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Abstract. Division property is a new cryptanalysis method introduced
by Todo at Eurocrypt’15 that proves to be very efficient on block ciphers
and stream ciphers. It can be viewed as a generalization or a more pre-
cise version of integral cryptanalysis, that allows to take into account bit
properties. However, it is very cumbersome to study the propagation of a
given division property through the layers of a block cipher. Fortunately,
computer-aided techniques can be used to this end and many new results
have been found. Nonetheless, we claim that the previous techniques do
not consider the full search space. Indeed, we show that even if the previ-
ous techniques fail to find a distinguisher based on the division property
over a given function E, we can find a distinguisher over a linearly equiv-
alent function, i.e. over Lout ◦ E ◦ Lin with Lout and Lin being linear
mappings, and such distinguisher is still relevant. We first show that the
representation of the block cipher heavily influences the propagation of
the division property, and exploiting this, we give an algorithm to effi-
ciently search for such linear mappings Lout and Lin. As a result, we are
able to exhibit a new distinguisher over 10 rounds of RECTANGLE, while
the previous best known distinguisher was over 9 rounds. Our algorithm
also allows us to rule out such distinguisher over strictly more than 9
rounds of PRESENT, which is the highest known number of rounds on
which we can build an integral distinguisher. Finally, we also give some
insight about the construction of an S-box to strengthen a block cipher
against our technique. As such, we exhibit some variant of RECTANGLE
and PRESENT, on which we improve the maximum number of rounds we
can distinguish by two.
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1 Introduction

Division property is a distinguishing property which was first presented by Todo
at Eurocrypt’15 [14]. This cryptanalysis technique quickly became an hot topic
in the community, especially since it lead to the first theoretical attack against
full MISTY1. This property can be seen as a generalization of integral and
higher-order differential distinguishers. At Crypto’16, Boura et al. [4] provided a
simpler formulation of the division property, especially for the construction of the
division trails of S-boxes. Recently, division property was used to improve cube
attacks and allowed to improve the best known results against several stream
ciphers including ACORN, Trivium, Grain-128a and Kreyvium [16].

Automatic tools. Studying the propagation of an initial division property
through a block cipher is a challenging task which requires to be computer-aided.
At Asiacrypt’16, Xiang et al. [17] showed how to model the division property
propagation of the three basic operations copy, AND and XOR, as well as the
propagation through an S-box, by a system of linear inequalities. Hence they
built MILP models for several block ciphers which they efficiently solved using
a third-party MILP solver. As a results they obtained the best known division
property distinguishers on SIMON, SIMECK, PRESENT and RECTANGLE.
In [19], Zhang et al. gave a new way to model the propagation of division prop-
erty through linear diffusion layers by the smallest amount of inequalities which
are generated from linear combinations of row vectors of the diffusion matrix.
Using this new description, they found the best known distinguishers for both
PRINCE and MIDORI. Finally, at Asiacrypt’17, Sun et al. [11] presented two
new automatic search tools: one dedicated to ARX ciphers based on a SAT
solver and one dedicated to word-based division property based on SMT (Sat-
isfiability Modulo Theories) solver. Those tools are much faster than previous
MILP-based works and were able to study primitives with large internal state
such as CLEFIA, WHIRLPOOL and RIJNDAEL.

Our contributions. In this paper we show that previous automatic search tools
dedicated to division property are incomplete in the sense they do not exhaust
all the search space. More precisely, propagating an initial division property
through a block cipher requires to decompose the block cipher into small com-
ponents such as AND, XOR, S-boxes, . . . for which we can compute division
property propagation. However, contrary to differential and linear cryptanaly-
sis, the result highly depends on how the block cipher is split. Indeed, linearly
equivalent Sboxes do not change the propagation of differentials, while it is not
the case for the division property. For instance, in Section 3.1 we give two S-
boxes S1 and S2 such that S2 = S1 ◦L, where L is linear, such that propagating
division property through L then S1 leads to a completely different result than
propagating it directly through S2. Hence, given an S-box based block cipher, it
is not clear which representation should be studied since replacing any internal
S-box with a linearly equivalent one could possibly lead to a different result.
The main issue is that the number of distinguishers is much more higher than
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one can be thinking and looking efficiently for the best distinguisher boils down
efficiently finding the best decomposition.

In this paper we solved a sub-case of this problem. Mounting an attack against
a block cipher E most often requires to split E in three as E = E2 ◦E1 ◦E0 and
to find a distinguisher on E1. Usually, E0, E1 and E2 are round-reduced versions
of E. However it is not the only way to split E and, for any linear operations
Lin and Lout we can split E as:

E = (E2 ◦ L−1out) ◦ (Lout ◦ E1 ◦ Lin) ◦ (L−1in ◦ E0).

This kind of carving was for instance used in [6] by Derbez et al. to provide
several new meet-in-the-middle attacks against AES. Hence, one of the main
problem we solved in this paper is to answer the question of how to find Lin
and Lout such that there exists a division property through Lout ◦ E1 ◦ Lin.
Note that finding a distinguisher over Lout ◦E1 ◦Lin still allow to mount a key-
recovery attack. Indeed, the attacker starts with a set X respecting a given initial
division property (according to the distinguisher over Lout◦E1◦Lin) and compute
X′ = E−10 ◦Lin(X) by guessing part of the key. He then ask for the encryption of
X′ through E to get a set of ciphertexts Y, compute Y′ = Lout ◦ E−12 (Y) using
some other key guesses and check whether Y′ has some balanced bits (according
to the distinguisher over Lout ◦E1 ◦Lin). If so, then the key guesses are supposed
to be correct.

In a nutshell, we first show how to highly reduce the number of candidates
for both Lin and Lout, and then present how to efficiently check the remaining
candidates without performing a complete search on each of them. As a result we
improve the best known division property distinguisher against RECTANGLE by
one round and show that the previous best known distinguisher against PRESENT
cannot be improved with this technique.

The second result presented in this paper concerns the design of S-boxes
that would offer maximal resistance against division property. In [4], Boura et
al. provided new insights into the division property, presenting a new approach to
it. In particular they shown several interesting results concerning resistance of S-
box-based block ciphers against division property. They also gave the intuition
that an m-bit S-box S such that λ · S(x) has degree m − 1 for all non-zero
λ ∈ Fm2 should offer maximal resistance against division property. However,
one may want to design an S-box that does not satisfy this degree condition, in
particular for lightweight primitives. We describe the methodology we followed to
strengthen both RECTANGLE and PRESENT against division property. Our first
idea was to search for S-boxes leading to perfect division property propagation
tables, i.e. 14 transitions k → {1000, 0100, 0010, 0001}. Unfortunately, for both
RECTANGLE and PRESENT, it was not possible to generate such a table from
linearly equivalent S-boxes. However we found many almost perfect tables i.e.
with 13 transitions k → {1000, 0100, 0010, 0001} instead of 14. Trying all of
them allowed us to find a linearly equivalent S-box for RECTANGLE such that
there is no division property against 9 rounds (while with the original S-box
we found a division property against 10 rounds) as well as a linearly equivalent
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S-box for PRESENT such that there is no division property against 8 rounds.
Furthermore, on non-table-based implementations, the extra cost of the new
S-boxes is only 2 extra XORs per S-box for PRESENT and 5 extra XORs per
S-box for RECTANGLE. Finally, for both RECTANGLE and PRESENT, our new
search process find distinguishers against one extra round than classical search,
highlighting again its interest.

2 Background

2.1 Notations

We will use the following notations in the paper.

– We denote x = (x0, . . . , xn−1) ∈ Fn2 an n-bit vector over F2, where x0 is the
least significant bit. We will often write x0x1 . . . xn−1 instead of (x0, . . . , xn−1).

– ei denotes the i-th unit vector, and Em denotes the set of all unit vectors of
size m.

– w(x) denotes the hamming weight of x ∈ Fn2 .
– For x,u ∈ Fn2 , we denote by xu the bit product

xu =

n−1∏
i=0

xui
i .

– For x,y ∈ Fn2 , we define x � y if xi ≥ yi for all i, where xi and yi are
considered as integers.

– Pm the set of all permutations over m elements.
– GLm(F2) the set of all invertible matrices of size m×m over F2.

2.2 Division Property and Division Trails

The division property was introduced at EUROCRYPT’15 [14] by Todo as a
generalization of integral cryptanalysis, and later at FSE’16 [15], Todo and Morii
defined a more refined version of it, called bit-based division property. Here, we
only consider the bit-based division property, and will often refer to it directly
as division property. As it is not relevant for this paper, we refer the reader to
the original articles for further details about the differences.

Definition 1 (Bit-based Division Property [15]). A set X ⊂ Fn2 has the
division property Dn

K, where K ⊂ Fn2 , if for all u ∈ Fn2 , we have

⊕
x∈X

xu =

{
unknown if there is k ∈ K s.t. u � k

0 otherwise

Note that if there are some vectors k,k′ ∈ K such that k � k′, then k can be
removed from K because it is redundant.

A common way to study division property for a block cipher is to study the
division trails of this cipher, which show the propagation of the division property
through the operations composing the block cipher.
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Definition 2 (Division Trails [17]). Let f denote the round function of an
iterated block cipher. Assume the input set to the block cipher has initial divi-
sion property Dn

{k}, and denote the division property after propagating through
i rounds of the block cipher (i.e. i applications of f) by Dn

Ki
. Thus, we have the

following chain of division property propagations :

{k} ∆= K0 f−→ K1 f−→ K2 f−→ . . .
f−→ Kr.

Moreover, for any vector ki in Ki(i ≥ 1), there must exist a vector ki−1 in Ki−1
such that ki−1 can propagate to ki by the division property propagation rules.
Furthermore, for (k0,k1, . . . ,kr) ∈ K0×K1× · · · ×Kr, if ki−1 can propagate to
ki for all i ∈ {1, 2, . . . , r}, we call (k0,k1, . . . ,kr) an r-round division trail.

In the rest of the paper, we will denote k f→ k′ if the vector k ∈ Fn2 can propagate
to a vector k′ ∈ Fn2 through the function f . In the same way, k f→ K denotes
that for all k′ ∈ K, we have k

f→ k′.
Given the set Kr resulting of the propagation of an initial division property

Dn
{k}, we can find whether Dn

{k} allows to build an integral distinguisher using
the following proposition.

Proposition 1 ([17]). Assume X is a set with division property Dn
K, then X

does not have integral property if and only if K contains all the n unit vectors.
As a result, if ei 6∈ K, then the i-th bit is balanced.

Proof. Suppose that the vector ei belongs to K. Then according to the definition
of the division property, this would mean that the result of the sum⊕

x∈X
xei =

⊕
x∈X

xi

is unknown since ei � ei and ei ∈ K, i.e. the i-th bit is not balanced. On
the other hand, if we suppose that the i-th bit is balanced, then we cannot
have ei ∈ K as it would mean that the i-th bit is in an unknown state, which
contradicts the definition of the division property.

For example, we can make a parallel with the well known Square attack on
AES [5]. In this attack, the set of plaintexts has one byte taking all possible
values while the others are constant. In term of division property, this would
translate to the set of plaintexts having a division property D128

k , where

k = 11111111︸ ︷︷ ︸
8 bits

0 . . . 0.

Then, it is shown in [5] that after 3 rounds of AES, such a set of plaintexts
has all its bits balanced. According to Proposition 1, this would mean that the
resulting set has a division property D128

K , where K does not contain any unit
vector.
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Hence, to study whether we can build an integral distinguisher over a block
cipher from a given initial division propertyK0, we need to propagateK0 through
the different operations of the block cipher. Fortunately, propagation rules were
defined in [15] for most basic operations in a block cipher, namely Copy, AND
and XOR. However, for SPN block ciphers, there are two main components that,
while they can be described using only these operations, should have their own
way to propagate the division property vectors. These components are linear
layers and S-boxes. For linear layers, while [10] proposed to use only the Copy
and XOR operations to propagate division property vectors, it has been shown
in [19] that this is actually not the right way to propagate through linear layers,
as it looses some information and is not able to recover all possible integral
distinguishers. We thus refer the reader to [19] for the correct way to propagate
division property vectors through a given linear layer.

For S-boxes, again using only the basic operations might results in a loss
of information. Hence, [17] proposed an algorithm of complexity O

(
22m

)
to

compute all possible pairs k S→ k′ for a given m-bit S-box S.

2.3 Searching for division property based integral distinguishers

While Todo and Morii proposed a way to search for integral distinguishers based
on the division property [15], its complexity is quite hard to estimate, and the
authors gave an upper bound of 2n, where n is the block size of the block cipher.
In practice, they said that their algorithm is not suitable for block ciphers with
block size over 32 bits, and thus especially for standard block size of 64 and
128 bits. However, a lot of work has been done towards efficiently searching
such distinguishers, based on either MILP [9, 17, 19] or SAT/SMT solver [7, 12].
We refer the reader to these papers for further details about the modeling, and
will only give a brief description of the idea behind it when considering MILP
modeling. Note that using SAT/SMT solvers is very similar to using MILP, and
mostly differs in efficiency when considering different primitives. For example
searching division property based integral distinguishers on ARX ciphers seems
to be easier when using SAT solvers.

First we briefly recall what is MILP.

Definition 3. An MILP problem is formulated as follows. Given a matrix A ∈
Rm×n, b ∈ Rm and c ∈ Rn, find a vector x ∈ Zk × Rn−k with Ax ≤ b which
minimize (or maximize) the value of

f(x) = c1x1 + c2x2 + · · ·+ cnxn.

Here, f is called the objective function of the MILP problem.

Modelizing division property propagation with MILP. The idea of using
MILP to search for integral distinguishers is first to modelize the set of all
possible division trails by an MILP problem. That is, building a set of linear
inequalities such that [17] :
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1. each division trail must satisfy all linear inequalities in the linear equality
system. That is, each division trail corresponds to a feasible solution of the
linear inequality system ;

2. each feasible solution of the linear inequality system corresponds to a division
trail. That is, the set of all feasible solutions of the linear inequality system
does not contain any impossible division trail.

We can thus build an MILP model satisfying the previous conditions using
[17] for basic operations and S-boxes, [19] for linear layers and [9] for ARX block
ciphers. Note that this step is not totally free.

For S-boxes, we first need to compute the set of all possible propagations
through a given m-bit S-box, which has complexity O

(
22m

)
. Then, we need to

compute a set of linear inequalities which represents these possible propagations,
according to the two previous rules. To do so, [17] proposed to first use the
function inequality_generator() from the Sagemath [13] software to get
such a set of inequalities, and then use a greedy algorithm to reduce their number.
While this works for small S-boxes (e.g. 4-bit S-boxes), this approach fails when
considering bigger S-boxes (e.g. 8-bit S-boxes) as the complexity to generate the
initial set of inequalities is too high. However, Abdelkhalek et al. showed a new
method in [1] to tackle this problem, and thus proposed a way to modelize 8-bit
S-boxes in MILP. Note that while this allows us to modelize 8-bit S-boxes, it
often leads to a lot of inequalities, thus the resulting model can be quite huge
and this can result in a high solving time.

For linear layers, Zhang et al. showed [19] showed that the previous method
[10] proposed to modelize linear layers does not actually fulfill the above rules,
as it introduces some impossible propagations, resulting in some integral dis-
tinguishers being omitted. Hence, they proposed a new way to modelize such
layers, and proved that their way was optimal, i.e. removing any one inequality
will result in some fraudulent propagations. To modelize a given linear layer L,
the number of inequalities generated is given by n(2s − 1), where s is the size
of the smallest square matrix M such that M is the representation of L over
the field F2n and M is binary. For example, the matrix used in SKINNY64 [2]
is a binary matrix of size 4 over F24 , thus needs 4(24 − 1) = 60 inequalities.
However, if we take the matrix used in AES, which is described as a non-binary
matrix of size 4 over F28 , the amount of inequalities is much higher. Indeed, since
the multiplication over F28 corresponds to a linear operation over F8

2, the matrix
used in AES can be represented as a matrix of size 32 over F2, which is obviously
binary. This is the smallest way to represent this operation with a binary matrix,
and thus, it would need 232 − 1 inequalities to modelize only one propagation
through this linear layer, which would result in a very huge model which cannot
be solved in practical time. Hence, not all linear layers can be modelized in an
exact way, and complex linear layers may lead to a model which is much harder
to solve. Note however that if the linear layer is only a permutation, such as in
PRESENT [3] or RECTANGLE [18], then the above formula does not apply, as we
can just reorder the different variables, and thus we can always modelize such
kind of linear layers.
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Searching for a distinguisher. As a result, we have a set of variables {kji , i ∈
{0, . . . , n− 1}, j ∈ {0, . . . , r}} such that, for a given solution of the MILP prob-
lem, the corresponding values of these variables gives a division trail (k0,k1, . . . ,kr)
with ki = (ki0, . . . ,k

i
n−1). In particular, this allows us to see whether each unit

vector belongs to Kr. Indeed, once we have the MILP model for r rounds of a
given block cipher, we can set the objective function to kr0 + · · · + krn−1. Then
we set the initial division property using equality constraints, i.e. if the initial
division property is a ∈ Fn2 , we add the constraints

∀i ∈ {0, . . . , n− 1},k0
i = ai,

and then ask the solver (e.g. Gurobi [8]) to solve this problem by minimizing
the value of the objective function. If the solver finds a solution of value 1, this
means that there is a vector kr of weight 1 (i.e. a unit vector) that belongs to
Kr. We can then add a linear constraint to remove this vector kr from the set of
solutions, and solve the problem again. Once there is no more solution of value
1, we know that we found all unit vectors belonging to Kr, hence we can easily
see whether or not there is some balanced bits using Proposition 1. Note that
we do not need to stop after finding all solutions of value 1. Indeed, we can keep
going until the problem does not have any remaining solution, and we will thus
have computed the whole Kr set. This will be useful later in the paper, and will
be accompanied with a bit more details.

3 Extended Division Property Using Linear Mappings

3.1 First observations

Several integral distinguishers were found using the previously described method.
However, we claim that this method does not actually search through the whole
space of all possible integral distinguishers based on the division property. In-
deed, we show that for a given block cipher E, we can instead consider Lout ◦
E ◦ Lin, where both Lout and Lin are linear mappings, and that this results in
integral distinguishers previously unknown. We now explain the main idea be-
hind using Lout and Lin. For Lout, the idea is to see that while all bits could be
unbalanced after E, it might occur however that a linear combination of some
bits is balanced. This was already mentioned by Todo and Morii in [15] when
they introduced the division property using three subsets. However, such kind of
division property has yet to have an efficient search algorithm.

For Lin, the idea is very close. The initial division property k0 basically sets
some constant bits. That is, if the set X has division property Dn

k0 , then through
all the set, each bit i such that k0

i = 0 has a constant value, and if k0
i = 1, then

the bit i takes all possible values through the set. For example, the following set
has division property D4

0011

X = {0100, 0101, 0110, 0111}.
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Hence, the idea behind Lin is to get a set such that a linear combination of some
bits is constant, while those bits are not necessarily constant.

Finally, we can see than considering Lout ◦E ◦Lin instead of E is still mean-
ingful. Classically, when an attacker use a distinguisher to mount an attack, he
basically splits the cipher E into E = E2 ◦E1 ◦E0, where he has a distinguisher
over E1. In that case, E1 can be seen as a reduced version of E, containing only
a certain number of rounds of E. However, we could also rewrite E as

E = (E2 ◦ L−1out) ◦ (Lout ◦ E1 ◦ Lin) ◦ (L−1in ◦ E0).

In that case, the attacker would search a distinguisher over Lout ◦E1 ◦Lin, and
could still use it to mount an attack. Note that this idea was already successfully
used in the past, for example in [6].

So considering E′ = Lout ◦ E ◦ Lin instead of E could lead to some new
integral distinguishers. In the following, we will consider that E is an SPN block
cipher, i.e. the round function of E is f = L ◦ S, where L is linear and S is
the parallel application of an S-box S over the state. Note that we can omit
L in the last round. Now suppose that we want to search if E′ has an integral
distinguisher based on the division property using MILP. Using the classic way
to do this, we would modelize the following propagation chain

K0
Lin−→ K̂0 S→ K̃0 L→ K1 S→ . . .

S→ K̂r Lout−→ Kr.

Basically, we modelize independently the propagation through the linear layers
and the S-box layers, especially for Lin and the first S-box layer, and for Lout
and the last S-box layer. However, this might actually not be the best way to
modelize this, and we will see this through an example.

Merging linear mappings and S-boxes Let S1 and S2 be two S-boxes over
F4
2 such that

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1(x) 12 13 11 9 6 0 5 10 3 2 8 4 15 7 14 1
S2(x) 12 11 14 15 1 7 13 9 10 0 2 4 3 8 5 6

where S2 is obtained as S2 = S1 ◦ L with

L =


0 0 1 1
1 1 1 1
0 1 1 1
0 1 1 0

 .
We can use the algorithm from [17] to compute all possible propagations

through S1, S2 and L. Using this, if we look at the propagation of x = 0111
through L and S1 independently, we have the following trail

0111
L−→ {1101, 1011} S1−→ {0100, 0010, 0001} = K.
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However, if we now consider L and S1 together, i.e. by looking at the propagation
of 0111 through S2 = S1 ◦ L, then we have the trail

0111
S2−→ {1100, 1001, 0110, 0011} = K′.

As we can see, the resulting division property set is completely different, yet
comes from the same initial division property, and goes through the same func-
tion. Moreover, this is not just a local change, and not only K′ is a set which
was not reachable through only S1, but the whole propagation tables of S1 and
S2 are different, as we can see in Figure 1.

Propagations of S1

0000 0000
1000 1000, 0100, 0010, 0001
0100 1000, 0100, 0010, 0001
0010 1000, 0100, 0010, 0001
0001 1000, 0100, 0010, 0001
1100 1000, 0100, 0010, 0001
1010 1000, 0100, 0010, 0001
1001 0100, 0010, 0001
0110 0100, 0010, 0001
0101 0100, 0010, 0001
0011 0100, 0010, 0001
1110 0100, 0001
1101 0100, 0010, 0001
1011 0100, 0010, 0001
0111 0100, 0010, 0001
1111 1111

Propagations of S2

0000 0000
1000 1000, 0100, 0010, 0001
0100 0100, 0010, 0001
0010 1000, 0100, 0010, 0001
0001 1000, 0100, 0010, 0001
1100 0100, 0010, 0001
1010 1000, 0010, 0101
1001 1000, 0100, 0010, 0001
0110 0100, 0010, 0001
0101 0100, 0001, 1010
0011 0010, 1100, 1001, 0101
1110 0010, 1100, 0101
1101 0100, 0001, 1010
1011 1100, 1010, 1001, 0110, 0011
0111 1100, 1001, 0110, 0011
1111 1111

Fig. 1: Propagation table of S1 and S2. Vectors of weight 2 are in bold.

This clearly shows that considering both the S-box and the linear mapping to-
gether gives way more information about the propagation of the division prop-
erty. Note that we give this example by putting a linear mapping at the input of
the S-box, but similar observations can be made when considering S and L ◦ S
for some S-box S and linear mapping L.

Moreover, not only this gives more information about the propagation, but
this could, and will, actually help us to find new distinguishers when considering
Lout ◦E ◦Lin instead of E. Before giving an intuition about why this is the case,
we first give the following proposition.

Proposition 2. Let S be an invertible function over Fn2 of degree d, and k
S→ K

be a division property propagation through S. Then :
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1. If k = 00 . . . 0, then K = {00 . . . 0}.
2. If k = 11 . . . 1, then K = {11 . . . 1}.
3. Otherwise, then ∀k′ ∈ K, w(k′) ≤ w(k).

Proof. 1. If a set X has division property k = 00 . . . 0, then this means that
all bits are constant through the set, i.e. X contains a single vector. Hence,
S(X) also only contains one vector, thus all bits are still constant and the
resulting division property set is K = {00 . . . 0}.

2. If a set X has division property k = 11 . . . 1, then this means that all bits
takes all possibles values through the set, i.e. X = Fn2 . Hence, since S is a
bijection, S(X) = Fn2 , and thus the resulting division property set is K =
{11 . . . 1}.

3. Otherwise, then from [14] :
– If w(k) = d, then we directly have w(k′) ≤ w(k) for any k′ ∈ K.
– Otherwise, then w(k′) ≤

⌈
w(k)
d

⌉
≤ w(k).

We can see that, except when we have either the full zero or the full one
vector, if we consider a division property chain K0 → · · · → Kr of a block
cipher, then the weight of the vectors in each Ki can only decrease (or remain
constant, but in practice, this is rarely the case, see Figure 1). Recall that if the
set Kr contains all unit vectors (i.e. of weight 1), then no integral distinguisher
can be built from it. Thus, intuitively, if we want to find an integral distinguisher,
we would like to have vectors of relatively high weight in each set Ki as long as
possible.

Now consider a block cipher E such that the first layer of S-boxes contains
only S1 as defined previously. Then from the propagation table in Figure 1, we
can see that the output of each S-box will always be of weight 1 (except for 0000
and 1111). So after the first round, if the weight at the input of any S-box is
different from 0 and 4, then we will already only have vectors of weight 1 at the
output of the S-box. However, if we now consider E◦M, whereM = (M, . . . ,M)
apply the linear mappingM on all S-box’s input before the first round, then this
is the same as considering the first layer of S-boxes to be built as (S2, . . . , S2).
This time, if one carefully chooses the input division property of the S-box, he
can now only have vectors of weight 2, which could result in a better propagation
through the remaining layers of the cipher.

Clearly, considering Lout ◦E ◦Lin instead of E, and considering the propaga-
tion of the division property vectors throughM ◦S (or S ◦M) as a whole instead
of independently through M and S, could result in some better distinguishers
than previously known, and thus in the next section, we focus on the search of
such distinguishers.

3.2 Searching for Extended Division Property

First, let us recall what we are looking for. In this paper, we will only consider
SPN block ciphers, i.e. the round function is f = L◦S, where L is linear and S is
built as the concatenation of s S-boxes of size m applied in parallel on the state,
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hence the block cipher has block size n = s.m. Moreover, we will consider that
all S-boxes are the same. This is to get an easier analysis, but we can extend
this with different S-boxes.

Reducing the search space of Lin and Lout. Given such a block cipher E
which does not have any integral distinguisher based on the division property,
we want to find two linear mappings Lin and Lout such that Lout ◦ E ◦ Lin
has an integral distinguisher based on the division property which is supported
by the previous observations. Moreover, we also would like to exploit the fact
that we have a more precise propagation when considering the propagation of
division property vectors through S ◦M as a single function, instead of indepen-
dently through M then S. Note that, theoretically, we could consider the whole
round function of the block cipher as a single function (or even the whole block
cipher), and thus getting more precise informations about the propagation of
division property vectors. However, recall that computing the propagation table
of division vectors needs O(22n) operations, where n is the size of the function.
Hence for classical block ciphers with 64 or 128 bits block size, this is clearly
impractical.

This also means that we cannot choose any Lin and Lout, as we want to
somehow merge Lin with the first S-box layer and, respectively, merge Lout with
the last S-box layer. Hence, we will focus our search on linear maps Lin and Lout
which are block diagonal, of block size m. Basically, this means that we want to
put an invertible linear map Liin (resp. Liout) before (resp. after) each S-box of
the first (resp. last) round. By doing so, we will denote by Siin = S ◦ Liin and
Siout = Liout ◦ S the modified S-boxes.

First, we give the following proposition to show that we do not need to
consider every possible choice for each block Liin and Liout.

Proposition 3. Let S be an invertible m-bit S-box, L an invertible m-bit linear
map and P an m-bit permutation. Let S1 = S ◦ P and S2 = P ◦ S, and k

S→ k′

be any valid division property propagation through S with k,k′ ∈ Fm2 . Then :

– The propagation P (k) S1−→ k′ is always valid.
– The propagation k

S2−→ P (k′) is always valid.

Proof. This directly comes from the fact that S1 is obtained by just permuting
the input variables of S, and respectively S2 is obtained by permuting the output
bits of S.

Hence, if we search an integral distinguisher for any given block Liin, we do
not need to do the search for all Liin ◦ P where P goes through all possible
permutations, as we could obtain the same result from the search using Liin by
just permuting the initial division property with P . This means, for example,
that if we have the set Kr from a given initial division property k through
Lout ◦E ◦Lin, and we consider L′out ◦E ◦L′in where L′in = Lin ◦ (P 0

in, . . . , P
s−1
in )

and L′out = (P 0
out, . . . , P

s−1
out )◦Lout, where each P iin and P iout is a permutation over
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m bits, then we directly have that the initial division property (P 0
in, . . . , P

s−1
in )(k)

propagates to the set (P 0
out, . . . , P

s−1
out )(Kr). In particular, if we have an integral

distinguisher for Lout ◦E ◦Lin, then so do we for L′out ◦E ◦L′in (and vice-versa
if Lout ◦ E ◦ Lin do not have any integral distinguisher).

This allows us to restrict the search space for each block Liin to a set Lin
containing a representative of each equivalence class

Ein(L) = {L′ ∈ GLm(F2) | ∃P ∈ Pm s.t. L′ = L ◦ P},

and in the same way, to restrict the search space of each Liout to a set Lout
containing a representative of each equivalence class

Eout(L) = {L′ ∈ GLm(F2) | ∃P ∈ Pm s.t. L′ = P ◦ L}.

The size of these spaces Lin and Lout can be obtained by
m−1∏
i=0

2m − 2i

m!
,

as it is the total number of invertible matrices of sizem divided by the number of
permutations overm elements. Note that this is way lower than the total number
of matrices of size m×m over F2 which is 2m

2

, and for example if m = 4, then
there are only 840 matrices to consider.

Reducing the amount of work for Lin Just for now, let us focus on finding a
distinguisher over E◦Lin. We will see later that we can use the idea of this section
together with the next section to search for a distinguisher over Lout ◦ E ◦ Lin.
Note that we just want to exhibit a distinguisher on E ◦Lin, not necessarily the
best one. As such, we will focus on finding a distinguisher requiring 2n−1 data,
i.e. the initial division property will be K0 = k0 with w(k0) = n − 1. By doing
so, we can focus our search on only one modified S-box Siin and set the others
to S. Indeed, if w(k0) = n − 1, there will be only one specific S-box Siin which
will have an input of weight m − 1, while all the others S-boxes Sjin, j 6= i will
have 1 . . . 1 has input. Hence, according to Proposition 2, the vector 1 . . . 1 will
always be propagated to 1 . . . 1 through all Sjin, j 6= i, no matter what Liin is.

From the previous remark, we know that we only need to look at each matrix
from Lin. However, we can reduce even further the amount of propagation we
need to compute. Since the input of the S-box Siin is k0

i with w(k0
i ) = m− 1, we

know that this can only result in at most 2m − 2 possible vectors (by excluding
the full-zero and full-one vectors) after the application of Siin. Thus, to search
for a distinguisher over E′ = E ◦ Lin with E containing r rounds with round
function f = L ◦ S, we first decompose E′ as

E′ = f ◦ f ◦ · · · ◦ f ◦ L ◦ Sin, with Sin = (S, . . . , Siin, . . . , S).

This leads to the following chain of division property propagation

k0 Sin−→ K̃0 L−→ K1 f−→ . . .
f−→ Kr
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where

k0 =

m︷ ︸︸ ︷
1 . . . 1 |

m︷ ︸︸ ︷
1 . . . 1 | . . . |k0

i | . . . |
m︷ ︸︸ ︷

1 . . . 1 .

We first define the set KSin as

KSin := {K | ∃Lin ∈ Lin,k ∈ Fm2 s.t. k
Si
in−→ K and w(k) = m− 1}.

Computing KSin allows us to build all possible K̃0 since we know there exists a
set K ∈ KSin such that every vector k̃0 of K̃0 is of the form

k̃0 =

m︷ ︸︸ ︷
1 . . . 1 |

m︷ ︸︸ ︷
1 . . . 1 | . . . |k̃0

i | . . . |
m︷ ︸︸ ︷

1 . . . 1, with k̃0
i ∈ K.

Hence, instead of trying all possible Liin ∈ Lin, we can skip the first propagation
through Sin and directly consider that the propagation starts at K̃0.

We now need to test each set in KSin. Recall that K̃0 can only be built from
2m−2 vectors k̃0. We will propagate each of those vectors through the remaining
layers of the cipher, i.e. the following chain of propagation

k̃0 L−→ K1 f1−→ . . .
fr−1−→ Kr.

Thus, for each k̃0, we can deduce a set Sk̃0 of balanced bits using MILP. We
then go through each set K̃0 ∈ KSin, and compute

SK̃0 =
⋂

k̃0∈K̃0

Sk̃0 .

If there is one non-empty SK̃0 , then we know that K̃0 will lead to a set of balanced
bits, given by SK̃0 .

Finally, using a precomputed table T Sin defined as

T Sin[K] := {(Lin,k) ∈ Lin × Fm2 | k
Si
in−→ K and w(k) = m− 1},

we are able to deduce a linear map Liin ∈ Lin and a vector k0 such that we get
an integral distinguisher over E ◦ Lin starting from the initial division property
k0.

In summary, we first propagate each of the 2m−2 vectors through f◦· · ·◦f◦L.
Then according to this, for each set K̃0 ∈ KS , we check if each vectors of K̃0 lead
to the same balanced bits through f ◦ · · · ◦ f ◦ L. If so, then using T Sin we can
easily deduce a linear map Lin and an initial division property which results in
an integral distinguisher.

Reducing the amount of work for Lout. Again, we first only consider Lout ◦
E, and will see in the next part how to combine this with the previous section to
get a distinguisher over Lout◦E◦Lin. For Lout, if we search naively, we would need
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to try each possible matrix from Lout. However, this is actually not necessary.
Indeed, recall that there is an integral distinguisher i.i.f the last division property
set Kr does not contains all unit vectors, and thus we only need to check if each
unit vector belongs to Kr. Now consider a division property vector k which
is sent to such a unit vector ei through the last (modified) S-box layer. That
is, we have k

Sout−→ ei where Sout = (S0
out, . . . , S

s−1
out ). In that case, then all S-

boxes except one have a output division property vector equal to 0 . . . 0. From
Proposition 2, we know that this means that the corresponding input vector is
also 0 . . . 0. Hence, k will be of the form

m︷ ︸︸ ︷
0 . . . 0 |

m︷ ︸︸ ︷
0 . . . 0 | . . . |k̃| . . . |

m︷ ︸︸ ︷
0 . . . 0

where k̃ is a non-zero vector of Fm2 .
According to this, we can do the following. First, we compute, for each Lout ∈

Lout, all possible sets K such that K Sout−→ K′, with Sout = Lout ◦ S and K′ does
not contain all unit vectors over m bits. According to those notations, denote by
KSout the set

KSout = {K | ∃Lout ∈ Lout and K′ s.t. K Sout−→ K′}.

We can write the division property propagation chain

k0 f−→ K1 f−→ . . .Kr−1 Sout−→ Kr.

The thing is, we do not know which Lout to use, and thus cannot propagate
through Sout. But instead, we compute a subset K̃ of Kr−1 such that for every
vector k of K̃, the non-zeros elements of k all belongs to a single S-box block,
i.e. is of the form

m︷ ︸︸ ︷
0 . . . 0 |

m︷ ︸︸ ︷
0 . . . 0 | . . . |k̃| . . . |

m︷ ︸︸ ︷
0 . . . 0

with k̃ a non-zero vector of Fm2 . Thus, if there is a propagation k
Sout−→ e where e

is a unit vector, the we must have k ∈ K̃. Now from K̃, build the following sets
for each i ∈ {0, . . . , s− 1}

Kr−1i = {k̃ s.t. 0 . . . 0|k̃|0 . . . 0 ∈ K̃ where k̃ is on the i-th S-box}.

These sets Kr−1
i will allow us to see if we can get a distinguisher. Indeed, if

for at least one i ∈ {0, . . . , s − 1} we have Kr−1i ∈ KSout, then we know that we
can get a distinguisher over Lout ◦E. Then, if we use a precomputed table T Sout
defined as

T Sout[K] = {Lout ∈ Lout | ∃K′ s.t. K
Sout−→ K′ and Em 6⊂ K′},

we know that there exists a linear map Liout ∈ T Sout[Kr−1i ] and a unit vector

e ∈ Fm2 such that Kr−1i

Si
out−→ K′ where e 6∈ K′. Hence, we know that the unit
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vector 0 . . . 0|e|0 . . . 0 ∈ Fn2 will not belong to Kr, which means that we have at
least one balanced bit. In summary, to search for each block Liout, we just need
to compute all sets Kr−1i and check if at least one of them belongs to KSout. If
so, then we can deduce from T Sout which block Liout to use such that this results
in an integral distinguisher.

S0
in S S S. . .

k0
0 11...1 11...1 11...1

k̃0
0 11...1 11...1 11...1

L

w(k0
0) = m− 1

S S S S. . .

...

L

S0
out S1

out S2
out Ss−1out

. . .

K0
k̃0
0

K1
k̃0
0

K2
k̃0
0

Ks−1
k̃0
0

Compute each Kj
k̃0
i

using MILP
over r − 2 rounds

Fig. 2: Overall framework of our search algorithm, where we search for L0
in

Putting everything together. We can now combine the two previous sections
to search for a distinguisher over Lout ◦ E ◦ Lin. The overall idea is given in
Figure 2. We first write Lout ◦ E ◦ Lin as

Sout ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
r−2 rounds

◦L ◦ Sin,

and get the following propagation chain

k0 Sin−→ K̃0 L−→ K1 f−→ . . .
f−→ Kr−1 Sout−→ Kr,

where w(k0) = n−1. According to the previous part, we first start by computing
KSin, T Sin,KSout and T Sout. Then, for each S-box block i of the first layer, and for
each of the 2m− 2 initial division property vectors k̃0

i , we use MILP to compute
all the sets Kr−1j , j ∈ {0, . . . , s− 1} through f ◦ · · · ◦ f ◦ L, where there are r− 2
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applications of f . We denote by Kj
k̃0
i

these sets to tie them with k̃0
i , and Sj

k̃0
i

the

resulting (possibly empty) set of balanced bits. Then for each set K̃0 ∈ KSin, we
compute the following intersections for each j ∈ {0, . . . , s− 1} :

Sj
K̃0

=
⋂

k̃0
i∈K̃0

Sj
k̃0
i

,

Lj
K̃0

=
⋂

k̃0
i∈K̃0

T Sout[K
j

k̃0
i

].

Now, if there is at least one j such that both Sj
K̃0

and Lj
K̃0

are non-empty,
then we got a distinguisher. Indeed, by putting any map from Lj

K̃0
after the j-th

S-box in the last layer, and any map from T Sin[K̃0] before the i-th S-box in the
first layer, we know that all bits in Sj

K̃0
will be balanced. The whole procedure

is summarized in Algorithm 1.
Overall, the number of call to the MILP model can be upper bounded as

follow. First, we need to compute all Kj
k̃0
i

for each of the s(2m − 2) possible k̃0.

Then, each set Kj
k̃0
i

can contain at most 2m vectors, and getting one vector of
any of these sets cost one call to the MILP model. Since there are s of those
sets, we need s2m calls to the MILP model. Note however that in practice, this
is much lower, as we don’t need to recover the redundant vectors. This means
that for example, the sets {0001, 0011} and {0001} are considered the same, as
0011 is redundant in the first set and thus can be removed. If we go through
all sets with m = 4, then the maximum size of any set Kj

k̃0
i

is 6, and there are

only 167 possible sets (compared to, in theory, a maximum size of 16, and 216

possible sets). In total, we need at most s2(2m − 2)2m calls to the MILP solver,
and the factor 2m is actually much lower in practice. Moreover, if we go through
each of the 2m − 2 vectors k̃0

i in a smart way, we can often reduce further the
number of calls to the MILP solver. Indeed, if we first go through all vectors of
weight m− 1 and compute all corresponding Sj

k̃0
i

, we are left with two cases :

– All Sj
k̃0
i

are empty for all vectors k̃0
i of weight m − 1, and thus we do not

need to go further. Indeed, for any vector k such that w(k) < m − 1, we
know that there is a vector k̃0

i of weight m − 1 such that k̃0
i � k. Hence,

since there is no balanced bit from all vectors k̃0
i of weight m − 1, then we

cannot have any balanced bit from any vector of weight strictly lower than
m− 1 (see [11] Proposition 2).

– Otherwise, we first check if there is any set K̃0 ∈ Kin built only from vectors
of weight m − 1. If so, then we apply Algorithm 1 from line 11 to line 22
to check if we can find a distinguisher. If no distinguisher exists, or if none
of the set of Kin are built only from vectors of weight m − 1, then we go
through all vectors of weight m− 2 and do the same procedure and so on.
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In practice, this allows us to significantly reduce the time needed to find a dis-
tinguisher, or even prove than none exists, and this will be detailed in the next
section.

Algorithm 1 Searching Lin and Lout
1: Compute KSin, T Sin,KSout and T Sout
2: for i = 1 . . . s do
3: for each of the 2m − 2 vectors k̃0

i do
4: Generate a MILP model for f ◦ · · · ◦ f ◦ L r − 2 application of f
5: Set the initial division property to 1 . . . k̃0

i . . . 1 k̃0
i on the i-th block

6: Compute each set Kj
k̃0
i

, j ∈ {0, . . . , s− 1} using the MILP model

7: Deduce each set Sj
k̃0
i

according to Kout
8: end for

9: for K̃0 ∈ Kin do
10: L0

out, . . . , L
s−1
out ← Im Im : identity matrix of size m

11: S← ∅
12: for j = 1 . . . s do
13: Compute Sj

K̃0
and Lj

K̃0

14: if Sj
K̃0
6= ∅ and Lj

K̃0
6= ∅ then

15: Ljout ← any element from Lj
K̃0

16: S← S ∪ Sj
K̃0

17: end if
18: end for
19: if S 6= ∅ then We have at least one balanced bit
20: Liin ← any element in T Sin[K̃0]

21: return Diag(Im, . . . , L
i
in, . . . , Im), Diag(L0

out, . . . , L
s−1
out )

22: end if
23: end for
24: end for

4 Application to RECTANGLE and PRESENT

4.1 Division Property against 10-round RECTANGLE

RECTANGLE [18] is a lightweight block cipher designed for fast implementation
using bit-slice techniques. It is a 64-bit block cipher, using 4-bit S-boxes and a
permutation as the linear layer. There are 80-bit and 128-bit key sizes, and the
total number of round in 25 in both cases. The best known division property
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based integral distinguisher is from [17] over 9 rounds, using 260 data and re-
sulting in 16 balanced bits. By applying the previous algorithm, we were able to
find a distinguisher over 10 rounds, using 263 data and resulting in 1 balanced
bit. The distinguisher is built on Lout ◦ E ◦ Lin, where the block 0 of Lin is

L0
in =


1 0 0 0
0 1 1 0
0 1 0 0
0 0 0 1


and Lout is the identity. This results in the following distinguisher, where :

– c denotes a constant bit,
– a denotes a bit taking all possible values through the set,
– b denotes a balanced bit,
– ? denotes a bit in an unknown state.

Input :


aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaac
aaaaaaaaaaaaaaaa

→ Output :


??????????b?????
????????????????
????????????????
????????????????


Overall, the time needed to compute allKj

k̃0
i

for a given k̃0
i is about 400 seconds in

average. The reason this distinguisher exists is that when considering S′ = S◦L0
in

where S is the S-box of RECTANGLE, the transition 1101
S′−→ {0101, 1110} is now

possible, while the set {0101, 1110} was not reachable from the original S-box
S. Note that this distinguisher does not depends on the key size, and thus is
applicable to both the 80-bit and the 128-bit key variants.

4.2 Strengthening RECTANGLE

According to our observations in Section 3.1, it is natural to think that the
resistance of an S-box-based cipher against division property is highly related
to the number of weight 1 vectors in the division property propagation table
of the S-box. As such we wondered how the choice of the S-box affects the
resistance of RECTANGLE against division property. Since the rational behind
S-box design highly depends on potential applications of the resulting block ci-
pher, we restricted the search space to S-boxes linearly equivalent to the original
RECTANGLE S-box. Indeed, linearly equivalent S-boxes have similar structures
regarding differential and linear properties. Given two m-bit S-boxes S and S′
such that S′ = B ◦ S ◦ A, if there is a differential (∆i, ∆o) ∈ F2m

2 such that
S(x)⊕ S(x⊕∆i) = ∆o holds with probability p, then since A ans B are linear
and invertible, there is a differential (∆′i, ∆′o) = (A−1.∆i, B.∆o) of the same
probability for S′. Hence the DDT is essentially the same, and we may expect
that it should not drastically change the resistance against differential attacks
compared to using the original S-box, and the same kind of observations can be
made for linear attacks.
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For 4-bit S-boxes, as there are about 214.3 invertible matrices of size 4, the
main issue we are facing is the high complexity of trying all the 228.6 candidates
for (A,B). Indeed, many hours are required to search for a division property dis-
tinguisher, making the whole search infeasible. Hence, we propose to use several
heuristics to select which couples (A,B) to try.

Selecting good S-boxes. Our first idea was to compute the division property
propagations tables of all candidates (A,B). This required to perform 228.6 ×
22×4 = 236.6 non trivial operations and took approximately 80h on a Xeon E5-
2695 (72 cores). Among all those propagation tables, none of them was perfect
: i.e. having 14 transitions k → {1000, 0100, 0010, 0001}. However we found 56
almost perfect tables: i.e. having 13 transitions k → {1000, 0100, 0010, 0001}.
Note that many couples lead to the same table but the division property only
depends on the table. Hence it is enough to try only one representative per table.
Since some implementations of block ciphers do not use a table to store the S-
box, we believe it makes sense to select the representative which would add less
extra XORs. Hence, for each of the 56 tables we selected the couple (A,B) with
the lower XOR count and ran our new automated search tool.

As a result, we found that by using

A =


1 1 0 0
1 0 1 0
1 0 0 1
0 1 0 0

 and B =


1 0 1 0
0 1 1 0
0 0 1 0
0 0 0 1


which results in only 5 XOR, and replacing all S-boxes of RECTANGLE by S′ =
B ◦S ◦A where S is the original S-box of RECTANGLE, then even when using our
technique, there is no distinguisher over 9 rounds of this variant of RECTANGLE.
We were however able to find a distinguisher over 8 rounds of this variant, using
our technique where Lin is built with

L0
in =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 0


and all others Liin for i 6= 0 are the identity, and each block Liout of Lout is

Liout =


1 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 .

This results in a distinguisher of data complexity 263 resulting in 14 balanced
bits. Note that the classic search algorithm for division property distinguishers
lead to no distinguisher even over 8 rounds, which shows again that our extension
technique can find new distinguishers.
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We believe that this could lead to a new criteria when designing S-boxes, as
for the case of RECTANGLE, it improves the resistance against division property
based distinguishers by 2 rounds. We would thus first build the S-box accord-
ing to classical criteria (differential and linear resistance, . . . ), then look at the
linear equivalent S-boxes and take the one with "the best" division property
propagation table. We do not have an exact definition of what would be "the
best" propagation table, but maximizing the number of vectors of weight 1 over
all the output sets seems to be an interesting choice.

4.3 Division Property against PRESENT

PRESENT [3] is a 64-bit lightweight block cipher, using either 80 bits or 128 bits
keys, with a round function very similar to RECTANGLE and using 4-bit S-boxes.
The best known division property based integral distinguisher is from [17] over
9 rounds, requiring 260 data and resulting in 1 balanced bit. We applied our
previous algorithm to this block cipher, and were actually able to show that our
technique cannot lead to a distinguisher over 10 rounds of PRESENT. Indeed, as
mentioned at the end of the previous section, if we go through all vectors k̃0

i of
weight 2, then all of the resulting sets Sj

k̃0
i

are empty, meaning that if there is

at least one vector of weight 2 or lower in K̃0, then this cannot results in some
balanced bits after 10 rounds. Moreover, if we go through all linear mappings
L ∈ Lin and compute all possibles propagations k

S′−→ K where w(k) = 3 and
S′ = S ◦ L with S the S-box of PRESENT, then K will always contains at least
one vector of weight 2, or at least one vector of weight 1. Hence, no matter which
linear map we take from Lin, we know that after the first S-box layer, there will
always be a vector of weight either 1 or 2, which lead to a set K10 containing
all unit vectors, and thus no distinguisher over 10 rounds can be built using our
technique.

4.4 Strengthening PRESENT

As for RECTANGLE, we searched for another S-box to use which is linear equiva-
lent to the S-box of PRESENT such that it would improve the resistance against
division property based distinguishers. By using S′ = B ◦ S ◦A with

A =


1 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 and B =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


instead of S for all S-boxes of PRESENT, then we do not have any division
property based distinguisher over 8 rounds of this variant of PRESENT even
when using our extension technique. However, we found a distinguisher over 7
rounds using our technique, with Lout being the identity and Lin being built
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with

L0
in =


1 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


and Liin as the identity for i 6= 0. This results in a distinguisher of data complex-
ity 263 with all 64 bits being balanced. The classical search algorithm was only
able to find a distinguisher on up to 6 rounds. This again highlights that our
extension technique allows to find better distinguishers than the classical search.

Note that, for non table-based implementation, the new S-box we propose
only requires two extra XORs compared to the original S-box of PRESENT.

5 Conclusion

In this paper, we studied further the division property and the distinguishers that
are built from it. We showed that while the previous search methods were able
to efficiently find some integral distinguishers based on the division property, the
search space explored by these methods does not actually cover all possibilities.
As such, we showed that for r rounds of a block cipher E, considering E′ =
Lout ◦E ◦Lin instead of E, where Lout and Lin are block diagonal linear maps,
can lead to some integral distinguisher over E′, while E does not have any. We
provided an algorithm to find such distinguisher, and successfully applied it to
the block cipher RECTANGLE, on which we found an integral distinguisher over
10 rounds, requiring 263 data and leading to 1 balanced bit. This is one more
round that the previously known distinguishers. The design of our algorithm also
allowed us to prove that our technique cannot extend the best distinguisher on
PRESENT over one more round. Finally, according to our observations, we were
able to exhibit some variants of RECTANGLE and PRESENT which have a better
resistance against integral distinguisher based on the division property. Namely
the maximum number of round on which we could find an integral distinguisher
over our variant of RECTANGLE and PRESENT is 2 rounds lower than when using
the original S-box. This might give a new design criteria for S-boxes and further
research about this will be needed.

We believe that overall, this technique could open up a lot of questions and
possibilities. Indeed, we basically decomposed a block cipher E as

E = (E2 ◦ L−1out) ◦ (Lout ◦ E1 ◦ Lin) ◦ (L−1in ◦ E0),

and merged Lin and Lout with the first S-box layer. But could we use the same
technique at a lower level, i.e. decomposing the round function as f = L ◦L−1 ◦
L ◦ S, merging L with S for example ? In a more general view, the question
is : what is the best representation of a block cipher to propagate the division
property ?

Also, our algorithm focus on finding any distinguisher over an SPN block
cipher. Thus, how could we find an optimal distinguisher (in term of data) us-
ing this technique ? Applying our algorithm when more than one S-box has
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an input division property which differs from 1 . . . 1 seems quite hard in term
of complexity, thus we may need either to improve our algorithm, or to find
a new one. The same issue comes up when considering 8-bit S-boxes, as we
need more calls to the solver, and the resulting MILP models are way more
complicated, and thus takes a longer time to be solved. Finally, could this
also apply to other constructions such as Feistel block ciphers or permuta-
tion based block ciphers ? Indeed, our algorithm is efficient because we can
basically only study the propagation from after the first S-box layer to be-
fore the last S-box layer. We made our implementation available at https:
//github.com/ExtendDivProp/ExtendDivProp.
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