
Path Oblivious Heap

Elaine Shi

1 Introduction

We show how to construct an optimal, statistically secure oblivious priority queue through a simple
modification to the (non-recursive) Circuit ORAM algorithm [12]. Let N denote the maximum
number of items the priority queue can store. Imagine a Circuit ORAM binary tree with N leaves,
where each non-root node in the tree can hold O(1) records that are either real or dummy, and
the root node can hold super-logarithmically (in the security parameter) many records. Every real
element in the tree carries its own position label, which ties the element to a path in the tree. Each
node in the tree is additionally tagged with the minimum element in its subtree (henceforth called
a subtree-min) as well as its position label. Observe that whenever a path in the tree is modified,
it takes only path-length amount of work to modify the subtree-min of all nodes along the path.
We can support Insert and ExtractMin queries as follows:

• Insert: to insert an item, assign it a random position label that ties the element to a random
path in the tree. Add the item (tagged with its position label) to the root bucket. Perform
eviction on two randomly selected paths (that are non-overlapping except at the root). An
eviction operation tries to move real elements on the path closer to the leaf (while making sure
that every element still resides on the path it is assigned to). Recalculate the subtree-mins
of the two eviction paths.

• ExtractMin: by examining the root node’s subtree-min, find out which path the minimum
element resides in. Read that path, remove the minimum element from the path and save it
in the CPU’s local cache. Recalculate the subtree-mins of the path just read.

Other types of requests, such as Delete, DecreaseKey, and IncreaseKey can be supported
in a similar manner. Since each request always operates on at most two paths in a binary tree, we
call our construction Path Oblivious Heap.

Theorem 1 (Practical, optimal oblivious priority queue). Assume that each memory word is at
least logN bits long and every item in the priority queue can be stored in O(1) words. There
exists a statistically secure oblivious priority queue algorithm that supports each operation in the
set {Insert,ExtractMin,Delete, DecreaseKey, IncreaseKey} in O(logN + log 1

δ) time and
IO, where N denotes an upper bound on how many elements the priority queue can store, and δ
denotes the failure probability per request. Further, the above holds even when the CPU has only
O(1) words of private cache.

Path Oblivious Heap outperforms existing works both in terms of asymptotical and concrete
performance. Our construction is optimal in light of the recent lower bound by Jacob et al. [6], and
is amenable for implementation either in a cloud outsourcing scenario or in RAM-model multi-party
computation [5, 8]. The overhead of our scheme relative to an insecure binary heap (which is the
most widely adopted priority queue implementation) is minimal: binary heap requires fetching a

1

single tree path (whose length is up to logN) where each node stores a single data item. Assuming
that the CPU has enough local cache to store an entire tree path, our scheme requires fetching
only 2 paths per request but each node in the tree now stores 2 items (in fact, in Section 6.2, we
describe a variant that requires fetching only a single path per request but each node in the tree
stores 3 items). Note that if the CPU permanently stores the root bucket, exactly logN buckets
need to be transmitted per path.

Last but not the least, our work immediately implies a practical and optimal oblivious sort
algorithm which we call Path Oblivious Sort, which can sort N elements in N(logN + log 1

δ) time
and IO with probability 1− δ.

1.1 Related Work

Toft [11] constructs an oblivious priority queue with O(log2N) cost per request. Wang et al. [13]
show a more practical construction where each request can be completed in O(logN(logN+log 1

δ))
time and IO. The very recent work of Jafargholi et al. [7] showed how to construct an oblivious
priority queue where each request completes in amortized O(logN + log 1

δ) time and O(logN) IO,
but requiring O(log 1

δ) words of CPU cache.
Jacob et al. [6] prove that any oblivious priority queue must incur Ω(logN) IO per request even

when the CPU can store O(N ε) words in its private cache where 0 < ε < 1 is an arbitrary constant.

2 Definitions

We consider algorithms in the standard RAM model, where word-level addition and bitwise boolean
operations can be accomplished in unit time (note that we need not assume word-level multiplication
in unit time). Like in the standard RAM model, we assume that each memory word is capable of
storing its own index, i.e., if the RAM’s total memory size is n, then each memory word is at least
log n bits long.

Throughout the paper, unless otherwise noted, we assume that the CPU has only O(1) words
of private cache. We measure the efficiency of a RAM algorithm using the standard notion of
runtime. Note that if a RAM algorithm runs in time T , it also implies that the algorithm requires
transmitting only T words between the CPU and memory — thus our overhead metric also implies
bandwidth overhead.

2.1 Priority Queue

We assume that when the priority queue is first initiated, a constructor function is called which
takes in a desired security parameter λ. Afterwards, the priority queue supports the following types
of operations:

• ref ← Insert(k, v): insert a value v with the key k into the priority queue, and return a
reference (i.e., handle) to the inserted element denoted ref.

• (k, v, ref) ← FindMin(): return the item whose key is the smallest (henceforth called the
minimum item) in the priority queue without deleting it.

• Delete(ref): delete the item with the reference ref from the priority queue.

• (k, v)← ExtractMin(): remove and return the minimum item from the priority queue.

2

Given the above operations, we can support DecreaseKey and IncreaseKey by calling
Delete followed by Insert. For simplicity we define only the above operations explicitly.

Remark 1. Our definition of a priority queue matches the standard interface provided by a popular
binary heap. The recent work by Jafargholi et al. [7] in fact uses a slightly non-standard definition
that is somewhat stronger than the standard binary heap: in particular, their Delete operation
takes in only the item to be deleted but not its reference handle — for this reason, they need a
k-wise independent hash function in their constrction to calculate an element’s handle from the
item itself. By adopting the standard definition, we can avoid the reliance on a random oracle or
a pseudo-random function.

2.2 Obliviousness

Ideal functionality Fpq. An ideal-world priority queue, denoted Fpq, implements the above
priority-queue interface correctly; further we assume that in the ideal world, the reference ref of
an element is simply the time at which the element was inserted (where time is measured by the
number of operations so far).

(1 − ε)-obliviousness. Let N denote an upper bound on the number of elements stored in the
priority queue, and let T ≥ N denote an upper bound on the total number of priority queue
operations. Let ε(λ, T) be a function in λ and T . We say that a priority queue algorithm PQ
satisfies (1− ε)-obliviousness iff there exists a stateful simulator Sim, such that for any conforming,
even computationally unbounded adversary A, its views in the following experiments IdealA and
RealPQ,A have statistical distance at most ε(λ, T):

• IdealA(1λ): A adaptively issues T priority-queue queries. For each query Q, A receives
not only the output from Fpq but also the outcome of Sim(1λ, N,Q.type) where Q.type ∈
{insert, findmin, delete, extractmin} extracts the query type from the query Q.

• RealPQ,A(1λ): A interacts with a challenger C which internally runs a copy of the real-world
algorithm PQ internally instantiated with the security parameter λ. Note that A recognizes
only ideal-world references that represent the time at which elements were inserted; however
PQ recognizes the real-world references whose format is determined by the algorithm itself.
Therefore, C acts as a man-in-the-middle between A and PQ, it passes queries and answers
back-and-forth between A and PQ, translating the references from the ideal-world format to
the real-world format and vice versa.

Finally, at the end of each query, C also informs A the access pattern incurred by the algo-
rithm PQ in answering this query (where by “access pattern” we mean the ordered sequence
consisting of every memory address accessed).

We require that a conforming adversary A must always submit a valid ideal-world reference in
any delete request, i.e., the reference must correspond to a time at which an insertion was made
and moreover the corresponding element inserted must still exist in the priority queue.

3 Path Oblivious Heap: A Simple Oblivious Priority Queue

For simplicity, assume that we know a-priori an upper bound N on the total number of elements
that the priority queue can hold, and an upper bound T ≥ N of the total number of priority-queue
operations.

3

We will use the notation λ to denote an appropriate security parameter. We would like that
for each operation, the priority queue’s correctness fails with probability negligibly small in λ.

3.1 Data Structure

The primary data structure is a Circuit-ORAM binary tree with N leaves where N denotes an
upper bound on the number of entries stored in the priority queue.

Buckets. Each tree node is also called a bucket since it stores an array of either real or dummy
elements. Except for the root bucket which has ω(log λ) capacity where λ is a security parameter,
every other non-root bucket B in the tree can store |B| = 5 elements and each element is either
real or dummy1.

Real and dummy elements. Each real element is of the form (k, v, ref), i.e., it stores not only
contains a key-value pair denoted (k, v), but also a reference ref := (pos, τ) containing two pieces
of metadata:

1. a random position label pos ∈ {0, 1, . . . , N − 1} — this random position label is chosen
uniformly at random when the element is inserted through an Insert operation; and

2. a timestamp τ remembering that this pair (k, v) was inserted during the τ -th operation —
later τ will be included in inserted elements’ references to make sure that the references are
globally unique.

Henceforth we assume that a dummy element is of the form (k = ∞, v = ⊥, ref = ⊥). In
particular, a dummy element has the maximum possible key.

Definition 1 (Path invariant [12]). We maintain exactly the same path invariant as in Circuit
ORAM [12]: a real element with the position label pos must reside somewhere along the path from
the root to the leaf node identified by pos.

Subtree minimum. Additionally, each bucket B in the tree is always tagged with its subtree-min
M := (k, v, (pos, τ)), which denotes the minimum element contained in the subtree rooted at B.
Henceforth, if two elements have the same key k, we will break ties using the timestamp field τ .

3.2 Basic Operations

Bucket operations. Henceforth we assume that each bucket B supports two basic operations
both of which can be implemented obliviously in |B| = O(1) cost:

1. B.Add(k, v, ref): add the tuple (k, v, ref) to the bucket B and throw an Overflow exception
if unsuccessful. This can be accomplished obliviously through a linear scan of the bucket,
and writing the tuple to a dummy location. For obliviousness, whenever a real element is
encountered during the scan, make a fake write, i.e., write the original element back. If no
dummy location was found during the scan, throw an Overflow exception.

2. B.Del(ref): delete an element with the reference ref from the bucket B if such an element
exists. This can be accomplished obliviously through a linear scan of the bucket, writing the
original element back if it does not have the reference ref; otherwise replacing it with dummy.

1Although a (non-root) bucket size of 5 is needed in the proofs [12], in practice we suggest choosing the bucket
size to be 2 with 2 reverse-lexicographical-ordering evicitions per eviction, or choosing a bucket size of 3 with a single
eviction on a random path upon Insert and on the delete path upon Delete or ExtractMin — see Section 6.2.

4

Path operations. We will need two types of path operations. Henceforth let P denote a path
in the tree identified by the leaf node’s index.

1. P.ReadNRm(ref). Read every bucket on the path P and if an element of the reference ref
exists, save its value in the CPU’s local cache and remove it from the path. This can be
accomplished by scanning through every bucket B on P from root to leaf and call B.Del(ref).

2. P.Evict(). Eviction is an algorithm that works on a path, and tries to move real elements on
the path closer to the leaf while respecting the path invariant. Circuit ORAM [12] describes
an Evict algorithm that completes in time C ·L where C denotes the number of words needed
for storing each element (including its metadata ref) and L denotes the path length. We can
employ their Evict algorithm directly and we refer the reader to the original Circuit ORAM
paper [12] for details of the algorithm.

3. P.UpdateMin(). Whenever we operate on a path, the subtree-mins on the path need to
be updated using a UpdateMin procedure. This procedure can be accomplished in time
proportional to the path length as described below: for every bucket B on path P from leaf
to root, recalculate its subtree-min by taking the minimum of 1) the minimum element of the
current bucket B; and 2) the subtree-mins of both children.

3.3 Heap Algorithms

We assume that the priority queue maintains a counter denoted τ that records the number of
operations that have been performed so far, i.e., this counter τ increments upon every operation.
At any point of time, if a bucket throws an Overflow exception when trying to add an element, the
entire algorithm simply aborts with an Overflow exception.

FindMin(): Let (k, v, ref) := the subtree-min of the root bucket Broot and return (k, v, ref).

Insert(k, v):

1. Choose a random position label pos
$←{0, 1, . . . , N − 1}.

2. Call Broot.Add(k, v, (pos, τ)) where τ denotes the number of operations performed so far.

3. Pick two random eviction paths P and P ′ that are non-overlapping except at the root —
the two eviction paths can be identified by the indices of the leaf nodes.

4. Call P.Evict() and P.UpdateMin(); then call P ′.Evict() and P ′.UpdateMin().

5. Return the reference ref := (pos, τ).

Delete(ref) where ref := (pos, τ ′):

1. Let P denote the path from root to the leaf node identified by pos;

2. Call P.ReadNRm(ref) and P.UpdateMin().

ExtractMin(): Let (k, v, ref) := FindMin() and call Delete(ref).

We shall prove the following theorem later in Section 4.1.

Theorem 2 (Obliviousness). The above PQ algorithm2 satisfies (1 − ε)-obliviousness for ε = T ·
e−Ω(|Broot|).

Note that for |Broot| = ω(log λ) and T = poly(λ), ε is a negligible function in λ.

2For a formal proof, assume the algorithm is augmented with a partial eviction on each delete path. See Remark 2.

5

4 Analysis

4.1 Obliviousness

We now prove that the above algorithm satisfies (1− ε)-obliviousness for ε = T · exp(−Ω(|Broot|))
where |Broot| denotes the capacity of the root bucket.

Since ExtractMin is implemented by FindMin and Delete, and our current security definition
is willing to reveal the type of operations, without loss of generality in our proofs it suffices to
consider only three types of requests: FindMin, Insert, and Delete. Observe also the following:

• FindMin has a deterministic access pattern;

• the access pattern of Insert is fully determined by the choice of the two eviction paths
ρ, ρ′ ∈ {0, 1, . . . , N − 1}; and

• the access pattern of Delete(ref) where ref := (pos, τ) is fully determined by the position
label pos contained in the ref.

Modified notion of access pattern. For convenience, in our proof, we will use a modified
notion of access pattern for our real-world algorithm:

• the access pattern of FindMin is ∅;

• the access pattern of Insert is defined by the choice of the two eviction paths ρ, ρ′ ∈
{0, 1, . . . , N − 1}; and

• the access pattern of Delete(ref) where ref := (pos, τ) is defined by pos.

We now consider an algorithm PQ∞ which is the same as the real-world algorithm PQ but with
unbounded buckets. Recall that we will use the modified notion of access pattern for PQ∞. Under
this modified notion of access pattern, we first show that PQ∞ satisfies perfect obliviousness.

Lemma 1. Under the modified notion of access pattern, PQ∞ satisfies 1-obliviousness.

Proof. The simulator Sim is defind in the most obvious manner: upon receiving findmin output ∅;
upon receiving insert, output two random eviction paths ρ, ρ′ ∈ {0, 1, . . . , N − 1} that are non-
overlapping except at the root; upon receiving delete, output a random number from {0, 1, . . . , N−
1}.

To see why the adversary’s views in IdealA and RealPQ∞,A are identically distributed, we make
the following observations:

Fact 1. A always receives the correct answer upon a findmin request in the experiment RealPQ∞,A.

Proof. In the experiment RealPQ∞,A, the challenger C always correctly translates the ideal-world
and real-world references. If so, it is not too hard to see that PQ∞ always returns the correct
minimum element upon FindMin — this is because our algorithm guarantees that all nodes’
subtree-min are correctly maintained at the end of each request.

Therefore, to prove Lemma 1, it suffices to show that the simulated access patterns output by
Sim are identically distributed by the access patterns of PQ∞. Notice that upon an insert query,
no matter in RealPQ∞,A or IdealA, the adversary always sees two fresh random numbers from
{0, 1, . . . , N − 1} even when conditioned its view so far in the experiment. Now consider a delete

query and suppose that A wants to delete an element inserted at time τ :

6

• In the experiment RealPQ∞,A, the adversary A sees the random path chosen for the element
inserted at time τ , and this random choice was made earlier at time τ ;

• In the experiment IdealA, the adversary A sees a random path chosen right now by Sim.

It is not hard to see that even in the experiment RealPQ∞,A, upon a delete query and con-
ditioned on the adversary’s view so far, the random path revealed is uniform at random from the
range {0, 1, . . . , N − 1} — specifically, notice that the adversary’s view so far does not depend on
the random choice made earlier at time τ .

Lemma 2 (Probability of Overflow). For any conforming adversary A, in the real-world experiment
RealPQ,A, an Overflow exception is encountered with probability at most T · exp(−Ω(|Broot|)).

Proof. If there is a conforming adversary A that can cause RealPQ,A to encounter Overflow with
probability ν, we can easily construct an adversary B that cause the (non-recursive) CircuitORAM
to encounter Overflow with probability ν too. Specifically,

• B invokes a non-recursive CircuitORAM parametrized also with N and λ — note that in the
binary tree of CircuitORAM every bucket has the same capacity as the corresponding node in
our PQ algorithm.

• Furthermore, B internally maintains a correct priority queue, and upon any findmin query
from A it always returns the correct answer to A.

• whenever A submits findmin, B returns the ∅ access patterns to A;

• wheneverA submits an insert request, B may arbitrarily choose this element’s logical address
addr to be any fresh address that is different from the address of any inserted elements so far;
now B submits a (Insert, addr, ∗) request to its own challenger where ∗ denotes an arbitrary
payload string which we do not care about. As a result, B obtains the CircuitORAM’s access
patterns that are fully determined by two eviction paths P and P ′, B returns these paths’
identifiers to A.

• whenever A issues a delete request on an element inserted at time τ , B finds out the correct
logical address addr of this element and submits a (ReadNRm, addr) request to its challenger.
As a result, B obtains the CircuitORAM’s access patterns that are fully determined by a read
path, B returns this read path’s identifier to A.

Now, the experiment RealPQ,A is fully determined by the random coins ~ψ consumed by A and
the random coins ~µ consumed by PQ. If the execution of RealPQ,A determined by (~ψ, ~µ) encounters
overflow, the execution of the above experiment determined also by (~ψ, ~µ) — where ~ψ denotes A’s
random coins and ~µ denotes CircuitORAM’s random coins — will also encounter overflow.

Thus, the lemma follows directly from Theorem 5 of Section A.

Remark 2 (A note about partial eviction). Due to Remark 4 of Section A, we in fact need to
augment our PQ algorithm slightly for the above lemma to hold: for every Delete operation, we
need to perform a “partial eviction” operation on the path from which we deleted an element. We
refer the reader to the Circuit ORAM [12] work for full details of the partial eviction. In a practical
implementation, just like the authors of Circuit ORAM recommended, omitting this partial eviction
empirically improves the practical performance by a small constant factor (and also simplifies the
implementation).

7

Proof of Theorem 2. We now prove Theorem 2. From Lemma 1 and Lemma 2 we have that
PQ satisfies (1− ε)-obliviousness under the modified notion of access patterns. It is easy to see that
this implies that PQ satisfies (1− ε)-obliviousness under the original notion of access patterns too.

4.2 Asymptotical Efficiency

Suppose that each item of the form (k, v) in the priority queue can be represented by D bits.
Each element in our binary-tree data structure has Θ(logN + log T + D) bits. Assume that the
RAM’s word size is large enough to hold such an element (if it takes C memory words to store
this information, we can simply multiply the overhead by C). We can now analyze the scheme’s
efficiency.

The total space is upper bounded by O(N). Even when the CPU can locally store only O(1)
words, each priority-queue request can be completed in O(logN+ |Broot|) time. Specifically, assum-
ing that T and N are polynomially bounded by λ, and the root bucket size |Broot| is an arbitrarily
small super-logarithmic function in λ, then our PQ scheme will satisfy (1 − negl(λ))-obliviousness
due to Theorem 2 later in Section 4.1.

Theorem 3 (Oblivious priority queue). Let D := |k|+ |v| be the number of bits needed to represent
an item of the priority queue; let w be the bit-width of each memory word, and let C := (D +
log T)/w. Then, for any 0 < δ < 1/T , there exists a priority queue algorithm that satisfies (1−Tδ)-
obliviousness; and moreover it completes each FindMin request in O(C) time, and each Delete,
Insert, and ExtractMin request in O(C · (logN + log 1

δ)) time.

So far we have assumed that the the CPU has only O(1) words of private cache. If, however,
the CPU’s local cache is just a little larger — specifically, as large as the size of a path — then
every priority-queue request can be served in a single round-trip between the CPU and memory.

The case of unknown T . So far we have assumed that we know the maximum number of
requests (denoted T) a-priori. It is easy to remove this assumption and construct an oblivious
priority queue that only needs to know N a-priori but not T . Basically, the caller constructs PQ
by declaring N upfront and letting T = 3N . After making N queries, the caller can read out
all items stored in PQ by repeatedly calling ExtractMin3 and inserting these items into a new
instance of PQ, also parametrized with N and T = 3N . Note that even if the existing PQ may in
fact be storing fewer than N items at the time of destruction, the caller always needs to make N
ExtractMin queries to hide the number of items. This goes on, and each PQ instance needs to
support at most 3N queries: N Insert queries at initialization, followed by N arbitrary queries
during its life cycle, followed by N ExtractMin queries at destruction. The cost of this periodic
rebuild can be amortized to each request so far. Thus we have the following corollary:

Corollary 1 (The case of unknown T). Let N be an a-priori known upper bound on the number of
items the priority queue can store. Let T be the actual number of requests which may not be known
upfront. Let D := |k|+ |v| be the number of bits needed to represent an item of the priority queue;
let w be the bit-width of each memory word, and let C := (D + logN)/w.

Then, for any 0 < δ < 1/T , there exists a priority queue algorithm that satisfies (1 − Tδ)-
obliviousness; and moreover it completes each FindMin request in O(C) time, and each Delete,
Insert, and ExtractMin request in O(C · (logN + log 1

δ)) time.

3A practical optimization is to read every slot in the binary-tree data structure to extract all elements stored.

8

Finally, we can also support the case of unknownN at the price of a slight leakage of information:
we can initialize a PQ instance with N capacity (e.g., N = 16); whenever we detect that the total
number of items exceeds N , we read out every item in the current instance and insert them into a
new instance initialized with 2N capacity, and so on. This approach leaks when the total number
of items exceeds the next power of 2. In practice, we also recommend employing a differentially
private all-prefix-sum algorithm [1–3] to obfuscate exactly when the total number of items exceed
the next power of 2.

5 Path Oblivious Sort: Practical and Optimal Oblivious Sort

Given m elements each of the form (k, v), we can obliviously sort them as follows: 1) initiate an
oblivious PQ parametrized with a security parameter λ and the space-time parameters N = T = m;
2) insert each element sequentially into an oblivious priority queue by calling the Insert algorithm;
and 3) call ExtractMin() a total of m times and write down the outputs one by one. If the
oblivious PQ satisfies ε-obliviousness, then the resulting oblivious sorting algorithm correctly sorts
m numbers with 1− ε probability.

Theorem 4 (Optimal oblivious sorting). Let D := |k|+|v| be the number of bits needed to represent
an item of the priority queue; let w be the bit-width of each memory word, and let C := (D +
log T)/w. Then, for any 0 < δ < 1, there exists an oblivious sort algorithm that can correctly sort
m integers in O(Cm(logm+ log 1

δ)) time with probability 1− δ.

6 Practical Considerations

6.1 Hiding the Request Type

So far our algorithm hides the relative ordering of the items inserted into the priority queue but
does not hide the type of the requests.

It is easy to additionally hide the type of requests too. Basically, for every request, say
ExtractMin, we can make dummy accesses that emulate the access patterns of all other requests,
including Insert, FindMin, and Delete, and run the real algorithm ExtractMin. We do the
same for every type of request — note that we need to run the algorithms, fake or real, in a fixed
order.

With this modification, the cost of Insert, Delete, and ExtractMin blow up by only a
constant factor; and FindMin now must incur logarithmic cost too (instead of constant).

Remark 3. As a practical optimization, one can take the smallest superset of the access patterns
of all requests, and incur only this superset access patterns for every request; doing either useful
or dummy work with each physical access depending on what the request is.

6.2 Practical Performance Optimizations

So far, we have built our Path Oblivious Heap from Circuit ORAM [12] which allows us to achieve
asymptotic optimality.

In a cloud outsourcing scenario, one may consider employing Path ORAM [9,10] which is almost
identical to Circuit ORAM except that it uses a slightly different Evict algorithm. Although Path
ORAM is asymptotically slightly worse than Circuit ORAM, in some practical scenarios such as
cloud computing, it achieves better practical performance.

9

If we instantiate our Path Oblivious Heap using Path ORAM’s eviction algorithm, we get the
following asymptotical performance. Henceforth we assume that each memory word can store
an item in the priority queue as well as its own index, and moreover let the path length L :=
logN + log 1

δ where δ represents the failure probability per request:

• If the CPU can locally store L elements, then each priority queue request can be completed
in O(L logL) runtime and O(L) number of IOs (i.e., number of words transferred between
CPU and memory);

• If the CPU can locally store O(1) words, then each priority queue request can be completed
in O(L logL) runtime and IOs.

When instantiated with Path ORAM, our asymptotical performance in fact matches the recent work
by Jafargholi et al. [7]. However, our scheme is much more amenable to practical implementation
than Jafargholi et al. [7].

In practice, we also recommend the following strategy for selecting eviction paths and parametriz-
ing non-root nodes’ bucket sizes:

1. Instead of picking two eviction paths at random, pick two eviction paths deterministically
using the reverse-lexicographical ordering strategy first suggested by Gentry et al. [4]. Empirial
evaluations in the past have shown that the bucket size can be set to as small as 2 if such a
strategy is adopted [12] (using either Circuit ORAM or Path ORAM’s eviction algorithm).

2. Alternatively, perform eviction on a random path upon Insert and perform eviction on the
delete path upon Delete or ExtractMin — in this case, if we use Path ORAM’s eviction
algorithm, the bucket size can be as small as 3 [10].

Finally, if the reader wishes to implement Path Oblivious Heap on top of a multi-party computa-
tion backend, we recommend instantiating it with Circuit ORAM for best concrete performance [12].

Acknowledgments

The author would like to thank Kai-Min Chung for insightful technical discussions. This work is
supported in part by NSF CNS-1453634, an ONR YIP award, and a Packard Fellowship.

References

[1] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics.
In Proceedings of the 37th international colloquium conference on Automata, languages and
programming: Part II, ICALP’10, pages 405–417, Berlin, Heidelberg, 2010. Springer-Verlag.

[2] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics.
ACM Transactions of Information and System Security (TISSEC), 14(3):26, 2011.

[3] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential privacy
under continual observation. In Proceedings of the Forty-second ACM Symposium on Theory
of Computing, STOC ’10, pages 715–724, New York, NY, USA, 2010. ACM.

[4] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana Raykova, and
Daniel Wichs. Optimizing ORAM and using it efficiently for secure computation. In Privacy
Enhancing Technologies Symposium (PETS), 2013.

10

[5] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana
Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear (amortized) time.
In CCS, 2012.

[6] Riko Jacob, Kasper Green Larsen, and Jesper Buus Nielsen. Lower bounds for oblivious
data structures. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2439–2447,
2019.

[7] Zahra Jafargholi, Kasper Green Larsen, and Mark Simkin. Optimal oblivious priority queues
and offline oblivious RAM. Cryptology ePrint Archive, Report 2019/237, 2019. https://

eprint.iacr.org/2019/237.

[8] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. ObliVM: A pro-
gramming framework for secure computation. In IEEE Symposium on Security and Privacy,
2015.

[9] Emil Stefanov, Marten van Dijk, Elaine Shi, T.-H. Hubert Chan, Christopher W. Fletcher,
Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple oblivious
RAM protocol. J. ACM, 65(4):18:1–18:26, 2018.

[10] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu,
and Srinivas Devadas. Path ORAM – an extremely simple oblivious ram protocol. In CCS,
2013.

[11] Tomas Toft. Secure data structures based on multi-party computation. In PODC, pages
291–292, 2011.

[12] Xiao Shaun Wang, T-H. Hubert Chan, and Elaine Shi. Circuit ORAM: On Tightness of the
Goldreich-Ostrovsky Lower Bound. In ACM CCS, 2015.

[13] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T-H. Hubert Chan, Elaine Shi, Emil Stefanov,
and Yan Huang. Oblivious Data Structures. In CCS, 2014.

A Background on Non-Recursive Circuit ORAM

Data structure. As described by Wang, Chan, and Shi [12], a non-recursive Circuit ORAM,
parametrized by a security parameter λ and a capacity parameter N , is formed as a binary tree
with N leafs, where each node in the tree is called a bucket. The root bucket Broot can ω(log λ)
store blocks whereas every internal bucket B can store 5 blocks. All blocks stored in the tree are
either real or dummy:

• A real block is of the form (addr, data, pos) where addr dentoes addr ∈ {0, 1, . . . N−1} denotes
the logical address of the block; data denotes an arbitrary payload string — we assume that
the pair (addr, data) can fit in a single block; and pos ∈ {0, 1, . . . , N − 1} denotes the position
label for the block.

• A dummy block is of the form (⊥,⊥,⊥).

11

https://eprint.iacr.org/2019/237
https://eprint.iacr.org/2019/237

Algorithms. Henceforth whenever we say Circuit ORAM, we mean specifically the non-recursive
version. Circuit ORAM supports the following operations:

pos← Insert(addr, data):

1. Pick a random position label pos ∈ {0, 1, . . . , N − 1} and call Broot.Add(addr, data, pos);
where Broot.Add can be implemented identically as described in Section 3. Note that if
the bucket B is already fully occupied and there is no room to successfully perform the
addition, an Overflow exception is thrown.

2. Pick two random eviction paths P and P ′ that are non-overlapping except at the root
bucket — note that the paths may be identified by the indices of the leaf nodes. Now,
call P.Evict() and P ′.Evict(). The details of the Evict algorithm is not too important for
this paper — we only need to know that the Evict algorithm has deterministic access
patterns and completes in O(|Broot|+ logN) time.

3. Return pos;

data← ReadNRm(addr, pos):

Assume: pos must be the label returned by Insert when the block at address addr was
added; moreover this block must not have been removed since it was added.

1. For each bucket B from the root to the leaf identified by pos: sequentially scan through
the bucket B:

• when addr is encountered, remember the data field in the client’s local cache and
and replace the block with dummy block;

• else write the original block back for obliviousness.

2. Return data.

Stochastic bounds for Circuit ORAM. Consider an adversary A that interacts with a chal-
lenger denoted C and adaptively submits a sequence of requests either of the form (Insert, addr,
data) or of the form (ReadNRm, addr). It is guaranteed that for a ReadNRm request, a conforming
adversary A always supplies an addr that has been added (and has not been removed since its
addition).

• Whenever C receives a request of the form (Insert, addr, data) from A, it simply calls Circuit
ORAM’s pos← Insert(addr, pos, data) algorithm and records the pos that is returned.

• Whenever C receives a request of the form (ReadNRm, addr) from A, it finds out the correct
position label pos for addr and calls Circuit ORAM’s data← ReadNRm(addr, pos) algorithm
and returns data to A.

• No matter which query C, at the end of the query C returns to A the access patterns made
by the Circuit ORAM algorithm.

Theorem 5 (Circuit ORAM’s overflow probability [12]). For any conforming adversary A, the
probability that the above experiment encounters Overflow is upper bounded by T · exp(−Ω(|Broot|))
where |Broot| denotes the capacity of the root bucket.

12

Remark 4. Note that the Circuit ORAM work [12] in fact suggested two variants of the algorithm:
a provable version and another slightly simplified variant recommended for practical implementa-
tion. The algorithm described so far is in fact the practical variant. To obtain the above Theorem 5,
we need to add a slight tweak to the algorithm, that is, during the ReadNRm algorithm, we need
to perform a “partial eviction” on the read path. We refer the readers to Circuit ORAM [12] for a
full explanation.

13

	Introduction
	Related Work

	Definitions
	Priority Queue
	Obliviousness

	Path Oblivious Heap: A Simple Oblivious Priority Queue
	Data Structure
	Basic Operations
	Heap Algorithms

	Analysis
	Obliviousness
	Asymptotical Efficiency

	Path Oblivious Sort: Practical and Optimal Oblivious Sort
	Practical Considerations
	Hiding the Request Type
	Practical Performance Optimizations

	Background on Non-Recursive Circuit ORAM

