triple generation, it implies that in the SPDZ sacrifice step the shares of
a and b in the multiplication step now correspond to a linear combination of shares input to F[[]]. Therefore,
we must show that this change maintains the security. Recall that the security requirements from the SPDZ
sacrifice are that (1) If the adversary cheats and sets c = ab+ e or ĉ = ab̂+ ê with e 6= 0 and/or ê 6= 0 then
the honest parties abort with overwhelming probability, and (2) If b̂ and ĉ are “sacrificed” (not used later
in the protocol) then no information is leaked on ([[a]], [[b]], [[c]]).

The proof is similar to the proof of the original SPDZ sacrifice, and given in Appendix 5.2. Two crucial
points are that (1) a and b are linear combinations of the permutation elements (which are input into
F[[]]) and thus so are tb and ρa (when ρ is treated as a constant), and that (2) b̂ is independently and
randomly chosen for each sacrifice, and therefore ρ = tb− b̂ revels nothing even if some of the b’s in different
multiplications are correlated (or even equal).

5 Correctness and Security

In this section we explain the correctness and security of our protocol.

Correctness. Assuming no party tries to cheat, the correctness follows from observing that at each wire

– The parties hold shares [[vω]] of the correct real value vω,
– The revealed external value eω corresponds to the sum of the real value vω and the (shared) permutation

element λω.

This statement is proved by induction in topological order on the wires:

– For input wires this follows from the Input part in Protocol Πonline.
– For output wires of addition gates, the claim on the real values follows from Property 1, and the claim

on the external value follows from Equation (2).
– For output wires of multiplication gates the claim on the real value follows from Equation (7) and the

claim on the external value follows immediately from the protocol.

5.1 Proof of Security

In this section we explain the security of our protocol in Section 3 and in Section 5.2 we give a brief overview
on the security of our protocol in Section 4. The security considerations of our online protocol are very
similar to those given in the proof of [21] for SPDZ online, and the security considerations of our protocol
from Section 4 are very similar to the corresponding proof in Overdrive [31]. Thus, we mainly focus on the
necessary changes.

We first prove the following security theorem for our function dependent offline,
7Note that due to the asymmetry in the multiplication, this is not possible if the value plays b in the other

multiplication. In the SPDZ offline protocol of [21] there is no asymmetry in the multiplication and therefore this can
be done more frequently.

12

Theorem 2. In the FPrep-hybrid model, Protocol ΠFDPrep securely computes FFDPrep in the presence of a
static malicious adversary corrupting up to n− 1 of the parties.

Proof Sketch.We present the simulator SFDPrep in Figure 5. For this simulator, we will assume the existence
of a simulator SPrep that

– Receives as input the number of input wires of each party nI1 , . . . , nIn , the number of multiplication
gates nM , and the number of additional random [[·]]-shared elements nR.

– Returns shares of
• The global MAC α,
• The input wire maskings TInput,1, . . . , TInput,n,
• The Beaver multiplication triples TMult,
• The additional random elements TRand.

And outputs the respective shares to the corresponding parties (with the parties also receiving the shared
value on their input wires).

I.e., the simulator SPrep basically simulates the SPDZ preprocessing functionality (see the description of the
functionality, which is taken from [21], in Appendix D). Such a simulator is presented for example in [21,
Appendix D].

The simulator SFDPrep first runs SPrep with the values required in the protocol (with nR = nM), then
associates the input maskings to the input wires and the triples and random elements to the gates, and
finally reveals the offsets as in the protocol. Security follows from observing that due to the MACCheck, the
adversary can cheat on these offset values only with negligible probability.

�

For the online phase protocol, we prove the following theorem

Theorem 3. In the FFDPrep-hybrid model, the protocol ΠOnline securely computes the function in the pres-
ence of a static malicious adversary corrupting up to n− 1 of the parties.

We first give some intuition on the security: the proof is very similar to the SPDZ protocol proof in [21]:
We present a simulator SOnline (see Figure 7) on top of the ideal functionality FOnline (see Figure 6), such
that the adversary cannot distinguish between interaction with the protocol ΠOnline and the functionality
FFDPrep and interaction with SOnline and FOnline. The ideal functionality FOnline is the same one as in [21],
presented in Figure 6 for completeness.

The similarity to the proof of [21] is not surprising, because (ignoring the change of notation as explained
in Section 2) the information seen by the adversary in our online protocol (in Section 3) is almost identical to
the information seen in the online protocol of [21] – êx and êy in our protocol correspond to ρ and ε in SPDZ,
and the offsets λ̃x and λ̃y can be seen as adding an additional random element λ and revealing the difference
a− λ (or b− λ). Clearly, from this the adversary can learn a− a′ (where a and a′ are part of two different
Beaver triples) if the same wire is input into multiple gates. However, observe that the difference a− a′ (for
the same input wire in multiple gates) can also be computed in SPDZ by ρ−ρ′ = (a−vx)−(a′−vx) = a−a′.

Conversely, observe that if a− a′ is revealed for every multiplication gate with the same input wire, then
a − λ, a′ − λ, etc., can be simulated by randomly choosing a − λ for one of these gate input wires. Thus,
simulation of our protocol can basically be seen as a simulation of SPDZ, with adding additional random
elements and simulating them.8

In fact, the proof is almost identical to the online proof in [21]; the main difference is we need to show that
the values revealed at the online phase, i.e., the external values, are uniformly random and independent of
the offsets revealed at our function dependent offline phase.9 We therefore begin by showing this observation:

8This explanation is given for intuitive purposes only – it is not fully accurate; a more precise statement is that
for every fixing of the inputs, there exists a unique choice of a, a′, λ, etc. that match the set of values seen by the
adversary (i.e., the external values and the offsets).

9Recall that compared to the original SPDZ, in our case the adversary also receives the offsets λ̃x, λ̃y, revealed at
our function dependent offline phase protocol, at each gate.

13

Functionality FFDPrep

This functionality receives the circuit. The functionality does not receive any input from the parties.
Initialize: Call FPrep with nI1 , . . . , nIn the number of input wires (of parties 1, .., n respectively), nM
being the number of multiplication gates, nS the number of square gates, , and nR = nM . The functionality
receives the input wire maskings TInput,1, . . . , TInput,n, the Beaver multiplication triples TMult, and the
additional random elements TRand.
The functionality sets BreakDown flag according to FPrep. If FPrep returned Abort, then the functionality
aborts. Otherwise, the functionality forwards the relevant shares/values of the output of FPrep to the
corresponding parties.
Computation: Assuming BreakDown is false, the functionality associates with each input of party Pi
an input masking (ri, [[ri]]) ∈ TInput,i. Then the functionality associates with each multiplication gate a
Beaver triple ([[a]], [[b]], [[c]]) ∈ TMult and a random element [[r]] ∈ TRand, and sets λc = c+ r.
Then, in topological order, on each addition gate sets with input wires x, y, and output wire z, sets
λz = λx + λy.
At the end of this process, the functionality stores for each multiplication gate with input wires x, y the
offsets λ̃x and λ̃y.
Output: If BreakDown is false, the functionality outputs the offsets λ̃x and λ̃y for every multiplicationgate
to the adversary, and waits for its reply

– If the adversary replies Abort, the functionality aborts,
– If the adversary replies Cheat, the functionality aborts, except with negligible probabilitya in which

it sets BreakDown to true, forwards the shares of the honest parties to the adversary and sends the
parties offsets λ̃x

′
, λ̃y
′

chosen by the adversary.
– If the adversary replies Proceed, the functionality forwards the offsets λ̃x, λ̃y to the parties.

If BreakDown is true, the functionality forwards the shares of the honest parties to the adversary and
sends the parties offsets λ̃x

′
, λ̃y
′

chosen by the adversary.
aThis is the probability the adversary can cheat on the MACCheck protocol. From Claim 1, this is ≤ 2

|F| .

Fig. 4: Offline phase functionality

Simulator SFDPrep

Initialize: Run a local copy of the functionality FPrep (i.e., run the simulator SPrep) with nI1 , . . . , nIn

the number of input wires in the circuit, nM the number of multiplication gates, and nR = nM , receive
all the shares of all the parties of the MAC α and of TInput,1, . . . , TInput,n, TMult, and TRand.
If the environment inputs Abort then the functionality aborts. If the environment inputs Cheat the sim-
ulator simulates cheating in the protocol: if the cheat succeeds (happens with probability ≤ 2

|F|) then
all the simulated values for the honest parties are given to the adversary and BreakDown is set to true.
Otherwise, the simulation aborts.
If the simulator did not abort, then it forwards the relevant shares/values to the corresponding parties.
Computation: Compute the offsets λ̃x and λ̃y for every input wire of a multiplication/squaring gate as
in the protocol.
Finalization: All the offsets λ̃x, λ̃y are given to the adversary and receives from the adversary λ̃x

′
, λ̃y
′

(which might be different from λ̃x, λ̃y). Then the simulator simulates the MACCheck protocol on these
offsets on behalf of all the honest parties.a If the check does not pass, then it aborts. Otherwise, it forwards
all the offsets λ̃x

′
, λ̃y
′

to the parties.
aNote that if BreakDown is already true, then the adversary knows αi of all the parties and can therefore ensure these

checks pass.

Fig. 5: The simulator for our offline phase

14

Observation 4 Given any fixing of the offset values λ̃x, λ̃y of all the gates, all the external values ez of the
output wires of multiplication gates are uniformly random in the view of the adversary.

Proof Sketch. Let ez be the external value of the output wire of a multiplication gate. We have that ez =
vz + λz = vz + c+ r where r is a fresh random. Thus, it is clear that ez is not correlated with any external
value and offset that appears before in a topological order on the circuit. By similar considerations, it is
not correlated with the external value of the output wire of any proceeding multiplication/squaring gate,
because these external values also have fresh randomness. Finally, this external value is not correlated to
any input offset λ̃x (or λ̃y) of a proceeding multiplication/squaring gate because the value of a (or b) of the
triple in the respective gate, which is hidden, is independent of this external value. �

Notice that the above arguments would not have gone through, had we näıvely set λω = c, since c is correlated
with a, b of the same gate. Thus, we could not argue that eω is independent of all previous external values
and offsets. Indeed, we show in Appendix B that setting λω = c results in an insecure protocol.

Remark 3. For our protocol in Section 4, Observation 4 is immediate since all the offset values are 0, and the
permutation elements are uniformly random. Thus, for our protocol in Section 4, our main security task is to
prove our modification to Overdrive is secure, i.e., the triples are generated correctly and no information on
the permutation elements is leaked (which implies also no information is leaked on the multiplication triples
beyond the correlations already known to be created by the protocol). This follows from the SPDZ sacrifice,
and shown in Appendix 5.2.

We now turn to prove the security of our MPC protocol. We prove the following theorem:

Theorem 5. In the FFDPrep-hybrid model, for any adversary A corrupting at most n− 1 parties, the view
of the adversary along with the outputs when running ΠOnline in the real world is indistinguishable from the
view of the adversary along with the outputs when interacting with SOnline on top of the ideal functionality
FOnline.

Proof Sketch. If during the simulation the adversary cheats this is forwarded to FOnline, and if the cheating is
successful it outputs the inputs of the honest parties, which are then used to complete the simulation. Note
that cheating at any step in the protocol implies that the adversary manages to later pass the MACCheck
test with these values, and therefore by Claim 1 the probability of success in the simulation matches the
probability in the real protocol. In the following we assume that the adversary did not attempt to cheat.

In the initialization, the simulator acts as FFDPrep. Then, for the input wires, the honest parties send the
external values, which are uniformly random in the protocol due to the input maskings, and thus match the
simulation. For addition gates, addition of scalar, and multiplication by a scalar, there is no interaction.

The interaction in multiplication and squaring gates is only a partial opening of the external value on
the output wire the gate. By Observation 4, these are uniformly random, and thus match the simulation.

In the output stage, the environment sees the value vy and the honest parties’ shares which correspond
to this value in both the protocol and the simulation. Again, if the value vy in the real protocol is incorrect,
it implies the adversary cheated and managed to pass the MACCheck, and therefore this happens with
negligible probability. Thus, the value vy in the real protocol is correct evaluation corresponding to the real
inputs of the honest parties and matches the value vy in the simulation. �

5.2 Security of Our Protocol in Section 4

In this section we give the ideas of the security proof for our protocol in Section 4. We stress that since we do
not give the full details of the offline protocol (which generally follow Overdrive [31]) we cannot give a formal
proof; this will be given in the full version. We therefore only attempt to point out the main changes needed
for the corresponding proof in [31], in particular to the proof of [31, Theorem 2]. We use the definition of
the (F[[]],FRAND)-hybrid model from [31].

15

Functionality FOnline

Initialize: The functionality waits for an input command from the environment:

– If the input is Proceed, it sets BreakDown to false and continues.
– If the input is Abort, the functionality aborts.
– If the input is Cheat, with probability 2

|F| it sets BreakDown to true. Otherwise, it proceeds as in
Abort.

Input: On command Input(vx) from Pi on its input wire, the functionality stores x in var, where var is
a fresh identifier.
Add: On command Add(var1, var2) from the parties (with var1, var2 present in memory), the function-
ality retrieves var1 and var2 and stores var1 + var2 in var3, where var3 is a fresh identifier.
Multiply: On command Multiply(var1, var2) from the parties (with var1, var2 present in memory), the
functionality retrieves var1 and var2 and stores var1 · var2 in var3, where var3 is a fresh identifier.
Output: On command Output(var) (where the output var is present in memory), the functionality for-
wards the value of var, denoted vy, to the environment.

– If BreakDown is false, the functionality waits for an input command from the environment. If the
input is Proceed, then vy is output to all the parties. Otherwise, φ is output to all the parties.

– If BreakDown is true, the functionality receives a false output v′y from the environment and outputs
it to all the parties.

Fig. 6: The ideal functionality for MPC

Theorem 6. In the (F[[]],FRAND)-hybrid model, Protocol ΠFDTriples securely computes FFDTriples against
a malicious adversary corrupting any number of parties.

Proof Idea. The proof generally follows the proof of [31, Theorem 2]. The major difference is that now
the shares of a and b are not randomly chosen in the protocol, but instead the shares of the permutation
elements (of circuit input wires and multiplication gate output wires) are randomly chosen in the protocol.
Nevertheless, since the shares of each a and b are a linear combination of these permutation elements,
and since the shares of these permutation elements are given as input to F[[]], the simulator can recover
the handles of a and b needed for the simulation from the handles of the permutation elements which are
received from the output of F[[]].

A second subtle point is that in the proof of [31, Theorem 2], ρ← F is sampled randomly by the simulator.
Thus, we must ensure that although the definition of ρ has changed in ΠFDTriples (since ρ = rb− b̂ and the
definition of b has changed), it is still uniformly random assuming b̂ and ĉ are sacrificed. This follows since
b̂ is uniformly random and different for every revealed ρ.

Acknowledgements. We would like to thank Amos Beimel for helpful discussions. Special thanks to
Ivan Damg̊ard and Marcel Keller for helping us to understand SPDZ and Overdrive better.

16

Simulator SOnline

Initialize: The simulation of the initialization procedure is performed running a local copy of FFDPrep.
Observe that the data given to the adversary is known by the simulator, and that the simulator knows α.
If the environment inputs Proceed, Cheat, or Abort to the copy of FFDPrep, the simulator does so to
FOnline and forwards the output of FOnline to the environment: If the output is Success, the simulator sets
BreakDown to true and uses the environment’s inputs as preprocessed data. If FOnline outputs NoSuccess
or the input was Abort, the simulator aborts.
Input: If BreakDown is false, honest input is performed according to the protocol, with a dummy input
(e.g., all zeros).
If BreakDown is true, FOnline outputs the inputs of honest players, which can then be used in the simu-
lation.
For inputs given by a corrupt party Pi, the simulator waits for Pi to broadcast the value e′ω, computes
v′ω = e′ω − ri, where ri is the input masking of that wire, and uses v′ω as input to FOnline. Observe that
since the adversary is malicious, it may be that v′ω 6= vω.
Add/Multiply: These procedures are performed according to the protocol. The simulator also calls the
respective procedure in FOnline.
Output: FOnline outputs vy to the simulator.

– If BreakDown is false, the simulator now has to provide the honest parties’ shares of such a value; it
already computed an output value v′y using the dummy inputs for the honest parties, so it can select
a random honest party and modify its share adding vy − v′y and modify the MAC adding (v′y − vy)α
(recall that the simulator knows α). After that, the simulator opens vy according to the protocol. If
vy passes the check, the simulator sends Proceed to FOnline. Otherwise, it sends Abort.

– If BreakDown is true, the simulator inputs the result of the simulation to FOnline.

Fig. 7: Simulator for the online phase

Functionality FFDTriples

Initialize: For every wire ω that is a circuit input wire or a multiplication gate output wire, randomly
sample a permutation element λω ← F.
In topological order on the circuit, for every addition gate with input wires x, y and output wire z, compute
λz = λx + λy.
Triples: For every multiplication gate with input wires x, y and output wire z, set the multiplication
triple of the gate to be a = λx, b = λy, and c = a · b.
Output: Give the randomly chosen permutation elements and the computed c’s as input to F[[]] and
output as it does.

Fig. 8: Functionality for generating triples correlated based on the circuit.

17

Bibliography

[1] B. Applebaum, Y. Ishai, E. Kushilevitz, and B. Waters. Encoding functions with constant online rate
or how to compress garbled circuits keys. In CRYPTO, pages 166–184, 2013.

[2] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-throughput semi-honest secure three-
party computation with an honest majority. In ACM CCS, pages 805–817, 2016.

[3] T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell, A. Nof, K. Ohara, A. Watzman, and O. Wein-
stein. Optimized honest-majority MPC for malicious adversaries - breaking the 1 billion-gate per second
barrier. In IEEE SP, pages 843–862, 2017.

[4] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Multiparty com-
putation with low communication, computation and interaction via threshold FHE. In EUROCRYPT,
pages 483–501, 2012.

[5] M. Ball, T. Malkin, and M. Rosulek. Garbling gadgets for boolean and arithmetic circuits. In ACM
CCS, pages 565–577, 2016.

[6] C. Baum, I. Damg̊ard, and C. Orlandi. Publicly auditable secure multi-party computation. In SCN,
pages 175–196. Springer, 2014.

[7] C. Baum, I. Damg̊ard, T. Toft, and R. Zakarias. Better preprocessing for secure multiparty computation.
In ACNS, pages 327–345. Springer, 2016.

[8] D. Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO, pages 420–432,
1991.

[9] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In STOC, pages
503–513,1990.

[10] A. Ben-Efraim. On multiparty garbling of arithmetic circuits. In ASIACRYPT, pages 3-33, 2018.
[11] A. Ben-Efraim, Y. Lindell, and E. Omri. Optimizing semi-honest secure multiparty computation for

the internet. In ACM CCS, pages 578–590, 2016.
[12] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for noncryptographic fault-

tolerant distributed computations. In STOC, pages 1–10, 1988.
[13] R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and multiparty

computation. In EUROCRYPT, pages 169–188, 2011.
[14] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure protocols. In STOC, pages

11–19, 1988.
[15] S. G. Choi, K.-W. Hwang, J. Katz, T. Malkin, and D. Rubenstein. Secure multi-party computation of

boolean circuits with applications to privacy in on-line marketplaces. In CT-RSA, pages 416–432, 2012.
[16] R. Cramer, I. Damgrd, D. Escudero, P. Scholl, and C. Xing. SPDZ2k: efficient MPC mod 2k for dishonest

majority. In CRYPTO, 2018.
[17] I. Damg̊ard and Y. Ishai. Constant-round multiparty computation using a black-box pseudorandom

generator. In CRYPTO, pages 378–394, 2005.
[18] I. Damg̊ard and Y. Ishai. Scalable secure multiparty computation. In CRYPTO, pages 501–520, 2006.
[19] I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally secure multiparty computation. In

CRYPTO, pages 572–590, 2007.
[20] I. Damg̊ard, Y. Ishai, and M. Krøigaard. Perfectly secure multiparty computation and the computational

overhead of cryptography. In EUROCRYPT, pages 445–465, 2010.
[21] I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat homo-

morphic encryption. In CRYPTO, pages 643–662, 2012.
[22] I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical covertly secure MPC

for dishonest majority - or: Breaking the SPDZ limits. In ESORICS, pages 1–18, 2013.
[23] I. Damg̊ard, J. B. Nielsen, M. Nielsen, and S. Ranellucci. The tinytable protocol for 2-party secure

computation, or: Gate-scrambling revisited. In CRYPTO, pages 167–187, 2017.
[24] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC, pages 218–229,

1987.

[25] S. D. Gordon, S. Ranellucci, and X. Wang. Secure computation with low communication from cross-
checking. In ASIACRYPT, pages 59–85, 2018.

[26] C. Hazay, P. Scholl, and E. Soria-Vazquez. Low cost constant round MPC combining BMR and oblivious
transfer. In, ASIACRYPT, pages 598–628, 2017.

[27] M. Hirt and J. B. Nielsen. Robust multiparty computation with linear communication complexity. In
CRYPTO, pages 463–482, 2006.

[28] M. Hirt, U. Maurer, and B. Przydatek. Efficient secure multi-party computation. In ASIACRYPT,
pages 143–161, 2000.

[29] M. Keller, E. Orsini, and P. Scholl. Mascot: faster malicious arithmetic secure computation with oblivious
transfer. In ACM CCS, pages 830–842, 2016.

[30] M. Keller, E. Orsini, D. Rotaru, P. Scholl, E. Soria-Vazquez, and S. Vivek. Faster secure multi-party
computation of aes and des using lookup tables. In ACNS, pages 229–249, 2017.

[31] M. Keller, V. Pastro, and D. Rotaru. Overdrive: making spdz great again. In EUROCRYPT, pages
158–189, 2018.

[32] J. Kilian. Basing cryptography on oblivious transfer. In STOC, pages 20–31, 1988.

[33] E. Larraia, E. Orsini, and N. P. Smart. Dishonest majority multi-party computation for binary circuits.
In CRYPTO, pages 495–512, 2014.

[34] Y. Lindell, B. Pinkas, N. P. Smart, and A. Yanai. Efficient constant round multi-party computation
combining BMR and SPDZ. In CRYPTO, pages 319–338, 2015.

[35] T. Malkin, V. Pastero, and a. shelat. An algebraic approach to garbling. Unpublished manuscript.

[36] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority. In
STOC, pages 73–85, 1989.

[37] G. Spini and S. Fehr. Cheater detection in SPDZ multiparty computation. In ICITS, pages 151–176,
2016.

[38] X. Wang, S. Ranellucci, and J. Katz. Global-scale secure multiparty computation. In ACM CCS, pages
39–56,2017.

[39] A. C. Yao. Protocols for secure computations. In FOCS, pages 160–164, 1982.

19

A Addition and Multiplication by a Public Scalar

In [22, 21] there is no explicit discussion on addition and multiplication by a constant at the online phase.
Apparently, this is due to the simplicity of these operations there, i.e., this is easily achieved there by Property
1. However, in our protocol this requires slightly more care, because these operations also affect the external
value, and possibly also the permutation element. Therefore, for completeness, we next elaborate on these
operations for our protocol in Section 3. Our protocol in Section 4 also requires some small modifications to
handle these operations – due to the similarity, these are omitted.

Formally, we treat these operations as unary gates, with input wire ω and output wire ω′, as follows:

1. To add a public constant c, at the online phase the parties locally compute
– [[vω′]]← [[vω]] + c using Property 1, and
– eω′ ← eω + c.

Note that there is no need to modify the permutation element, i.e., λω′ = λω, since eω′ = eω + c =
vω+λω+c = vω′ +λω′ as required. This implies that addition by a public constant requires no modification
at the offline phase.

2. To multiply by a public constant c, at the online phase the parties locally compute
– [[vω′]]← c · [[vω]] using Property 1, and
– eω′ ← c · eω.

Note that in this case, the parties also need to modify [[λω′]] ← c · [[λω]] at the offline phase, because
eω′ = c · eω = c · (vω + λω) = c · vω + c · λω = vω′ + c · λω should be equal to vω′ + λω′ .

Remark 4. We note that at these specific gates, i.e., addition of a public constant and multiplication by a
public constant, our online protocol requires slightly more operations than SPDZ, because in our protocol 2
values are modified whereas in SPDZ only a single value is modified. While addition is usually considered
fast, multiplication is considerably slower. Thus, if the circuit contains many multiplications by a public
constant in comparison with the number of regular multiplication gates, our online protocol might not
be computationally superior to SPDZ. However, these operations require no communication, so our online
protocol is always significantly superior in terms of communication.

B The Problem with Setting λω = c

We now show, using a simple example, that näıvely setting λω = c in output wires of multiplication/squaring
gates would be insecure. The example we chose is for simplicity and is not general, but a more general example
can also be constructed. The example includes a squaring gate, the details of which were omitted from the
main text – in the online phase, a squaring gate is computed using a square pair via Equation 8: The parties
locally compute the output wire shares [[vz]] ← (êx)2 − 2 · êx[[a]] + [[c]] (where z is the output wire and x
the input wire), and then set [[ez]] = [[vz]] + [[λz]] and partially reveal [[ez]] as usual.

Example 1. We assume the circuit contains a square gate with input wire x and output wire z, which is not
an output wire of the circuit. We further assume that the adversary has partial information on the data of
the wire x and knows the real value is a bit, i.e., either 0 or 1.10 Notice that from the squaring gate part
of the online protocol and from Equation 5, the adversary learns êx = ex + λ̃x = vx + a and ez = vz + λz.
Since now λz = c = a2, it implies the adversary learns vx + a and vz + λz = v2

x + a2 = vx + a2 (recall that
we assume vx ∈ {0, 1}, so v2

x = vx), and compute (vx + a2)− (vx + a) = a2 − a. Therefore, unless a ∈ {0, 1},
the adversary can deduce a from a2 − a and vx + a and thus learn vx.

In the case that λz = c + r, the above method does not work, since the extra randomness introduced
ensures the values êx and ez are independently random, as required in the proof.

10While this is not the standard scenario in secure computation, also in this case a secure protocol should not allow
the adversary to learn more than it already knows.

20

C MACCheck Protocol

For the protocol MACCheck, we assume the parties have access to an ideal commitment functionality
FCommit, which allows a party to commit to a field element without revealing any information on it, and
later open (only) this commited value to all the parties. We also assume the parties have access to an ideal
random functionality FRAND, which allows the parties to jointly sample uniformly random elements r ∈ F.
The MACCheck protocol is formally presented in Figure 9.

Protocol MACCheck

CheckOutput(a1, . . . , at):

1. The parties sample random elements r1, . . . , rt ∈ Ft using FRAND.
2. Each party i computes the linear combination σi = Σt

j=1rj(γ(aj)i − αi · aj).
3. The parties commit to their values of σi using FCommit.
4. The committed values are opened to all the parties using FCommit.
5. The protocol outputs Proceed if Σn

i=1σi = 0, otherwise outputs Abort.

Fig. 9: Protocol to check validity of MACs

As stated in Claim 1, if the adversary tries to cheat, the protocol outputs Proceed with probability ≤ 2
|F| ,

which is negligible in the security parameter. See [21] for the proof.

D SPDZ Preprocessing Functionality

For completeness, we provide here the SPDZ preprocessing functionality given in [21] (with slight modifica-
tions).

21

Functionality FPrep

Initialize: On input Start from honest parties and adversary, the functionality sets the internal flag
BreakDownto false and then performs the following:

1. For each corrupted player i ∈ A, the functionality accepts shares αi from the adversary, and it samples
at random αi for each honest party i /∈ A. The functionality sets α = Σn

i=1αi.
2. The functionality waits for command Abort, Proceed or Cheat from the adversary.
3. If received Proceed, the functionality outputs αi to party i.
4. Otherwise, and if the functionality did not abort in Cheat, it outputs adversary’s contribution α′i to

party i.

Computation: On input DataGen from all honest players and adversary, if the functionality received
Proceed in initialize (or if BreakDown is true) it executes the data generation procedures specified in
Figure 11:

– Input Production is executed nIi times for each party i,
– Multiplication Triple is executed nM times,
– Square Pair is executed nS times,
– Random Element is executed nR times.

Cheat: The functionality chooses to do either one of the following:

– It sends, with probability ≤ 2
|F| , Success to the adversary and sets the internal flag BreakDown to

true.
– Otherwise it sends NoSuccess to the adversary and players, and goes to Abort.

Abort: The functionality outputs φ to all parties.

Fig. 10: The SPDZ preprocessing functionality

22

Functionality FPrep, Continuation

Macro Angle(a1, . . . ,an; ∆γ): This macro is run by the following functions to generate a [[·]]-shared
elements. Denote a = Σn

i=1; the functionality does the following:

1. Receives {γ(a)i}i∈A from the adversary.
2. Sets γ(a) = a · α+∆γ and samples {γ(a)i}i/∈A at random, subject to γ(a) = Σn

i=1γ(a)i.
3. Returns (γ(a)1, . . . , γ(a)n).

In all the following procedures, the output is assuming BreakDown is false. If BreakDown is true, then the
outputs sent to the parties are set by the adversary.
Input Production: to generate an input masking, the functionality performs the following:

1. If BreakDown is true and the input is of an honest party, chooses a random value r ∈ F. Otherwise,
receive the value r from the adversary.

2. Receives from the adversary corrupted shares (r)i for i ∈ A, and an offset ∆γ for the MAC value.
3. Samples (r)i for i /∈ A randomly, under the constraint that r = Σn

i=1(r)i.
4. Runs macro Angle((r)1, . . . , (r)n;∆γ).
5. Outputs ((r)i, γ(r)i) to party i for each i ∈ [n] and r to the party of the input wire.

Multiplication Triple: to generate a Beaver multiplication triple, the functionality performs the follow-
ing:

1. Receives from the adversary corrupted shares (a)i, (b)i, and (c)i for i ∈ A and offsets ∆γ,a,∆γ,b, and
∆γ,c.

2. Uniformly samples (a)i, (b)i, and (c)i for i /∈ A, under the constraint that Σn
i=1ci = (Σn

i=1ai)·(Σn
i=1bi).

3. Runs macro Angle((a)1, . . . , (a)n; ∆γ,a), macro Angle((b)1, . . . , (b)n; ∆γ,b), and macro Angle((c)1,
. . . , (c)n ;∆γ,c).

4. Outputs ((a)i, γ(a)i), ((b)i, γ(b)i), and ((c)i, γ(c)i) to party i for each i ∈ [n].

Square Pair: to generate a square pair, the functionality performs the following:

1. Receives from the adversary corrupted shares (a)i and (c)i for i ∈ A and offsets ∆γ,a,∆γ,c.
2. Uniformly samples (a)i and (c)i for i /∈ A, under the constraint that Σn

i=1ci = (Σn
i=1ai)2.

3. Runs macro Angle((a)1, . . . , (a)n; ∆γ,a) and macro Angle((c)1, . . . , (c)n; ∆γ,c).
4. Outputs ((a)i, γ(a)i) and ((c)i, γ(c)i) to party i for each i ∈ [n].

Random Element: to generate a random [[·]]-shared element, the functionality performs the following:

1. Receives from the adversary corrupted shares (r)i for i ∈ A and an offset ∆γ ,
2. Uniformly samples (r)i for i /∈ A,
3. Runs macro Angle((r)1, . . . , (r)n;∆γ).
4. Outputs ((r)i, γ(r)i) to party i for each i ∈ [n].

Fig. 11: The SPDZ preprocessing functionality auxilary functions

23

	 Turbospeedz: Double Your Online SPDZ! Improving SPDZ using Function Dependent Preprocessing

